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Abstract: Sea freight is one of the most important ways for the transportation and distribution of
coal and other bulk cargo. This paper proposes a method for optimizing the scheduling efficiency
of the bulk cargo loading process based on deep reinforcement learning. The process includes a
large number of states and possible choices that need to be taken into account, which are currently
performed by skillful scheduling engineers on site. In terms of modeling, we extracted important
information based on actual working data of the terminal to form the state space of the model. The
yard information and the demand information of the ship are also considered. The scheduling
output of each convey path from the yard to the cabin is the action of the agent. To avoid conflicts of
occupying one machine at same time, certain restrictions are placed on whether the action can be
executed. Based on Double DQN, an improved deep reinforcement learning method is proposed with
a fully connected network structure and selected action sets according to the value of the network
and the occupancy status of environment. To make the network converge more quickly, an improved
new epsilon-greedy exploration strategy is also proposed, which uses different exploration rates for
completely random selection and feasible random selection of actions. After training, an improved
scheduling result is obtained when the tasks arrive randomly and the yard state is random. An
important contribution of this paper is to integrate the useful features of the working time of the bulk
cargo terminal into a state set, divide the scheduling process into discrete actions, and then reduce
the scheduling problem into simple inputs and outputs. Another major contribution of this article is
the design of a reinforcement learning algorithm for the bulk cargo terminal scheduling problem, and
the training efficiency of the proposed algorithm is improved, which provides a practical example for
solving bulk cargo terminal scheduling problems using reinforcement learning.

Keywords: bulk cargo loading; MDP model; deep reinforcement learning; intelligent scheduling

1. Introduction

The bulk cargo terminal works as the transit station for transportation; thus, the
efficiency of its scheduling is very important. At present, its scheduling method is gen-
erally completed manually, which cannot meet the surge in throughput and the trend of
using large-scale ships. Compared with container terminals, there are few studies on the
scheduling problems of bulk cargo terminals, and the main research method is offline
scheduling based on an operation model. Therefore, using up-to-date intelligent methods
to scientifically dispatch the loading and unloading equipment of the terminal, further
improving the efficiency of the terminal operation, reducing the cost of human resources,
and improving the overall benefits is of great research significance.
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At present, in most cases, the production scheduling problem of bulk cargo terminals
is still considered to be a constrained optimization problem, and the deep reinforcement
learning method for the production scheduling problem of bulk cargo ships still needs to
be studied. There are similar studies on the intelligent optimization of bulk cargo terminal
control systems [1], as well as bulk cargo terminal berth scheduling systems, based on
machine learning [2]. These studies were mainly aimed at the berth scheduling problem.
In these studies, aiming at the problems of lagging automation and low informatization
of the bulk cargo terminal, the control system of the bulk cargo terminal was optimized,
and the control efficiency and operability of the control system were improved. In addi-
tion, there are currently some reinforcement learning studies on container terminals. For
example, Fateme Fotuhi proposed a yard crane scheduling model based on reinforcement
learning [3], which was used to solve the scheduling optimization problem of yard cranes.
However, compared with container terminal scheduling, the problem is that the scheduling
model of bulk cargo terminals often has the characteristics of a large scale and complex sit-
uation. Research on using reinforcement learning to address these types of problems is still
very preliminary.

Wharf scheduling problems can be summarized as a berth allocation model (BAP).
The related research on this type of model has made some progress. Research on the berth
allocation model is generally divided into two categories; one focuses on the research of the
model itself, while the other focuses on the study of model solving methods. The research
on the model itself mainly focuses on abstracting and establishing mathematical models
from practical problems, improving the established universal models, and applying them
to specific problems. For different practical problems, berth allocation models include static
and dynamic, as well as continuous and discrete. The optimization objectives of the models
are different, and there are different constraints in the models.

In 2007, Kobe University conducted a study on the berth allocation problem consider-
ing service time and delay time objectives [4]. The research took time as the optimization
objective, which is also the most important indicator for most scheduling problems. In 2015,
the authors of [5] proposed an optimization model for container terminal berth scheduling.
The main focus of the study was to optimize the constraints in the model and reduce
the constraint variables. Subsequent studies also include terminal loading studies with
optimization objectives such as energy consumption and emissions [6]. In 2016, the authors
of [7] proposed an interference model for berth allocation and shore crane allocation prob-
lems based on behavior perception. The study aimed to solve the problem that the actual
situation does not match the plan due to accidental factors in the scheduling process. For
the bulk cargo shipping problem, there are also many studies at present, mainly for the
time optimization of bulk cargo tank allocation and fleet scheduling problems [8,9].

For the solution method of the terminal scheduling model, traditional planning meth-
ods, heuristic methods, and intelligent methods are generally used. The traditional plan-
ning method is generally to give the corresponding exact solution or approximate solution
through numerical calculation for the multivariable mathematical model and a set optimiza-
tion objective. In 2011, Barros et al. proposed a tidal bulk berth configuration model with
stock constraints [10], which was solved by the integer linear programming method. In
2017, Menezes et al. studied the routing problem of port import and export orders for bulk
cargo terminals in Brazil, taking into account the timeliness of cargo storage and transporta-
tion, and aiming to reduce operating costs [11]. Heuristic methods are generally aimed
at larger-scale problems. Common solution methods include the genetic algorithm and
particle swarm algorithm. In 2016, a hybrid particle swarm algorithm [12] was proposed
that simultaneously solved the dynamic discrete berth allocation problem and dynamic
shore crane allocation. The study showed that this method outperformed the basic genetic
algorithm and the hybrid genetic algorithm. In addition, in order to solve the problem of
model uncertainty, in addition to using meta-heuristic algorithms, some studies also used a
fuzzy optimization model [13,14] for problems with a high degree of uncertainty.
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With the continuous development of artificial intelligence, it has become a trend to use
intelligent methods to solve production scheduling problems. In some studies, machine
learning methods were applied to traditional search algorithms to improve the effect of
the algorithm [15–17]. At present, there are also some studies that used deep reinforce-
ment learning to solve production scheduling problems similar to bulk cargo terminal
scheduling [18]. The AlphaDow project announced by Dow Chemical in 2020, based on the
concept of intelligent manufacturing, uses deep reinforcement learning methods to carry
out research on global factory production scheduling optimization problems.

