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Abstract: In the low signal-to-noise ratio region, a large number of bit errors occur, and it may exceed
the channel error correction capability of the receiver. Traditional communication system may use
the technology of automatic repeat-request to deal with this problem, which is time consuming and a
waste of resources. To enhance the reliability of the communication system, we investigate reasoning
and decoding at the semantic level instead of the grammar level. In particular, we propose a semantic
communication model for text transmission, assisting the communication system to be more robust
in terrible channel environments. Based on the traditional communication system, the language
model BERT, part of speech tagging, and prior information concerning bit-flipping are introduced
to enhance the semantic reasoning ability of the transceiver. Furthermore, this paper analyzes the
effects of the sub-strategies on the performances of the improved communication model, such as the
existence of a candidate set and language model. The numerical results show the effectiveness of our
model in terms of improving the semantic accuracy measured by BLUE, the METEOR score, and the
similarity score based on BERT between transmitted messages and recovered messages.

Keywords: bit-flipping; part of speech; prior information; semantic communication

1. Introduction

With the rapid development of communication technology, the explosive growth of
data has consumed more and more limited available spectrum and power, resulting in a
bottleneck for communication development. This is because the existing communication
technology has achieved close to the Shannon capacity [1], which is the maximum rate of
error-free transmission. Shannon’s communication model targets accurate data transmis-
sion and the exact recovery of transmitted signals, which means pursuing accuracy at the
bit level. To achieve this goal, the performance has been measured in the bit-error rate (BER)
or the symbol-error rate (SER). To meet the growing demands of high-date-rate services
and solve the limitation of the traditional architecture, it is necessary to upgrade the classic
Shannon framework and introduce a new perspective to the communication system design.
A true leap forward comes from incorporating semantics into communications [2].

The concept of semantic communication was first proposed by Weaver [3]. In [3],
a three-level communication architecture was proposed: the first level is the grammar
level, which mainly solves the problem of “how to transmit communication symbols
accurately”; the second level is the semantic level, which mainly solves the problem of
“how to convey the desired meaning precisely”; the third level is the pragmatic layer, which
mainly solves the problem of “how the received meaning effectively affects behavior in
the desired way”. The scope of semantic communication was further broadened in [4],
and three semantic communication sub-areas containing human-to-human, human-to-
machine, and machine-to-machine communication were defined. As described in [5],
semantic communication aims at the successful transmission of semantic information
rather than the accurate reception of each single symbol or bit regardless of its meaning.
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Thus, semantic communication provides a novel solution for dealing with limited available
spectrum resources by reducing the sending of useless information, and it will play an
important role in 6G communication [5].

Due to the vigorous development of artificial intelligence, semantic communication
based on neural networks has gradually attracted researcher’s attention, and various se-
mantic communication theories and models were proposed. The conceptual framework
of the semantic communication system and the definition of semantic information based
on logical probabilities were proposed in [6,7]. Additionally, the work in [8] utilized
situation-based logical principles to define semantic information. Furthermore, a theory
of strongly semantic information was proposed in [9]. The authors in [2] represented
semantic information as a factual statement in the propositional logic form and proposed a
semantic communication framework incorporating the world model, reasoning process,
and background knowledge. As an extension of the literature [2], the authors in [10] further
explained the relationship of the model entropy, semantic entropy, and message entropy
and proposed the concepts of semantic redundancy and semantic ambiguity. The work
of [11] mathematically modeled the average semantic error between information based
on semantic similarity. Based on the semantic communication framework, bidirectional
long short-term memory model (LSTM) was applied to semantic encoding and decoding
of text sources [12,13]. For the image and speech sources, the corresponding semantic
feature extraction schemes were investigated in [14–17]. In [18], the authors presented a
Transformer-based joint source–channel coding policy. To lower the cost of IoT devices,
a lite distributed semantic communication system for IoT networks was developed to
achieve better performance on text transmission in [19]. The work in [20] implemented the
semantic transmission of speech signals. The authors in [21] studied a robust end-to-end
semantic communication system for image sources. Moreover, the semantic communication
system of multi-modal data was also investigated in [22]. Since the extraction and utiliza-
tion of background knowledge are crucial for semantic communication, Y. Zhang et al. [23]
proposed an agent-oriented semantic communication architecture, including context knowl-
edge and a semantic encoding and decoding module. Besides, Y. Wang et al. [24] designed
a semantic communication system on the basis of knowledge graphs.

