High-Magnification Super-Resolution Reconstruction of Image with Multi-Task Learning
Abstract
:1. Introduction
2. Related Work
2.1. General Methods of Super-Resolution Reconstruction
2.2. High-Magnification Super-Resolution Reconstruction Method
2.3. Other Image Enhancement Work
2.4. Image Quality Assessment
3. Proposed Method
3.1. Multi-Task Learning and Different Model Training
3.2. Network Model Cascade
3.3. Down-Sampled Images at Different Levels
4. Experiments
4.1. Training Dataset
4.2. Training Details
4.3. Cascade Model and End-to-End Model
4.4. Comparison of Intermediate Results between the Same Model Cascade and Different Model Cascades
4.5. Comparative Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645. [Google Scholar] [CrossRef] [Green Version]
- Tai, Y.; Yang, J.; Liu, X. Image super-resolution via deep recursive residual network. In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3147–3155. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the Super-Resolution Convolutional Neural Network. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 391–407. [Google Scholar]
- Tong, T.; Li, G.; Liu, X.; Gao, Q. Image Super-Resolution Using Dense Skip Connections. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4809–4817. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar] [CrossRef] [Green Version]
- Tai, Y.; Yang, J.; Liu, X.; Xu, C. MemNet: A Persistent Memory Network for Image Restoration. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4549–4557. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Wang, R.; Tao, D.; Cheng, J. Embedded Block Residual Network: A Recursive Restoration Model for Single-Image Super-Resolution. In Proceedings of the International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019. [Google Scholar] [CrossRef]
- Han, W.; Chang, S.; Liu, D.; Yu, M.; Witbrock, M.; Huang, T.S. Image Super-Resolution via Dual-State Recurrent Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1654–1663. [Google Scholar] [CrossRef] [Green Version]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.P.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018; pp. 63–79. [Google Scholar]
- Wang, X.; Yu, K.; Dong, C.; Loy, C.C. Recovering Realistic Texture in Image Super-Resolution by Deep Spatial Feature Transform. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 606–615. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Bulat, A.; Yang, J.; Tzimiropoulos, G. To Learn Image Super-Resolution, Use a GAN to Learn How to Do Image Degradation First BT. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018; pp. 187–202. [Google Scholar]
- Yuan, Y.; Liu, S.; Zhang, J.; Zhang, Y.; Dong, C.; Lin, L. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 814–823. [Google Scholar] [CrossRef] [Green Version]
- Shocher, A.; Cohen, N.; Irani, M. Zero-Shot Super-Resolution Using Deep Internal Learning. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3118–3126. [Google Scholar] [CrossRef] [Green Version]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep Image Prior. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9446–9454. [Google Scholar] [CrossRef]
- Yang, J.; Wei, F.; Bai, Y.; Zuo, M.; Sun, X.; Chen, Y. An Effective Multi-Task Two-Stage Network with the Cross-Scale Training Strategy for Multi-Scale Image Super Resolution. Electronics 2021, 10, 2434. [Google Scholar] [CrossRef]
- Huang, F.; Wang, Z.; Wu, J.; Shen, Y.; Chen, L. Residual Triplet Attention Network for Single-Image Super-Resolution. Electronics 2021, 10, 2072. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, J.; Wang, J.; Chen, Q.; Cao, J.; Deng, Z.; Xu, Y.; Tan, M. Closed-loop matters: Dual regression networks for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 5406–5415. [Google Scholar] [CrossRef]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5835–5843. [Google Scholar] [CrossRef] [Green Version]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.-T.; Zhang, L. Second-order attention network for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 11057–11066. [Google Scholar] [CrossRef]