The development of research on production scheduling, terminal production schedul-
ing, and other issues using deep reinforcement learning methods depends on the devel-
opment of deep reinforcement learning algorithms, on the one hand, and is affected by
the actual production scheduling mode, on the other hand. Reinforcement learning algo-
rithms can be improved according to actual task needs, and the development of algorithms
will eventually promote the progress of industrial production models. At present, the
research on deep reinforcement learning algorithms is relatively rich and in-depth [19–21].
Reinforcement learning algorithms are generally divided into model-free learning and
model-based learning [22]. The former method learns the operation strategy of the agent
in the environment directly according to the continuous acquisition of experience data,
while the latter method learns the model according to the experience data, and then for-
mulates the strategy according to the learned model. In addition, reinforcement learning
methods can be divided into online learning and offline learning. Online learning refers to
taking actions according to the currently learned strategies in the process of learning and
exploration, while offline learning refers to adopting new strategies to explore during the
learning process. The advantage of online learning is that the optimization is simple, but
the disadvantage is that this method can easily fall into a local optimum. Offline learning
is easier to jump out of the local optimum, but the choice of a “new strategy” needs to be
reconsidered.

According to the different action selection methods in the optimization process, rein-
forcement learning algorithms can also be classified into value-based reinforcement learning
methods and policy gradient-based reinforcement learning methods [22]. At present, the
widely used value-based reinforcement learning method is the DQN method, which has
been continuously improved, including DDQN, D3QN, and distributed DQN [23,24] The
recently proposed Rainbow algorithm [25] is a representative of this kind of algorithm
with good effect. The Rainbow algorithm combines the advantages of different algorithm
frameworks and is designed to take into account both algorithm performance and univer-
sality. For the policy gradient algorithm, the most commonly used algorithm for continuous
action systems is the DDPG algorithm [26]. In addition, the actor–critic algorithm combines
the advantages of value-based algorithms and policy gradient algorithms, which can not
only handle continuous and discrete problems, but also perform single-step updates to im-
prove learning efficiency. In the algorithm, the actor network is responsible for performing
actions during the training process, and the critic network is responsible for scoring. The
most commonly used method is the A3C algorithm [27], the essence of which is to put the
actor–critic network into multiple threads for synchronous training. Because of this, the
algorithm has the characteristics of fast speed and high efficiency. At present, the research
on reinforcement learning is deepening, and the application background is becoming more
and more complex. For example, the recently proposed multi-agent reinforcement learning
method [28] is mainly aimed at the use of multiple decision-making units. This method
can be applied directly to multi-agent problems, as well as to problems where a single
decision-making agent can be split into multiple unrelated agents.

The scheduling problems of bulk cargo loading studied in this paper often have strong
dynamics and uncertainties, as well as a large scale. Traditional optimization methods,
heuristic methods, fuzzy optimization methods, and data-driven machine learning methods
struggle to solve large-scale random and dynamic problems. Artificial intelligence methods
have the advantage of solving the above problems. The continuous improvement of deep
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learning allows better solving large-scale complex and uncertain problems. However, this
study is based on the actual production scheduling process. Unlike “playing games”,
errors in the actual production process will bring serious consequences; thus, some special
situations need to be considered in advance. Therefore, to apply the method to the specific
problem, the training part of the reinforcement learning algorithm needs to be modified in
the research. Therefore, this paper proposes a research method based on a modified double
deep Q learning algorithm to solve the problem of loading and scheduling of bulk cargo
terminals, so as to achieve the purpose of solving the above problems at the same time.

The main contribution of this paper is the proposal of a scheduling method for the
bulk cargo terminal loading process based on deep reinforcement learning. By analyzing
the historical data of CHNENERGY (Tianjin) Port Co., the main processes involved in the
production scheduling of the coal terminal are summarized and extracted, a reinforcement
learning model that satisfies the Markov property is established, and its state space and
action space are determined. After improving the double DQN algorithm for learning and
training, a fast scheduling method is obtained when the tasks arrive randomly and the
yard state is random.

The innovations and contributions of this paper are as follows:

(1) An appropriate reward function is designed to satisfy the condition that the long-term
reward and the optimization objective are completely equivalent, and to ensure the
possibility of theoretically optimal training results.

(2) This paper improves the ε-greedy exploration strategy. During the training process,
the agent sometimes performs random actions without considering whether the
action is legal or not, and sometimes only selects one action from the legal actions to
perform. This method is essentially a semi-masking strategy for illegal actions. This
method combines the shielding and punishment of illegal actions, so that the training
process can meet the convergence conditions and speed up the training progress. The
improvement is mainly aimed at dealing with the models with illegal actions.

(3) Special circumstances and accidental events in the production scheduling process are
fully considered in the model, which makes the model more realistic.

The remainder of this paper is organized as follows: Section 2 establishes a Markov
model for loading and scheduling of coal terminals, as well as designs a reward function
according to the optimization objective in practical problems; Section 3 details the method
of applying the deep Q network (DQN) to the scheduling optimization problem of coal
terminal production scheduling; Section 4 focuses on improvements during reinforcement
learning training; Section 5 designs simulation experiments to verify the model accord-
ing to the actual production scheduling situation, as well as analyzes and summarizes
the results.

2. Analysis and Modeling of Ship Loading and Production Scheduling Based on
Condition Monitoring Data
2.1. Analysis of Port Operations and Storage Yard Environment

The production and loading process of the coal terminal means that the coal in the
yard is transported to the ship through the reclaimer, belt conveyor, ship loader, and other
large-scale mechanical equipment in the port. The arrangement, type, and quantity of coal
in the yard, as well as the coal order demand of the ships to be loaded, are directly related
to the choice of the production scheduling plan, and the operation of the equipment that
transfers the coal from the coal pile to the ship needs to be considered. These factors affect
coal delivery time.

As shown in Table 1, various types of coal are transported through the port. Taking
a ship loading process as an example, suppose a ship needs 10,000 tons of coal of type A
and 20,000 tons of type B. It is necessary to distinguish the types of coal from the coal pile
in the yard and extract the coal pile stock. At the same time, it is necessary to consider
which transport machine will be used to transport the coal to the ship, the operation status
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and availability of the machine, and when the occupied machine will be released from
occupancy and other information.