In this paper, we focus on information recovery from the semantic level instead
of the bit level. More specifically, we consider the semantic transmission of text and
investigate using semantics to improve the reliability of communication systems. Due
to the language model being widely used for analyzing human language and predicting
words from given texts, the language model is introduced into our novel context-based
semantic communication system to enhance semantic accuracy. Compared with models
that adopted a joint semantic and channel encoding scheme for text transmission, our
proposed model designs semantic encoding and channel encoding separately. This brings
three main advantages. First, our proposed model is more compatible because it allows
the use of existing traditional communication techniques. Our proposed scheme does not
change the structure of the traditional communication model and utilizes semantics to
serve as the supplement to the traditional communication system. Second, our model is
more suitable to be applied in non-differentiable channels, which is more robust to different
scenarios. Third, our strategies are more flexible as they can be used in non-jointly designed
communication systems. The contributions of this paper are summarized as follows:

• A part-of-speech-based encoding strategy is proposed. The encoding process tries to
add some check information about the semantic features to assist the decoding process
at the receiver.

• A context-based decoding strategy for recovering messages is proposed, in which
the language model is employed to extract the contextual correlation between items,
thereby enhancing the semantic reasoning ability of the receiver. Moreover, the prior
information concerning the codewords is utilized to improve the semantic accuracy of
the recovered messages.
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• Semantic metrics of text such as BLUE, the METEOR score, and the similarity score
based on BERT are employed to measure the semantic error. Based on the simulation
results, the proposed model outperforms the traditional communication system in the
low signal-to-noise ratio (SNR) regime.

The rest of this paper is organized as follows. Section 2 establishes the system model
and explains the performance metrics. Section 3 analyzes the proposed semantic encoding
and decoding strategies concretely. Section 4 presents the simulation results. Finally, the
conclusions are drawn in Section 5.

2. System Model and Problem Formulation

Considering the transceiver as an intelligent agent, our work attempts to enhance the
transceiver with semantic reasoning ability based on the traditional communication system
and to improve communication reliability under low SNR.

2.1. System Model

We consider a semantic communication system, which is composed of a semantic
encoder, channel encoder, channel, channel decoder, and semantic decoder, as shown
in Figure 1. At the transmitter, parts of speech such as noun, verb, and adjective are
used to categorize words in grammar to add semantic features during encoding. At the
receiver, the language model is employed to extract the contextual correlation. Besides,
the prior information concerning bit flipping is utilized in the semantic decoding module
to help recover sentences. Let V be the set of all words in the corpus, and we define
s = [w1, w2, · · · , wm] as the sentence with m items to be transmitted, where wi ∈ V is the
ith word in the sentence. Let Skp(·) be the semantic encoder integrating knowledge of part
of speech kp. C(·) denotes the channel encoder.

Semantic 
encoder

Channel
decoder

Semantic 
decoder

Channel

Channel 
encoderMessage

Message

kp: part of speech

ki: prior information kc: context

language model

ĉ

x

x̂

s

ŝ

c

codeword

Figure 1. The semantic communication system.

From Figure 1, the transmitter first converts the sentence s into a sequence of binary
bits c with the help of the semantic encoder Skp(·). Next, binary bits c = Skp(s) are fed
into the channel encoder to cope with the influence of channel noise and distortion. Thus,
the whole encoding process can be represented as follows:

x = c(Skp(s)), (1)

where x is the transmitted signal at the transmitter. Let y be the sequence of observations at
the receiver, which can be formulated as

y = hx + n, (2)

where h denotes the channel coefficient and n ∼ CN(0, σ2
n) represents the additive Gaus-

sian noise.
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On the contrary, the received signal will be decoded by passing through the channel
decoder and semantic decoder successively. Defining C−1(·) as the channel decoder,
the sequence of observations y will be converted to the sequence of binary bits ĉ = C−1(y).
Let S−1

ki ,kp ,kc
(·) be the semantic decoder integrating prior information ki, part of speech kp,

and context kc. Therefore, the recovered sentence can be represented as follows:

ŝ = S−1
ki ,kp ,kc

(
C−1(y)

)
. (3)

2.2. Performance Metrics

Semantic communication cares less about the consistency between sending and re-
ceiving messages, but emphasizes whether the sender and receiver have the same under-
standing of the message. Therefore, traditional performance metrics such as the BER are no
longer suitable for the semantic communication. Here, we measure the performances of
the semantic communication using the bilingual evaluation understudy (BLEU) score [25]
metric for the evaluation of translation with the explicit ordering (METEOR) sore [26]
and similarity score based on BERT [27]. BLEU is currently the most widely used auto-
matic evaluation indicator. It evaluates the similarity between the result and the reference
translation by using a sliding window. The formula is shown in the following

BLEU = BP · exp

(
N

∑
n=1

wn log pn

)
, (4)

where BP denotes the penalty factor, wn is the weight of the n-gram, and pn is the n-gram
precision score.

METEOR introduces external knowledge sources, such as WordNet, to achieve word
alignment and expand the synonym set. Besides, it considers the parts of speech of words
and evaluates the performance of sentences based on the harmonic average of precision
and recall. The formula is given as follows:

Fmean =
PmRm

αPm + (1− α)Rm
, (5)

METEOR = (1− Pen)Fmean, (6)

where Pm represents precision, Rm denotes recall, α is the hyperparameter according to
WordNet, Fmean is the harmonic mean combining the precision and recall, and Pen is the
penalty coefficient.

The similarity score uses a word vector trained by the BERT model to obtain the
semantic evaluation by calculating the cosine similarity. The calculation formula is given
as follows:

simvBert(s1, s2) =
vBERT(s1)vBERT(s2)

T

‖ vBERT(s1) ‖‖ vBERT(s2) ‖
, (7)

where vBERT(s1) and vBERT(s2) are word vectors of sentences s1 and s2, respectively.
All metrics introduced above have values between 0 and 1, which indicate the semantic

similarity between recovered text and transmitted text. The number 1 means the highest
score, while 0 represents the scenario where two texts have no semantic similarity.

3. Encoding and Decoding Strategy
3.1. Encoding Strategy

This section introduces the details of the proposed encoding strategy. After preprocess-
ing the corpus and breaking sentences into words, we utilize part of speech tagging (POS
tagging) [28], a useful tool of the natural language toolkit, to classify words in grammar.
For simplicity, we assign two bits as the check information to represent parts of speech and
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group all words into four categories with the help of part-of-speech tagging. Denoting the
set of parts of speech as

P = {nouns, adjectives, verbs, others}. (8)

Let the set of the check information be

Cp = {00, 01, 10, 11}. (9)

Define E(·) as the mapping function for POS tagging. For example, 00, 01, 10, and
11 are set to represent nouns, adjectives, verbs, and others, respectively. For example,
E(chair) = 00 will be obtained using the mapping function.

We build the frequency distribution for all words in the corpus and sort them in
descending order of their frequency. Let H(·) be the function for Huffman coding to
generate Huffman codewords for all words. The relationship between Huffman codewords
and words is stored in the dictionary Dict1(·). Considering both functions of H(·) and E(·)
map words into bits, we concatenate the Huffman codewords and the check bits for each
word. Therefore, the final output of the semantic encoder is described as follows:

ci = H(wi)⊕ E(wi). (10)

Similarly, the mapping between the final outputs and words is stored in the dictionary
Dict2(·). Consequently, the details of the proposed encoding process are summarized in
Algorithm 1.