- Niu, B.; Wen, W.; Ren, W.; Zhang, X.; Yang, L.; Wang, S.; Zhang, K.; Cao, X.; Shen, H. Single Image Super-Resolution via a Holistic Attention Network. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 191–207. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Ahn, N.; Kang, B.; Sohn, K.A. Fast, Accurate, and Lightweight with Cascading Residual Network. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 252–268. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Tang, Y.; Tang, J.; Wu, G. Residual Feature Aggregation Network for Image Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2356–2365. [Google Scholar] [CrossRef]
- Park, S.J.; Son, H.; Cho, S.; Hong, K.S.; Lee, S. SRFeat: Single Image Super-Resolution with Feature Discrimination. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Volume 11220, pp. 455–471. [Google Scholar] [CrossRef]
- Sajjadi, M.S.; Scholkopf, B.; Hirsch, M. EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4501–4510. [Google Scholar] [CrossRef] [Green Version]
- Maeda, S. Unpaired Image Super-Resolution using Pseudo-Supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 288–297. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2472–2481. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Wang, X.; Gao, X. Fast and Accurate Single Image Super-Resolution via Information Distillation Network. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 723–731. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Yang, H.; Fu, J.; Lu, H.; Guo, B. Learning texture transformer network for image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 5790–5799. [Google Scholar] [CrossRef]
- Li, J.; Fang, F.; Mei, K.; Zhang, G. Multi-scale residual network for image super-resolution. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018; pp. 517–532. [Google Scholar]
- Hu, X.; Mu, H.; Zhang, X.; Wang, Z.; Tan, T.; Sun, J. Meta-SR: A magnification-arbitrary network for super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Haris, M.; Shakhnarovich, G.; Ukita, N. Deep Back-Projection Networks for Super-Resolution. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; Volume 2, pp. 1664–1673. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Park, B.; Jeong, J. Deep iterative down-up cnn for image denoising. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 15–21 June 2019. [Google Scholar]
- Jin, X.; Chen, Z.; Lin, J.; Chen, Z.; Zhou, W. Unsupervised single image deraining with self-supervised constraints. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 2761–2765. [Google Scholar]
- Chen, L.; Zhang, J.; Pan, J.; Lin, S.; Fang, F.; Ren, J.S. Learning a non-blind deblurring network for night blurry images. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 10542–10550. [Google Scholar]
- Li, X.; Jin, X.; Lin, J.; Liu, S.; Wu, Y.; Yu, T.; Zhou, W. Learning disentangled feature representation for hybrid-distorted image restoration. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 313–329. [Google Scholar]
- Zhou, W.; Wang, Z.; Chen, Z. Image super-resolution quality assessment: Structural fidelity versus statistical naturalness. In Proceedings of the 2021 13th International Conference on Quality of Multimedia Experience (QoMEX), Montreal, QC, Canada, 14–17 June 2021; pp. 61–64. [Google Scholar]
- Zhou, W.; Jiang, Q.; Wang, Y.; Chen, Z.; Li, W. Blind quality assessment for image superresolution using deep two-stream convolutional networks. Inf. Sci. 2020, 528, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Zhang, C.; Yang, W.; Liu, J.; Guo, Z. Blind visual quality assessment for image super-resolution by convolutional neural network. Multimed. Tools Appl. 2018, 77, 29829–29846. [Google Scholar] [CrossRef]
- Ruder, S. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv 2017, arXiv:1706.05098. [Google Scholar]
- Timofte, R.; Agustsson, E.; Van Gool, L.; Yang, M.-H.; Zhang, L.; Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M.; et al. NTIRE 2017 Challenge on Single Image Super-Resolution: Methods and Results. In Proceedings of the CVPR 2017 Workshops, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi Morel, M.-L. Low-Complexity Single-Image SUPER-RESolution based on Nonnegative Neighbor Embedding. In Proceedings of the British Machine Vision Conference, Guildford, UK, 3–7 September 2012; pp. 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zeyde, R.; Elad, M.; Protter, M. On Single Image Scale-Up Using Sparse-Representations; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 6920, pp. 711–730. [Google Scholar] [CrossRef]