Table 1. Statistics of coal output of the port within 3 months.

Type of Coal Flag Number Production (Tons)

Gao Shi 5000 1 324,818
Shen Hun 48 2 2,264,852
Shen Hun 52 3 3,096,472
Shen Hun 55 4 6,905,478
Shen You 1 5 215,788
Shen You 2 6 87,134
Wai Gou 55 7 2,791,898
Wai Shi 5000 8 2,344,022
Wai Shi 5500 9 303,024
Clearing coal 10 39,188
Shen Hun 45 11 610,350

The actual coal terminal yard distribution and coal transfer process are shown in
Figure 1. There are six rows of coal piles, from A to F, in the coal yard, each row has seven
coal piles, for a total of 42 coal piles are arranged in lattice form, which are A1 to F7 in the
figure. There are three rows of reclaiming lines in the terminal, where each reclaiming line
is located in the middle of the two rows of coal piles, and the reclaimer on the reclaiming
line is responsible for grabbing the coal from the coal piles to the conveyor belt. The three
ship loaders are responsible for transporting the coal from the storage yard. The coal near
the berth is transferred into the hold of the moored vessel. The three berths are arranged in
sequence, and each berth docks a corresponding ship according to the plan. Each ship to
be loaded with coal has several cabins, and each cabin corresponds to the corresponding
coal order demand.
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2.2. Establishment of the Model for Loading and Scheduling under the Port Operating
Environment

The plan for coal wharf scheduling refers to the allocation plan that uses different
transportation equipment to transport coal from different coal piles to matching cabins
according to the current working conditions of the yard, mechanical equipment, ships, and
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the entire wharf system. The simplest scheme is a single-demand allocation scheme, i.e.,
when only a single cabin of a ship needs a certain type of coal, a single machine is allocated
to transport a certain amount of coal from a certain coal pile to a designated cabin. The
information contained in the scheme is the selection of transport machines (reclaimers,
ship loaders, conveyor belts), the selection of coal piles, the setting of coal loadings, and
the positions of loaded ships and cabins. A single-demand scheme is the smallest unit of
all scheduling schemes, and all scheduling schemes can be expressed as a combination of
single-demand schemes in time.

Due to the existence of limited transportation machines, limited coal transportation
routes, limited coal volume in coal piles, and limited coal type requirements and coal type
matching problems in coal piles, the production scheduling scheme cannot traverse all
spaces; hence, choosing the appropriate production scheduling scheme is necessary. The
constraints that need to be considered in coal terminal production scheduling include
reclaim line constraints, ship loader constraints, coal pile type matching constraints, coal
pile quantity sufficiency constraints, and ship loading and drainage constraints.

In the general production scheduling model, the total man-hours is a suitable indicator
to effectively measure the production scheduling effect. The total working hours refers to
the sum of the time when the machine is running. When the system runs uninterrupted,
the time period between the time the system starts working and the ending time is the total
working hours. If the system has intermittent or low-load operation, the total man-hours
should exclude the system downtime.

To study the problem of shipment scheduling and scheduling, the reinforcement
learning model of the scheduling problem must be established first. The keys to the
reinforcement learning model are the state space, action space, reward function, and state
transition method. The state space includes the model elements and some constraints that
must be reflected as states. The action space gives the action, the action is the decomposition
of the plan, and a series of actions constitute the plan. In reinforcement learning models,
the system continuously learns interactively with the environment to form policies for
taking actions on the basis of states. The reward function refers to the feedback obtained
after taking an action, and the level of reward is positively correlated with the quality of
the action.

The Markov decision process (MDP) is a discrete-time stochastic process used to model
decisions. It can be used to solve problems that learn interactively from the environment
and achieve some goals. In MDP, it is the agent that learns, and the other things it interacts
with are called the environment. The mathematical representation of the Markov decision
process is a quintuple (S, A, P, R, γ), where S is the set of states (state space), A is the set
of actions (action space), P is the state transition probability, R is the set of instantaneous
rewards, and γ is the discount factor to reflect the loss coefficient of each downward
propagation step of the instantaneous reward. As shown in Figure 2, the execution process
of Markov is as follows: the initial state of the agent is s0. First, an action a0 needs to be
selected from the action set to execute. After execution, the action a0 and the instantaneous
reward r0 are obtained, and the agent randomly transitions to the next state s1 according to
P probability.
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The goal of reinforcement learning training is to learn a policy π, and the agent takes
γ a series of actions a in different states to maximize the cumulative reward. After a given
policy π, the value of state s0 under policy π is calculated by calculating V. When the
expected return value obtained by the strategy is greater than or equal to other strategies,
the strategy is optimal.

Vπ(s0) = Eπ
{
∑n

i=0 γiR(si, ai)
}

. (1)

The following simplifications and assumptions about the actual shipping production
process are made:

(1) The wharf has three berths, and each ship has a maximum of 10 cabins;
(2) The reclaiming speed of the reclaimer is a constant value of 3600 tons/h, and the

moving speed is a constant value of 2 m/s;
(3) The moving speed of the ship loader is a constant value of 1 m/s;
(4) The size of the coal piles in the field is the same, and the distance between the centers

of adjacent coal piles is 40 m.

In the decision making and scheduling of tasks, the bulk cargo terminal is related
not only to the demand of arriving ships, but also to the current occupancy of the yard.
Therefore, the description of the state space involves two parts: task characteristics and
yard characteristics. Mission characteristics include the ship’s remaining time to drain, as
well as the type and amount of coal required for each of the three ships’ cabins. On-site
storage characteristics include the type and quantity of 42 coal piles, the occupancy and
failure of reclaimers, the occupancy and failure of ship loaders, the coal piles taken by
three reclaimers, and the occupancy time corresponding to the three reclaiming lines, the
reclaimer corresponding to the three ship loaders, and the cabin corresponding to the ship
loader. The state space designed in this way satisfies the Markov property. Since it contains
all the field storage information and working condition information, the state at the next
moment is only related to the current state and the action taken.

All model elements should be included in the state space, and the constraints that can
affect the decision making should be considered. As shown in Table 2, the state space model
of the optimization problem of loading and arranging ships is further explained below.