Algorithm 1 Part-of-speech-based encoding method
Input: a text corpus;
Output: codeword dictionary;
1: Build frequency distribution for all words in the corpus and sort them in descending

order of their frequency.
2: Build function H(·) for Huffman encoding to generate Huffman codewords for all

words.
3: Initialize the P, Cp and build mapping function for POS tagging E(·).
4: for wi in corpus do
5: hi = H(wi)
6: ei = E(wi)
7: ci = vi ⊕ ei
8: Dict1(vi) = wi
9: Dict2(ci) = wi

10: end for
11: return Dict1, Dict2

3.2. Decoding Strategy

In this section, the details of the proposed decoding strategy are presented. Let Θ be
the inverse of the concatenation operator, then the received codewords could be divided
into two parts, one of which is the Huffman codeword of the word and the other is the part
of speech, shown as follows:

[v̂i, êi] = Θ(ĉi). (11)

According to the codeword dictionary Dict1(·), Huffman codeword v̂i could be con-
verted into a word. However, if the received Huffman codeword cannot be found in the
dictionary Dict1(·), it will be replaced with “[MASK]”.

To interpret “[MASK]”, we use language model BERT [29], POS tagging, and prior
information concerning bit-flipping. The structure of the language model BERT is a multi-
layer bidirectional Transformer encoder, which is pre-trained on an open-domain corpus.
Because BERT can make use of the context information to interpret “[MASK]”, a whole
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sentence containing “[MASK]” can be fed into BERT, and it can obtain a reasonable result
for the position of “[MASK]”. Additionally, BERT could also interpret multiple “[MASK]”
according to their context. Thus, we recover multiple “[MASK]” in a sentence together
instead of recovering one by one. To obtain the context information, the conditional
probability distribution of context P(·|s̃, i; V) is obtained by the BERT model, where s̃
represents the input sentence, i denotes the position of “[MASK]”, and V stands for the
word list in the original language model. The interpreted results can be denoted as follows:

ŵi = argmax{P(·|s̃, i; V)}. (12)

Nevertheless, BERT has a reasoning ability for general knowledge because of the
training corpus. For a specific sentence, the decoded results only based on BERT are
affected by the general knowledge, which leads to the sentence mismatch between the
recovered sentence and the transmitted sentence. Therefore, we make use of the received
wrong bits corresponding to “[MASK]” to produce the candidate set. Besides, this paper
utilizes the candidate set as the prior information and POS tagging as the check information
to improve decoding accuracy.

To make full use of the received wrong codeword corresponding to “[MASK]”, we
flip the received codeword ĉi by 1 to N bits to produce flipped codewords ĉij, and the total
number of flipped codewords is shown as follows:

J =
N

∑
n=1

Cn
length (ĉi)

, (13)

where length(ĉi) stands for the total number of bits of the word ĉi. For example, if the
received codeword is 0000 (length(ĉi) = 4) and the maximum number of bit-flipping is set
as 2 (N = 2), then the number of flipped codewords for received codeword 0000 will be 10.
Next, ĉij is divided into two parts, which are given by[

v̂ij, êij
]
= Θ(ĉij). (14)

Converting Huffman codewords v̂ij into words and building the candidate set cor-
responding to each “[MASK]”, we then map the check information êij to parts of speech
and filter out the Huffman codeword v̂ij with the mismatch of its tag of the parts of speech.
Next, we put sentences with “[MASK]” and their final corresponding candidate sets into
the BERT model. Combing the candidate set as the new word list, BERT predicts the
word wi from the candidate set V̄i. Then, the interpreted results (12) can be approximately
described as

ŵi = argmax{P(·|s̃, i; V̄i)}, (15)

where P(·|s̃, i; V̄i) represents the new conditional probability distribution of the context.
According to the BERT model, P(·|s̃, i; V̄i) can be obtained from the following formula:

P(·|s̃, i; V̄i) = so f tmax{Emb(context)T · Emb(V̄i)}, (16)

where Emb(context) is the contextual representations produced by BERT at the ith position
of the sentence and Emb(V̄i) is the word embedding matrix in candidate set V̄i.