- Martin, D.R.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 416–423. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.B.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [Google Scholar] [CrossRef]
×2 | ×4 | ×8 | ×16 | ×32 | |
---|---|---|---|---|---|
Set5 | 7.0385 | 7.0738 | 7.0364 | 6.7135 | 5.8306 |
×2 and ×4 | ×4 and ×8 | ×8 and ×16 | ×16 and ×32 | |
---|---|---|---|---|
Set5 | 11.07° | 20.56° | 38.80° | 56.11° |
0.9786 | 0.9283 | 0.7746 | 0.5507 |
Scale | EDSR (End-to-End) | Ours | |
---|---|---|---|
Set5 | ×16 | 22.91/0.8857 | 23.03/0.8868 |
×32 | 20.28/0.8107 | 20.35/0.8086 | |
Set14 | ×16 | 21.87/0.8168 | 22.01/0.8175 |
×32 | 19.56/0.7569 | 19.69/0.7570 | |
B100 | ×16 | 22.82/0.8504 | 22.90/0.8497 |
×32 | 20.97/0.7998 | 21.05/0.7979 | |
Urban100 | ×16 | 20.08/0.8033 | 20.21/0.8040 |
×32 | 18.28/0.7288 | 18.44/0.7315 |
Reconstruction Level | EDSR | Ours | |
---|---|---|---|
Set5 | ×8 to ×4 | 32.08(Net0) | 32.10(Net2) |
×16 to ×8 | 29.25(Net0) | 29.26(Net3) | |
×32 to ×16 | 27.74(Net0) | 27.81(Net4) | |
B100 | ×8 to ×4 | 32.27(Net0) | 32.31(Net2) |
×16 to ×8 | 31.08(Net0) | 31.15(Net3) | |
×32 to ×16 | 29.49(Net0) | 29.54(Net4) |
Methods | Scale | Set5 | Set14 | B100 | Urban100 |
---|---|---|---|---|---|
Bicubic | ×4 | 28.17/0.9628 | 25.62/0.8937 | 25.88/0.9140 | 23.02/0.8870 |
SRCNN [1] | 30.27/0.9773 | 26.96/0.9124 | 26.88/0.9275 | 24.46/0.9123 | |
FSRCNN [5] | 30.35/0.9784 | 27.11/0.9131 | 26.88/0.9281 | 24.54/0.9140 | |
VDSR [7] | 31.19/0.9815 | 27.66/0.9175 | 27.24/0.9310 | 25.13/0.9219 | |
LapSRN [22] | 30.77/0.9813 | 27.47/0.9106 | 27.14/0.9299 | 24.90/0.9184 | |
CARN [27] | 31.81/0.9843 | 28.05/0.9216 | 27.55/0.9342 | 25.87/0.9321 | |
EDSR [25] | 32.28/0.9856 | 28.38/0.9245 | 27.74/0.9361 | 26.41/0.9391 | |
Ours | 32.30/0.9857 | 28.40/0.9247 | 27.77/0.9362 | 26.66/0.9409 | |
Bicubic | ×8 | 24.17/0.9078 | 22.75/0.8343 | 23.66/0.8689 | 20.67/0.8198 |
SRCNN [1] | 25.43/0.9312 | 23.65/0.8530 | 24.34/0.8822 | 21.51/0.8454 | |
FSRCNN [5] | 25.43/0.9331 | 23.67/0.8531 | 24.28/0.8826 | 21.52/0.8459 | |
VDSR [7] | 25.94/0.9400 | 24.05/0.8584 | 24.54/0.8861 | 21.87/0.8547 | |
LapSRN [22] | 25.69/0.9357 | 23.96/0.8541 | 24.48/0.8850 | 21.72/0.8506 | |
CARN [27] | 26.59/0.9508 | 24.47/0.8658 | 24.79/0.8911 | 22.34/0.8673 | |
EDSR [25] | 26.82/0.9537 | 24.70/0.8691 | 24.94/0.8932 | 22.69/0.8757 | |
Ours | 26.95/0.9553 | 24.78/0.8706 | 24.98/0.8935 | 22.84/0.8774 | |
Bicubic | ×16 | 21.26/0.8357 | 20.52/0.7774 | 21.88/0.8230 | 18.91/0.7503 |
SRCNN [1] | 22.05/0.8564 | 21.13/0.7953 | 22.42/0.8370 | 19.42/0.7738 | |
FSRCNN [5] | 22.07/0.8581 | 21.16/0.7950 | 22.34/0.8371 | 19.40/0.7731 | |
VDSR [7] | 22.35/0.8637 | 21.44/0.8016 | 22.55/0.8412 | 19.63/0.7815 | |
LapSRN [22] | 22.28/0.8610 | 21.39/0.7993 | 22.51/0.8401 | 19.54/0.7777 | |
CARN [27] | 20.83/0.8778 | 21.80/0.8123 | 22.75/0.8474 | 19.96/0.7954 | |
EDSR [25] | 22.99/0.8832 | 22.00/0.8617 | 22.87/0.8494 | 20.20/0.8038 | |
Ours | 23.03/0.8868 | 22.01/0.8175 | 22.90/0.8497 | 20.21/0.8040 | |
Bicubic | ×32 | 19.02/0.7702 | 18.81/0.7187 | 20.27/0.7692 | 17.56/0.6819 |
SRCNN [1] | 19.10/0.7808 | 19.16/0.7352 | 20.67/0.7831 | 17.88/0.7013 | |
FSRCNN [5] | 19.54/0.7867 | 19.14/0.7326 | 20.59/0.7841 | 17.86/0.7006 | |
VDSR [7] | 19.58/0.7894 | 19.30/0.7390 | 20.77/0.7881 | 18.02/0.7083 | |
LapSRN [22] | 19.63/0.7899 | 19.26/0.7379 | 20.76/0.7877 | 17.98/0.7058 | |
CARN [27] | 20.17/0.8018 | 19.54/0.7509 | 20.95/0.7960 | 18.23/0.7216 | |
EDSR [25] | 20.29/0.8063 | 19.68/0.7563 | 21.03/0.7982 | 18.42/0.7306 | |
Ours | 20.35/0.8086 | 19.69/0.7570 | 21.05/0.7979 | 18.44/0.7315 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhu, H.; Yu, S. High-Magnification Super-Resolution Reconstruction of Image with Multi-Task Learning. Electronics 2022, 11, 1412. https://doi.org/10.3390/electronics11091412
Li Y, Zhu H, Yu S. High-Magnification Super-Resolution Reconstruction of Image with Multi-Task Learning. Electronics. 2022; 11(9):1412. https://doi.org/10.3390/electronics11091412
Chicago/Turabian StyleLi, Yanghui, Hong Zhu, and Shunyuan Yu. 2022. "High-Magnification Super-Resolution Reconstruction of Image with Multi-Task Learning" Electronics 11, no. 9: 1412. https://doi.org/10.3390/electronics11091412
APA StyleLi, Y., Zhu, H., & Yu, S. (2022). High-Magnification Super-Resolution Reconstruction of Image with Multi-Task Learning. Electronics, 11(9), 1412. https://doi.org/10.3390/electronics11091412