Table 2. Shipping scheduling state space.

State Space Data Structure Dimension Types of Meaning

Twait array 3 Int _ Displacement time for 3 boats
Msize array 42 Int _ 42 coal stockpiles
Mkind array 42 Int _ 42 types of coal piles
Xsize array 30 Int _ cabin demand
Xkind array 30 Int _ Types of cabin requirements

Q array 3 Bool _ Occupancy of the
reclaiming line

Z array 3 Bool _ Ship loader occupancy

Qi array 3 Int _ Coal piles corresponding to
3 reclaiming lines

Ci array 3 Int _ 3 ship loaders

Ti
occupy array 3 Int _ The remaining occupied time

of 3 reclaiming lines

Qz array 3 Int _
Corresponding relationship

between reclaimer and
ship loader

The ship information in the state space includes the remaining drain time of three
ships, the type of coal required for 30 ships, and the expected amount of coal to be loaded
in 30 ships.
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The yard information in the state space includes 42 types of coal piles and 42 remaining
quantities of coal piles.

The machine equipment status includes whether the reclaimer is occupied or faulty
(0 idle, 1 occupied, 2 faulty) and whether the ship loader is occupied or faulty (0 idle,
1 occupied, 2 faulty), As well as the coal pile taken by the machine, the ship loader
corresponding to the three reclaimers, the 30 cabins corresponding to the three ship loaders,
and the remaining time of the current task of the three reclaim lines.

When choosing the dispatch action, the choices made include 42 coal piles correspond-
ing to three reclaimers, three ship loaders, and up to 30 cabins. Therefore, when three berths
have ships docked, the action options are the most, as there are 42 × 3 × 30 = 3780 choices
in total. However, due to the limitation of conditions, most of the actions are unavailable.
The available actions are also called “legal” or “correct” actions.

An intuitive way to decompose scenarios into actions is to directly equate a single
requirement scenario with an action. It can be seen that the action space includes the
position of the coal pile, the reclaiming line, the amount of coal taken, the type of coal taken,
the loading, the berth, and the cabin.

In the actual situation, the coal type of the coal pile location is unique and can be
displayed in the status. The amount of coal taken is repeated information. For the coal
loading problem, it is assumed that as much coal as possible is taken each time, and the
amount of coal taken is the minimum value of the coal stockpile and the demand for the
ship’s cabin. At the same time, in the yard distribution, the position of the coal pile uniquely
determines the reclaiming line (the reclaiming line corresponding to the coal pile is unique);
thus, the reclaiming line is duplicate information.

To sum up, the information of action space is simplified as the coal pile position
(total = 42), ship loader (total = 3), berth (total = 3), cabin (total = 10), which can be shown
as Figure 3. All the information mentioned above is encoded to form an action space, and
the total number of actions is 42 × 3 × 3 × 10 = 3780.
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For this model, the total running time of the system is taken as the optimization target.
When each action is executed, the total execution time of the system increases. Its negative
value is taken, and it is considered that the time occupied by the action with a large amount
of coal will be longer; therefore, the reward function of the single-step action is designed as
r = k×m− tincrease (where k is a proportional coefficient, m is the coal loading amount of
the step action), and the long-term return at this time is R = k×−T, where M is the total
coal transportation amount, and T is the system total run time. It can be seen that, when
the total demand is the same, a shorter running time leads to greater long-term return.

The setting of the reward function should reflect the measure of the pros and cons
of the action. In the case where total man-hours is used as the measurement method for
the production scheduling effect of the plan, the reward function can simply be set as the
added value of production scheduling man-hours. The increase value is negatively related
to the effect; hence, the increase value is negative, and a constant bias is added. When the



Electronics 2022, 11, 1390 9 of 18

quantity of coal demanded by ships varies greatly, a function of quality can also be added.
The form of the reward function is shown in Equation (2).

r = −tincrease + C. (2)

When coal is transported from a coal pile to the cabin, the storage information and
demand information changes, and the operation information of machinery and equipment
also changes, as follows:

(1) The corresponding coal stockpile is reduced;
(2) The amount of coal to be loaded in the hold is reduced, and the reduction is the same

as the reduction in stock;
(3) For the corresponding reclaiming line, the ship loader is set to the occupied state;
(4) The time of the reclaiming line is increased as the action consumption time;
(5) The equivalent displacement time of the corresponding vessel changes;
(6) The idle ship loaders are moved simultaneously to satisfy the sequence.

The legitimacy of the action (whether it satisfies the constraints) needs to be judged by
the program. The program judgment conditions are as follows:

(1) The coal pile corresponding to the action is in stock;
(2) The cabin corresponding to the action is in demand;
(3) The coal type of the coal pile corresponding to the action matches the type of cabin demand;
(4) The reclaiming line corresponding to the action is idle;
(5) The ship loader corresponding to the action is idle;
(6) The order of the ship loader remains unchanged after the action is executed.

For illegal actions, punitive measures should be added, and the reward should be set
to a negative value.

3. Optimization of Shipment Scheduling Based on Deep Reinforcement
Learning Algorithm

In this study, we used the value-based deep Q network (DQN) method for training
and testing. The value-based reinforcement learning algorithm, whose strategy is defined
as selecting the action that maximizes the state value, makes the result approximate a state
value function. Mnih et al. (2013) [23] proposed policy-based algorithms to directly learn
policies that maximize the reward function by increasing the probability of actions that
yield higher rewards.

The deep Q network (DQN) is a deep reinforcement learning algorithm that applies
neural networks to reinforcement Q learning. Scholars such as Mnih proposed the concept
of DQN, which can be regarded as a process of approximating the neural network Q and
the weight function. By directly taking raw data (state features) as input and the Q function
value of each state–action pair as output, DQN can handle complex decision-making
processes with large and continuous state spaces.

The optimal scheduling reinforcement learning model for port production scheduling
involves many state variables, and the state space has extremely high modeling complexity.
The DQN algorithm is used to approximate the high-dimensional state space and action
space, which can greatly simplify the scheduling.

The DQN algorithm takes the minimum value of the mean square error of the current
value function and the target value function as the parameter of the network update of the
DQN algorithm, as shown in Equation (3).

