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Abstract: In this paper, we propose and derive a new system called pure hybrid fuzzy neutral delay
differential equations. We apply the classical fourth-order Runge–Kutta method (RK-4) to solve the
proposed system of ordinary differential equations. First, we define the RK-4 method for hybrid
fuzzy neutral delay differential equations and then establish the efficiency of this method by utilizing
it to solve a particular type of fuzzy neutral delay differential equation. We provide a numerical
example to verify the theoretical results. In addition, we compare the RK-4 and Euler solutions with
the exact solutions. An error analysis is conducted to assess how much deviation from exactness is
found in the two numerical methods. We arrive at the same conclusion for our hybrid fuzzy neutral
delay differential system since the RK-4 method outperforms the classical Euler method.

Keywords: Euler method; fuzzy theory; hybrid differential equations; initial value problem; delay
differential equations; Runge–Kutta method

1. Introduction

Hybrid systems have been widely studied in different contexts [1]. Mathematically,
hybrid systems correspond to continuous processes and are often disturbed, naturally
or artificially, by the discreteness that arises in such continuous processes. Here, we are
modeling these systems with the concept of delay in the derivative; that is, a neutral delay
differential system. We use the concept of “fuzzy numbers” [2,3] to approximate the specific
interval. The hybrid type and neutral type delay differential equations (DDEs) are important
in the modeling of a natural system whose behavior is predicted by its history, which has
undergone sudden discrete changes between continuous processes. The complete system
is modeled and explained with a theory, while the modeling of any physical phenomenon
does not occur all of a sudden. Some biological, chemical, or physical changes may occur
internally or externally, disturbing the system. The basic concept of DDEs can be explained
as: “The changes that happened yesterday will affect today’s behavior of the system, and
the changes that happen today will affect tomorrow’s behavior”. To control the extreme
changes that may affect tomorrow’s behavior, we introduce the neutral term. When only
this term is included without the non-neutral delay term, it is called neutral DDEs. If the
system is free from the solution term in the governing equations, we call it the pure form of
differential equations.

Electronics 2022, 11, 1478. https://doi.org/10.3390/electronics11091478 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11091478
https://doi.org/10.3390/electronics11091478
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3152-1592
https://orcid.org/0000-0002-5276-6775
https://orcid.org/0000-0002-8797-681X
https://orcid.org/0000-0003-4755-3270
https://orcid.org/0000-0002-1522-9292
https://doi.org/10.3390/electronics11091478
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11091478?type=check_update&version=2


Electronics 2022, 11, 1478 2 of 11

Numerical solutions obtained by means of algorithms are very helpful for easily
solving problems where it is difficult to find analytical solutions [4,5]. Fuzzy sets were
introduced by Lofti A. Zadeh in 1965 [2], whereas elementary fuzzy calculus was intro-
duced in [6]. The well-known fuzzy differential equations (FDEs) are utilized in modeling
sciences and engineering problems, and a number of authors have studied the FDEs [7–15].
In [16,17], the problem of hybrid fuzzy differential equations (HFDEs) was rigorously
studied in a numerical form, whereas in [18], perturbed Lyapunov-like functions and
hybrid FDEs were analyzed. In [19], a numerical method for solving DDEs by the fourth-
order Runge–Kutta (RK-4) method was discussed. In [20], numerical methods for DDEs
were provided, and in [21], a fuzzy DDE by means of the RK-4 method was studied. The
Runge–Kutta method was used to solve many forms of DDE in [22–25].

Recently, many authors have found an interest in nonlinear models for stochastic
systems of differential equations [26–30], which have numerous applications. They also
found both analytical and numerical solutions to their system using various methodologies.

Numerical solutions, often obtained by means of algorithms, are very helpful for
easily solving problems where it is difficult to find analytical solutions [31,32]. There are
several theoretical analyses and applications of hybrid and neutral systems. However, to
the best of our knowledge, there are no studies that combine both systems. This is why we
are interested in studying such a combination. Moreover, there is a major significance to
studying the usage of both systems simultaneously, because one of them works on initial
conditions at an initial time, the hybrid system. Nevertheless, the neutral delay system
works on initial functions from not only the present time but also the past time. This has
motivated us to frame a new system called hybrid fuzzy neutral delay differential equations
(HFNDDEs) and contribute to the mathematical world. We built such an HFNDDE using
the knowledge gained from preceding works. Since our system is fuzzy, the merits of
vagueness are immense. The uncertainty that arises while modeling a physical problem
will be eliminated, and it will not disturb the smoothness of the solutions. The solutions for
each t will be limited to the real interval [0, 1]. Since we added the hybrid term, which has
both discrete and continuous parameters, the system has solutions, even when a negligible
quantity of discontinuity arises. Therefore, our main contribution to this investigation is
framing a non-fuzzy model and converting it to a fuzzy model. We first define the RK-4
method for HFNDDEs and then establish the efficiency of this method by utilizing it to
solve a particular type of fuzzy neutral DDE. In this paper, we use the RK-4 method to
propose a numerical solution to HFNDDEs.

The plan of the paper is as follows. In Section 2, we present the concept of hybrid
fuzzy neutral delay differential systems. Then, in Section 3, the RK-4 method for approach-
ing HFNDDEs is discussed, and then we define pure HFNDDEs. Section 4 describes a
numerical example and elaborately finds its approximate and exact solutions to illustrate
the theory presented in this investigation. Finally, in Section 5, we summarize the results
of this study, which may be helpful for readers and researchers, as well as identify our
findings, provide our final conclusions, and present ideas for future research.