Consequently, the estimated sentence can be obtained as ŝ = [ŵ1, ŵ2, · · · , ŵm]. The de-
tails of the proposed decoding process are summarized in Algorithm 2.
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Algorithm 2 Context- and prior-information-based decoding method

Input: codeword dictionary Dict1, received codewords ĉ;
Parameter: number of bit-flipping N;
Output: the optimal sequence;
1: for ĉi in ĉ do
2: v̂i, êi = Θ(ĉi)
3: if Dict1(v̂i) exist then
4: w̃i = Dict1(v̂i)
5: else
6: w̃i = [MASK]
7: for n in N do
8: flip ĉi by n bits
9: Cn

length(ĉi)
flipped codewords are obtained

10: end for
11: J = ∑N

n=1 Cn
length(ĉi)

12: for j in J do
13: v̂ij, êij = Θ(ĉij)
14: if E(v̂ij) == êij then
15: pass
16: else
17: remove v̂ij
18: end if
19: end for
20: Build a candidate set V̄i for ith word in the sentence
21: end if
22: end for
23: Put sentence s̃ = [w̃1, ...w̃i] and final candidate set V̄i into BERT model
24: for each [MASK] do
25: P(·|s̃, i; V̄i) = so f tmax{Emb(context)T · Emb(V̄i)}
26: ŵi = argmax{P(·|s̃, i; V̄i)}
27: end for
28: return ŝ

4. Simulation Results

In this section, numerical results are provided to verify the effectiveness of the pro-
posed model. For the baseline, we adopted the Huffman coding and LDPC coding as the
traditional source coding and channel coding methods, respectively (baseline: Huffman +
LDPC). To further verify our proposed model, we compared the results with the scheme
of [23], which similarly adopted a non-jointly designed communication system for text
transmission. For brevity, the scheme in [23] “context-based semantic communication” is
labeled as context-based SC in the following. As described above, our proposed model
adopts language model BERT, POS tagging, and candidate sets concerning bit-flipping
(named Method A). To study the impacts of the language model, one strategy considers
introducing the language model into the traditional communication system (Method B:
tradition+ language model). To investigate the effectiveness of our proposed model, all
encoding and decoding experiments were based on words (e.g., “hello”) instead of char-
acters (e.g., “h”, “e”, “l”, “l”, “o”). When calculating semantic scores for the baseline,
the received Huffman codewords that cannot be found in the dictionary were replaced
by random words in the dictionary, which helps reduce the semantic gap caused by the
sentence alignment problem.

4.1. Parameter Setup

For comparison, we considered the English Wikipedia as the text for transmission,
and we only extracted the text passages with long contiguous sequences and ignored lists,
tables, and headers. In Huffman encoding, we used the English Wikipedia as the corpus
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to compute frequencies, which were then used to generate the Huffman codebook. Parts
of speech were simply set as four kinds. The BERT model was set as “bert-base-uncased”,
whose specific parameters are shown in Table 1. To investigate the impacts of the changes of
the number of bit-flips on the performance of our proposed model, BLEU(1-g) scores under
different numbers of bit-flips versus the SNR over the AWGN channel and the Rayleigh
fading channel are drawn in Figure 2. From Figure 2, the BLUE performance of 1-g was
optimal when the number of bit-flips of the codeword was greater than or equal to 3. Thus,
the number of bit-flips of the codeword was set as 3 to obtain the candidate set.

Table 1. Parameters of the used BERT model.

The Number of
Attention Heads

The Number of
Layers Hidden Size Parameters

12 12 768 110 M

(a) (b)

Figure 2. BLEU(1-g) scores under different numbers of bit-flips versus SNR over the AWGN channel
and the Rayleigh fading channel. (a) AWGN channel. (b) Rayleigh channel.

4.2. Performance Analysis

Figure 3 shows the BLEU score versus the SNR over the AWGN channel and the
Rayleigh fading channel, respectively. As observed, the 1–2 g BLUE scores improved with
the increasing of the SNR, and Methods A and B outperformed the baseline across the
entire SNR range, especially under a low SNR. For both channel conditions, our proposed
model outperformed the baseline in terms of the BLEU score and achieved the largest
performance gain with the 1-g BLEU score. Besides, the introduction of the language model
brought great improvements in performance. It is worth noting that the joint addition of
parts of speech and the candidate set also produced higher 1–2 g BLEU scores, especially
for 2-g BLEU. In Figure 3a,c, due to the protection of the channel coding, the scores of
all methods approached 1 when the SNR was above 7 dB. On the other hand, with the
severe impacts of Rayleigh fading, the BLEU scores in Figure 3b,d rose slowly with the SNR
increasing, and the scores of all methods over the Rayleigh fading channels did not reach 1,
even though the SNR was 10 dB. However, benefiting from our proposed strategies, the
performances improved significantly when compared with the baseline. Specifically, both
the 1-g BLEU score and 2-g BLEU score of our proposed model in Rayleigh fading channels
reached above 0.8 when the SNR was above 6 dB.