L(θ) = E((r + γmaxQ(s′, a′, θ′)−Q(s, a, θ))
2
). (3)

The loss function can be differentiated to get the gradient formula in Equation (4).

∂L(θ)
∂θ

= E((r + γmaxQ(s′, a′, θ′))−Q(s, a, θ)
∂Q(s, a, θ)

∂θ
). (4)
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In the early stage of training, the agent conducts more random explorations and
packs the state, action, income, and the state of the next moment of the agent into the
experience replay pool until the experience replay pool is full before learning. Compared
with traditional Q learning, which directly discards samples after learning, the experience
replay pool reduces the time it takes for the agent to interact with the environment to
collect samples.

During the training process, the experience playback pool includes the process of
collecting and sampling samples. The collection process is sorted according to the timeseries
of agent interaction. If the storage is full, the later samples overwrite the first stored samples;
during the sampling process, the experience playback pool randomly samples a batch of
samples for training and learning, which can reduce the fluctuation of a single sample
sequence, while a sample can also be used for multiple training iterations, which improves
the utilization rate.

Due to the instability of the data itself, there will be some fluctuations in the process
of training iterations, and these fluctuations may have an impact on the next iterative
calculation. Therefore, two identical network structures are used during training, and the
training process is as follows:

(1) Two networks are initialized with the same parameters;
(2) The network interacting with the environment in the training is recorded as the

behavior network, and the interaction samples are obtained;
(3) The target value is calculated through the target network, and it is compared with the

estimated value calculated by the behavior network, before updating the
network parameters;

(4) After completing the specified number of iterations, the parameters of the target
network are copied to the behavior network.

The double DQN algorithm in the deep reinforcement learning algorithm was used
for training. First, the environment, including field storage information, occupancy infor-
mation, and ship requirements, was initialized, and epsilon-greedy strategies were used to
select actions according to the current state. Since most actions are in the illegal state when
the action is selected, the return of the illegal action is 0, and the state of the system is not
changed. Therefore, the updating method of the Q network is as follows:

Q(s, a) =
{

r(s, a) + γ ∗maxQ(s′, a′) action is legal
γ ∗maxQ(s′, a′) action is illegal

. (5)

This design method satisfies that the Q value is gradually reduced to a non-maximum
value when the action is illegal. At the beginning, a larger exploration rate was set,
and, as the number of training iterations increased, it decayed according to the rate of
ε = (1 − decay) × ε, where ε = 1, decay = 0.001, and the minimum value of ε is 0.02. The
fully connected network used was a six-layer fully connected neural network. The input
dimension of the network was the number of states, and the output was the Q value of
each action, as shown in Figure 4.
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4. Optimization of Shipment Scheduling Based on Improved Deep Reinforcement
Learning Algorithm

Traditional reinforcement learning algorithms usually use tables to store value func-
tions; thus, they are also called table reinforcement learning. They require that the state
space of the model should not be too large, while continuous states cannot be evaluated.
Furthermore, it is necessary to use function approximation. The DQN algorithm is a re-
inforcement learning method that combines Q-learning and deep neural networks [22].
Compared with Q-learning, DQN uses a neural network to approximate the value function,
establishes an experience playback pool to train the process of reinforcement learning, sets
an independent target network, and handles deviations in the temporal difference process.

In practical applications, it has been found that the DQN algorithm has the problem
of over-estimation, i.e., the estimated value function is larger than the real value function,
which is caused by taking the maximum Q value in the Q learning algorithm, as shown
in Equation (6).

yi = Rj + γ max
a′

Q(s′ j, a′ j, ω). (6)

Using the DQN algorithm, the problem of overestimation is eliminated by decoupling
the selection and calculation of the target Q value action [23]. It no longer looks for the
largest Q value in each action in the target net, but starts with the behavior net’s Q network
to select the action with the largest value, before using it to calculate the Q value in the
target network, as shown in Equation (7).

yi = γQ′(s′ j, arg max
a′

Q(s′ j, a′ j, ω), ω′). (7)

In the standard model, the rewards of illegal actions are set to 0; therefore, the training
process is not designed to make a wrong decision. However, in a real system, it is inevitable
that there will be program errors. For example, some processes generate failures, but the
corresponding failure information is not obtained in the program. This is where the system
needs to be able to analyze itself and avoid bad decisions. The neural network trained for
the DQN problem is the reference for decision making. The output of the network reflects
the value of the action. Therefore, we need to reflect the negative value of illegal actions in
the training process. The most straightforward way is to give a penalized reward function
(e.g., constant −100) for wrong actions.
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At the same time, the influence of illegal movements should be reflected in the training
process. Illegal actions cannot be completely blocked. At this time, the ε-greedy strategy
used in the training process needs to be improved. Setting different exploration rates to
perform completely random selection and feasible random actions enables the network to
converge quickly while more accurately reflecting the value of illegal actions.

The specific scheme is that, during training, the adopted strategy is expressed as
selecting random legal actions, completely random actions, and legal action according to
the probability with the largest Q value.

action =


completely random : P = ε1
correctly random : P = ε2
greedy : P = 1− ε1 − ε2

. (8)

5. Algorithm Testing and Analysis

Using the port scheduling model, the reinforcement learning scheduling algorithm and
its improved algorithm were verified. The experimental environment was as follows: CPU:
Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz 2.10 GHz (two processors); GPU: NVIDIA
GeForce RTX 2080Ti; memory: 32 GB. By setting the yard status information of the model
and the demand information of arriving ships, the validity of the model under different
actual conditions was verified.

During the training process, a fixed order sequence of 35 ships was used, each holding
1000 tons of coal. The order sequence was a single demand order, which could cover
most of the order demands through its combination, with a certain representativeness
and generalization effect. The six types of coal commonly used in the orders obtained
by statistics were replaced by the numbers 0–5. The specific orders are shown in Table 3.
On the basis of the order sequence, the reinforcement learning scheduling algorithm was
trained, and the trained network was further verified.

Table 3. Order number for training.

Order Number Hatches 0–9

1 2 1 3 4 2 1 1 3 3 3
2 5 2 2 2 4 5 4 2 0 3
3 3 5 3 0 0 4 3 5 4 0
4 3 4 0 0 3 2 4 0 5 0
5 2 5 1 3 5 4 1 4 3 2
6 1 1 1 1 3 5 5 3 5 4
7 4 0 2 3 5 4 1 4 0 2
8 3 1 5 0 1 1 0 4 0 2
9 3 5 5 0 5 1 2 5 0 1
10 2 0 5 2 1 2 0 0 0 5
11 0 5 0 5 1 2 4 4 5 4
12 4 1 2 1 5 0 5 3 4 5
13 0 0 2 4 2 2 0 3 1 1
14 3 5 2 3 4 3 5 1 1 0
15 3 3 0 0 5 5 4 0 3 2
16 2 3 3 5 1 2 4 5 1 5
17 0 5 2 1 2 2 5 5 1 5
18 0 2 5 4 3 1 1 4 2 0
19 1 1 2 3 2 5 3 3 2 1
20 5 1 0 0 2 3 3 2 3 0
21 5 5 5 3 3 5 4 2 3 1
22 3 2 4 4 2 2 0 3 2 4
23 4 1 5 3 1 1 5 5 5 1
24 0 2 4 1 5 4 1 5 4 0
25 0 3 5 2 2 5 5 3 1 4
. . . . . .
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According to the modeling process of port production scheduling, a visual simulation
environment was built as shown in Figure 5. In order to reflect the optimization of the ship
loader, the information of the yard was set ideally, the types of coal piles were arranged
according to the rules, and the number of coal piles was constantly replenished. In this
case, the ship loader could be displayed. The initial number of the yard was fixed, and the
current episode ended when the remaining coal in the yard was insufficient.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 19 
 

 

15 3 3 0 0 5 5 4 0 3 2 
16 2 3 3 5 1 2 4 5 1 5 
17 0 5 2 1 2 2 5 5 1 5 
18 0 2 5 4 3 1 1 4 2 0 
19 1 1 2 3 2 5 3 3 2 1 
20 5 1 0 0 2 3 3 2 3 0 
21 5 5 5 3 3 5 4 2 3 1 
22 3 2 4 4 2 2 0 3 2 4 
23 4 1 5 3 1 1 5 5 5 1 
24 0 2 4 1 5 4 1 5 4 0 
25 0 3 5 2 2 5 5 3 1 4 
… … 

According to the modeling process of port production scheduling, a visual simula-
tion environment was built as shown in Figure 5. In order to reflect the optimization of 
the ship loader, the information of the yard was set ideally, the types of coal piles were 
arranged according to the rules, and the number of coal piles was constantly replenished. 
In this case, the ship loader could be displayed. The initial number of the yard was fixed, 
and the current episode ended when the remaining coal in the yard was insufficient. 

 
Figure 5. Visualization of port scheduling model. 

The simulation results are given as Figures 6–9. It can be seen that, during the training 
process, the reward value gradually increased, and the reward value was positively cor-
related with the effect of labor scheduling, indicating that the effect of labor scheduling 
was gradually improved during the training process. The reward function mainly reflects 
the index of production scheduling time in production scheduling. In the simulation ex-
periment, an increase in reward value represents the shortening of production scheduling 
time, i.e., in the case of the same task volume (including the number of orders, the total 
coal loading in the order), the scheduling task can be completed faster. For general rein-
forcement learning DQN problems, the goal is to optimize performance indicators so that 
the main agent is more adaptable to the environment. Therefore, other factors were added 
to the reward function design, e.g., the average degree of occupancy of the machine. Then, 
in the decision-making scheme after training, this can also reflect the feature that the allo-
cation of machines is more even. 

Figure 5. Visualization of port scheduling model.

The simulation results are given as Figures 6–9. It can be seen that, during the
training process, the reward value gradually increased, and the reward value was positively
correlated with the effect of labor scheduling, indicating that the effect of labor scheduling
was gradually improved during the training process. The reward function mainly reflects
the index of production scheduling time in production scheduling. In the simulation
experiment, an increase in reward value represents the shortening of production scheduling
time, i.e., in the case of the same task volume (including the number of orders, the total coal
loading in the order), the scheduling task can be completed faster. For general reinforcement
learning DQN problems, the goal is to optimize performance indicators so that the main
agent is more adaptable to the environment. Therefore, other factors were added to the
reward function design, e.g., the average degree of occupancy of the machine. Then, in the
decision-making scheme after training, this can also reflect the feature that the allocation of
machines is more even.

In the validation phase, this study compared three different scheduling strategies:
(1) the artificially selected production scheduling strategy, which simulates the artificial
plan, which is shown as Figure 7; (2) the random scheduling strategy, which simulates
the machine automatically selecting the corresponding process to complete the task (this
strategy is equivalent to the initial strategy before the neural network is trained), which is
shown as Figure 8; (3) the post-training policy, which is the policy obtained after training
the model with the methods used in the study, which is shown as Figure 9. In this study, the
terminal loading system used three strategies to complete a set of randomly generated task
order sequences, obtaining three sets of data. The validity of the training results and the
superiority of the intelligent system over the artificial system were verified by comparing
the three sets of data.

As shown in Figure 9, the production scheduling strategy maintained a good working
efficiency and had an excellent production scheduling effect. The optimization of the
production scheduling results can also be seen from the production scheduling Gantt
chart and the data comparison. At the same time, the production scheduling time was
shortened, and the production scheduling process was more closely connected, verifying
the effectiveness of the reinforcement learning method. As shown in Table 4, compared
to randomly selecting actions, the total man-hours of the trained strategy were shortened
by 23.1%.
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Table 4. Comparison of scheduling results of loading and platooning.

Comparative Results Production Scheduling Plan Order Completion Total Working Hours

Fixed scheduling strategy Ship loader and berth
number correspond

35 orders were all completed,
with a total coal loading of

350,000 tons
121.3 h

Random scheduling strategy Legal scheduling actions are
randomly selected

35 orders were all completed,
with a total coal loading of

350,000 tons
115.2 h

Strategies for scheduling labor
after training

The legal action with the largest
network output is chosen

35 orders were all completed,
with a total coal loading of

350,000 tons
88.6 h

In reinforcement learning, the network structure and related parameters (such as
learning rate) affect the learning effect. The network structure was introduced in the
previous section. The main parameters in the simulation experiment were as follows (in
the DDQN algorithm, ε0 is the exploration rate; in the modified DDQN algorithm, ε0 is
the sum of ε1 and ε2): learning rate = 5 × 10−3; Batch size = 32; ε0 = 0.02; ε1 = ε0 × 0.6;
ε2 = ε0 × 0.4.