Figure 4 draws the relationship between the METEOR score and the SNR over the
AWGN channel and the Rayleigh fading channel, respectively. From Figure 4, the trend of
the METEOR scores for all methods was similar to the trend of the BLEU scores, but the
METEOR scores of our methods showed more advantages than the baseline since METEOR
pays more attention to the fluency of sentences compared to BLEU. The joint introduction
of parts of speech and the candidate set brought a noticeable performance gain over the
traditional methods, especially in the Rayleigh fading channel.
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(a) (b)

(c) (d)
Figure 3. BLEU score versus SNR over the AWGN channel and the Rayleigh fading channel. (a) BLEU
(1-g) score over the AWGN channel. (b) BLEU (1-g) score over the Rayleigh channel. (c) BLEU (2-g)
score over the AWGN channel. (d) BLEU (2-g) score over the Rayleigh channel.

(a) (b)
Figure 4. (a) METEOR score versus SNR over the AWGN channel. (b) METEOR score versus SNR
over the Rayleigh fading channel.

Figure 5 plots the relationship between the similarity score based on BERT and the
SNR over the AWGN channel and the Rayleigh fading channel, respectively. Being trained
on large corpora, the similarity score based on BERT could capture semantic relationships
among words and be more relevant to human judgments. Therefore, the introduction of
the language model resulted in higher scores in terms of the similarity score based on BERT.
It can be seen from Figure 5 that the proposed model had excellent performances in both
the AWGN and Rayleigh channel, particularly over the Rayleigh fading channel.

Figure 6 shows the 4-g BLEU scores of our proposed model and context-based SC
versus the SNR over the AWGN channel. From Figure 6, our model outperformed context-
based SC across the entire SNR range over the AWGN channel. In our proposed model,
the parts of speech were utilized as the check information to reduce the computational
complexity of constructing candidate sets and improving the semantic accuracy. However,
the parts of speech in context-based SC were used for data compression. That is the main
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reason why the proposed model achieved better performance than context-based SC in
terms of the 4-g BLEU scores.

(a) (b)
Figure 5. (a) Similarity score based on BERT versus SNR over the AWGN channel. (b) Similarity
score based on BERT versus SNR over the Rayleigh fading channel.

Figure 6. BLEU (4-g) score of our proposed model and context-based SC versus SNR over the
AWGN channel.

To ensure a fair comparison, we calculated the execution time of the baseline
(Huffman + LDPC), Method B (tradition + language), and our proposed model, respec-
tively. All simulations were conducted on the same platform and were performed by a
computer with Inter Xeon Silver 4110 CPU@2.1 GHz and NVIDIA GeForce GTX 2080TI.
We transmitted 300 sentences using different schemes from the transmitter to the receiver
for the test. The average execution times for each sentence on three methods are shown in
Table 2. From Table 2, the execution time of the baseline was the shortest, and our proposed
model increased only 6.9% compared to the execution time of the Method B algorithm.
It can be concluded that our proposed model enhances the communication reliability by
increasing the computational complexity.

Table 2. The average execution time for each sentence on three methods.

Methods Huffman + LDPC Tradition +
Language Proposed Model

Time complexity/s 4.8561 7.7494 8.2832

5. Conclusions

In this paper, a novel semantic communication model that incorporates the language
model, prior information, and parts of speech was proposed to improve the reliability.
We used the language model and prior information to enhance the semantic reasoning
ability of the receiver. Moreover, the semantic accuracy and computational complexity
were improved by using the parts of speech as the check information. The numerical results
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illustrated that our proposed model improved the performance in terms of semantic metrics,
especially in the low SNR regime. However, the proposed decoding scheme heavily relies
on the assumption that the received context that can be found in the dictionary is correct.
In fact, the received codewords that can be found in the dictionary may be wrongly decoded
as other words, leading to the incorrect context. Based on the above considerations, we will
consider potential errors at each position of a sentence in the future work, to achieve better
semantic accuracy.
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