6. Discussion and Remarks

The following points need to be noted:

(1) A completely random policy means that the agent chooses an action randomly,
whether it is legal or not. A correctly random policy means that the agent randomly
chooses an action from all the correct actions (legal actions). A greedy policy means
that the agent chooses the action with the highest value from all the correct actions.

(2) The reward curve graph of the improved DDQN method shows that the reward value
was lower in the early stage of training. This is because the improved DDQN method
does not completely shield the wrong actions in the early stage of training, resulting
in more penalties for the agent during the training process.

(3) The reward curve graph of original DDQN method shows that the reward stopped
rising and there was a bottleneck. This is because it got stuck in a local optimum
during training.

(4) The loss curve graph shows that the DDQN method before improvement diverged
exponentially in the training process, which brought the loss to a very large value
(magnitude of 1 × 106). The loss of the improved DDQN method converged to a



Electronics 2022, 11, 1390 16 of 18

relatively small value around 4000, which was very close to the horizontal axis when
plotting it together with the diverging loss curve.

(5) In the three Gantt charts, it can be seen that the last Gantt chart representing the final
training effect was the most compact. This means that working machines tend to run
continuously. This indirectly reflects the improvement of production scheduling effi-
ciency. In addition, the total length of the Gantt chart represents the total scheduling
time, which directly reflects the scheduling efficiency.

The improvement of the efficiency of loading and scheduling was mainly due to three
reasons, as discussed below.

Firstly, the arrangement of the ship loader was more reasonable. Because it was in the
actual coal terminal scheduling system, the behavior of the ship loader was constrained.
Ship loaders load ships side by side; thus, the order cannot be changed, and there is a
certain distance. Therefore, when loading a ship, each ship loader is restricted by other
ship loaders. If the position of the ship loader that is loaded first is not properly arranged,
the later ship loaders cannot find suitable space. At this time, the production scheduling
efficiency is reduced, and the production scheduling time is increased.

Secondly, the moving time of the machine was shortened. For reclaimers, the reclaim
time includes the time from one coal pile to another. For ship loaders, the loading time
includes the time to move from one hold to another. Through the reasonable selection
of the line, this time is shortened, and the production scheduling time of the system is
further shortened.

Thirdly, the overall reclaiming and loading sequence was optimized. Due to the
complexity of the coal terminal loading model, it is difficult to directly analyze the overall
optimization of the time. The influencing factors of this part include the learning of order
rules, with three identical machines, the coordination of the reclaimer and the ship loader,
and the treatment of waiting time for drainage. There are more complex factors in the
scheduling time. Using optimization through analysis often cannot obtain good results. At
the same time, coal production scheduling is a long-term process, and short-term greedy
strategies often cannot obtain long-term advantages. Therefore, for this type of problem,
the reinforcement learning method is suitable, as long-term optimization goals can be
specified. Then, the system can independently learn production scheduling strategies,
thereby improving the long-term benefits.

7. Conclusions

In this study, a reinforcement learning model of the bulk cargo terminal loading
process was established, and a scheduling strategy algorithm was proposed. The reward
function and neural network structure for the port scheduling optimization problem were
designed, and the improved double DQN algorithm was applied for training. During the
training process, the ε-greedy strategy was improved for the limitation of action legitimacy,
such that there was no need to shield the unfeasible ones during training. At the same
time, a test to simulate the actual production scheduling was carried out, and a good
optimization effect was achieved. Compared with the random strategy, the moving time of
the ship loader and the reclaimer was significantly reduced, and the reward curve had an
obvious upward trend, indicating a reduction in the total production scheduling time.

In future research, the neural network structure can be further improved to achieve
better scheduling results. The model and algorithm design proposed in this work can be
applied to upstream processes in a bulk cargo port after proper modification, such as the
dynamic yard configuration problem or the cargo train car dumping schedule problem.
Lastly, we hope that the overall scheduling problem of a bulk cargo port from car dumping
to ship loading can be combined and solved using the reinforcement learning method.

Author Contributions: Writing—original draft preparation, C.L., S.W., Z.L. and Y.Z.; writing—review
and editing, L.G.; supervision, C.L. and L.G.; project administration, C.L. and L.Z. All authors read
and agreed to the published version of the manuscript.



Electronics 2022, 11, 1390 17 of 18

Funding: This research was funded by the National Natural Science Foundation of China under
Grant U1964201 and Grant U21B6001, the Major Scientific and Technological Special Project of Hei-
longjiang Province under Grant 2021ZX05A01, the Heilongjiang Natural Science Foundation under
Grant LH2019F020, and the Major Scientific and Technological Research Project of Ningbo under
Grant 2021Z040.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, X.; Shi, H. Research on Intelligent Optimization of Bulk Cargo Terminal Control System. J. Phys. Conf. Ser. 2020, 1601,

052044. [CrossRef]
2. De León, A.D.; Lalla-Ruiz, E.; Melián-Batista, B.; Moreno-Vega, J.M. A Machine Learning-based system for berth scheduling at

bulk terminals. Expert Syst. Appl. 2017, 87, 170–182. [CrossRef]
3. Fotuhi, F.; Huynh, N.; Vidal, J.M.; Xie, Y. Modeling yard crane operators as reinforcement learning agents. Res. Transp. Econ. 2013,

42, 3–12. [CrossRef]
4. Imai, A.; Zhang, J.T.; Nishimura, E.; Papadimitriou, S. The berth allocation problem with service time and delay time objectives.

Marit. Econ. Logist. 2007, 9, 269–290. [CrossRef]
5. Iris, Ç.; Pacino, D.; Ropke, S.; Larsen, A. Integrated berth allocation and quay crane assignment problem: Set partitioning models

and computational results. Transp. Res. Part E Logist. Transp. Rev. 2015, 81, 75–97. [CrossRef]
6. Venturini, G.; Iris, Ç.; Kontovas, C.A.; Larsen, A. The multi-port berth allocation problem with speed optimization and emission

considerations. Transp. Res. Part D Transp. Environ. 2017, 54, 142–159. [CrossRef]
7. Liu, C.; Zheng, L.; Zhang, C. Behavior perception-based disruption models for berth allocation and quay crane assignment

problems. Comput. Ind. Eng. 2016, 97, 258–275. [CrossRef]
8. Fisher, M.L.; Rosenwein, M.B. An interactive optimization system for bulk-cargo ship scheduling. Nav. Res. Logist. 1989, 36, 27–42.

[CrossRef]
9. Fagerholt, K.; Christiansen, M. A combined ship scheduling and allocation problem. J. Oper. Res. Soc. 2000, 51, 834–842. [CrossRef]
10. Barros, V.H.; Costa, T.S.; Oliveira, A.C.; Lorena, L.A. Model and heuristic for berth allocation in tidal bulk ports with stock level

constraints. Comput. Ind. Eng. 2011, 60, 606–613. [CrossRef]
11. Menezes, G.C.; Mateus, G.R.; Ravetti, M.G. A branch and price algorithm to solve the integrated production planning and

scheduling in bulk ports. Eur. J. Oper. Res. 2017, 258, 926–937. [CrossRef]
12. Hsu, H.P. A HPSO for solving dynamic and discrete berth allocation problem and dynamic quay crane assignment problem

simultaneously. Swarm Evol. Comput. 2016, 27, 156–168. [CrossRef]
13. Zhen, L.; Lee, L.H.; Chew, E.P. A decision model for berth allocation under uncertainty. Eur. J. Oper. Res. 2011, 212, 54–68.

[CrossRef]
14. Lujan, E.; Vergara, E.; Rodriguez-Melquiades, J.; Jiménez-Carrión, M.; Sabino-Escobar, C.; Gutierrez, F. A Fuzzy Optimization

Model for the Berth Allocation Problem and Quay Crane Allocation Problem (BAP + QCAP) with n Quays. J. Mar. Sci. Eng. 2021,
9, 152. [CrossRef]

15. Cheimanoff, N.; Fontane, F.; Kitri, M.N.; Tchernev, N. A reduced vns based approach for the dynamic continuous berth allocation
problem in bulk terminals with tidal constraints. Expert Syst. Appl. 2021, 168, 114215. [CrossRef]

16. Sezer, A.; Altan, A. Optimization of deep learning model parameters in classification of solder paste defects. In Proceedings of
the 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara,
Turkey, 11–13 June 2021; pp. 1–6.

17. Tran, M.Q.; Liu, M.K.; Tran, Q.V.; Nguyen, T.K. Effective Fault Diagnosis Based on Wavelet and Convolutional Attention Neural
Network for Induction Motors. IEEE Trans. Instrum. Meas. 2021, 71, 3501613. [CrossRef]

18. Tassel, P.; Gebser, M.; Schekotihin, K. A reinforcement learning environment for job-shop scheduling. arXiv 2021, arXiv:2104.03760.
19. Tran, M.Q.; Liu, M.K.; Tran, Q.V.; Nguyen, T.K. Effective IoT-based Deep Learning Platform for Online Fault Diagnosis of Power

Transformers Against Cyberattack and Data Uncertainties. Measurement 2022, 190, 110686.
20. Sezer, A.; Altan, A. Detection of solder paste defects with an optimization-based deep learning model using image processing

techniques. Solder. Surf. Mt. Technol. 2021, 33, 291–298. [CrossRef]
21. Tran, M.Q.; Elsisi, M.; Liu, M.K.; Vu, V.Q.; Mahmoud, K.; Darwish, M.M.; Lehtonen, M. Reliable Deep Learning and IoT-Based

Monitoring System for Secure Computer Numerical Control Machines Against Cyber-Attacks with Experimental Verification.
IEEE Access 2022, 10, 23186–23197. [CrossRef]

22. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An introduction to deep reinforcement learning. arXiv
2018, arXiv:1811.12560.

http://doi.org/10.1088/1742-6596/1601/5/052044
http://doi.org/10.1016/j.eswa.2017.06.010
http://doi.org/10.1016/j.retrec.2012.11.001
http://doi.org/10.1057/palgrave.mel.9100186
http://doi.org/10.1016/j.tre.2015.06.008
http://doi.org/10.1016/j.trd.2017.05.002
http://doi.org/10.1016/j.cie.2016.04.008
http://doi.org/10.1002/1520-6750(198902)36:1&lt;27::AID-NAV3220360103&gt;3.0.CO;2-0
http://doi.org/10.1057/palgrave.jors.2600973
http://doi.org/10.1016/j.cie.2010.12.018
http://doi.org/10.1016/j.ejor.2016.08.073
http://doi.org/10.1016/j.swevo.2015.11.002
http://doi.org/10.1016/j.ejor.2011.01.021
http://doi.org/10.3390/jmse9020152
http://doi.org/10.1016/j.eswa.2020.114215
http://doi.org/10.1109/TIM.2021.3139706
http://doi.org/10.1108/SSMT-04-2021-0013
http://doi.org/10.1109/ACCESS.2022.3153471


Electronics 2022, 11, 1390 18 of 18

23. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Hassabis, D. Human-level control through deep
reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

24. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30.

25. Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Silver, D. Rainbow: Combining improve-
ments in deep reinforcement learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
New Orleans, LA, USA, 2–7 February 2018.

26. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

27. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods
for deep reinforcement learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA,
19–24 June 2016; pp. 1928–1937.

28. Gronauer, S.; Diepold, K. Multi-agent deep reinforcement learning: A survey. Artif. Intell. Rev. 2022, 55, 895–943. [CrossRef]

http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.1007/s10462-021-09996-w

	Introduction 
	Analysis and Modeling of Ship Loading and Production Scheduling Based on Condition Monitoring Data 
	Analysis of Port Operations and Storage Yard Environment 
	Establishment of the Model for Loading and Scheduling under the Port Operating Environment 

	Optimization of Shipment Scheduling Based on Deep Reinforcement Learning Algorithm 
	Optimization of Shipment Scheduling Based on Improved Deep Reinforcement Learning Algorithm 
	Algorithm Testing and Analysis 
	Discussion and Remarks 
	Conclusions 
	References