2. Hybrid Fuzzy Neutral Delay Differential Equations

Hybrid systems that involve discontinuous changes in a continuous process are em-
ployed in various fields, such as communication, signal processing, and transient analysis,
among others. It is so called because of the hybrid term involved. This term transforms
the ordinary differential system into a hybrid differential system. In Figure 1, we can see a
scheme of a hybrid system.

The equation of any hybrid system is stated as{
y′(t) = f (t, y(t), m(t)ρ(yK(tk))), t ≥ t0;
y(t0) = y0.

(1)

Note that the neutral delay differential system presents a solution that depends on
the past change of the same system. The process also involves the present solution while
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studying its rate of change. If not, it is called the “pure neutral delay differential system”.
In Figure 2, we can see a scheme that shows the main idea of a neutral delay system.

Figure 1. Scheme of the hybrid systems.

Figure 2. Scheme of the neutral delay systems.

Observe that the equation of any neutral delay system is formulated as{
y′(t) = f (t, y(t), y′(t− µ)), t ≥ t0;
y(t) = φ(t), −µ ≤ t ≤ t0.

(2)

Our new system is obtained by combining two different sides of differential equations;
that is, the hybrid systems and the neutral delay systems, under one roof, called the hybrid
neutral delay differential system, whose mathematical model is established in (3). From
Figure 3, we can see a scheme of a hybrid neutral delay system.

Figure 3. Scheme of the hybrid neutral delay systems.

Now, we consider a non-fuzzy model and convert it to a fuzzy model using suitable
fuzzy numbers. To begin, consider F1 = (0.75 + 0.25α) and F2 = (1.125− 0.125α) as the
fuzzy numbers to be used throughout the paper. According to [19], the neutral type DDEs
are defined in the form of a0y′(t) + b0y(t) + a1y′(t − µ) = g(t). Every first-order DDE
becomes homogeneous when g(t) = 0. Here, g(t) is employed as a hybrid term in this
context and it is named “dubbed hybrid neutral delay differential equation”, with the
constants a0 = 1, b0 = −1, and a1 = −1, whereas g(t) = m(t)ρ(yK(tk)). Let us consider
the HFNDDE stated as

y′(t) = f (t, y(t), y′(t− µ), m(t)ρ(yK(tk))), t ≥ t0;
y(t) = φ(t), −µ ≤ t ≤ t0;
y(t0) = y0 ∈ φ(t);

(3)

where f : [0, ∞) × E× E× E → E, φ is a continuous fuzzy mapping, and y0 ∈ φ(t) is
the essential initial condition. Then, we have y0(s) = y(s) = φ(s), for −µ ≤ s ≤ 0.
Moreover, y0 is a fuzzy number with α-level of intervals [y0]

α = [yα
0
, yα

0 ], where 0 ≤ α ≤ 1.
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The extension principle given in [2] leads to a definition of f (t, y(t), sy(t− µ), ρ(yK(tk)))
presented below, when y is a fuzzy number and f : [t0, t f ]×E×E×E→ E.

The HFNDDE stated in (3) can be transformed into the HFDDE formulated in (4).
Then, we have the mathematical model expressed as

y′(t) = z(t);
z(t) = f (t, y(t), z(t− µ), m(t)ρ(yK(tk))), t0 ≤ t ≤ t f ;
y(t) = φ(t), t ≤ t0;
z(t) = φ′(t), t ≤ t0;

(4)

and 
y′(t) = g(t, φ(t), ψ(t), m(t)ρ(φK(tk))), t0 ≤ t ≤ t f ;
ψ(t) = H(t, φ(t), ψ(t− µ)), t− µ ≥ t0;
y(t0) = φ(t0);
ψ(t) = µ(t), t− µ ≤ t0;

(5)

where µ(t) is the initial function and y(t) is the solution function, with z(t) and ψ(t) being
auxiliary functions.

3. The RK-4 Method and Pure Hybrid Fuzzy Neutral Delay Differential Equations

The method that we present here is a new modified form of the existing RK-4 method.
We propose this modified RK-4 method for solving HFNDDE systems. The existing
methods can be used to solve FDEs, DDEs, hybrid differential systems, as well as fuzzy
neutral and fuzzy mixed DDEs. Our new method combines fuzzy, hybrid, and delay
differential systems modifying the existing RK-4 method and it is more suitable to solve
these types of systems.

The solutions found by the new RK-4 method are compared with those of a new
modified Euler method and the error analysis is provided. (Observe that one can easily
find a modified Euler method for any system, but its algorithm is not provided here.) Note
that a comparison of our modified RK-4 method with the existing RK-4 method (which is
not suitable for solving our system) is not provided. However, one might compare it with
the existing modified forms of other methods, such as in the case of the Euler method.

For an HFNDDE, as stated in (3), we apply the RK-4 method after transforming it to
a hybrid fuzzy DDE by using the function f (t, φ(t), φ(t− µ), ρ(φ(tk))) as formulated in
(4) and (5). Thus, we apply the Runge–Kutta method to an FDE [7], with f given in (3)
being obtained via the well-known extension principle [2] from f ∈ C(E× E× E× E).
We assume that the existence and uniqueness of the solutions generated in (3) hold for
each interval [tk, tk+1]. The exact solutions are denoted by means of Y(t; α) and Y(t; α). To
estimate the approximate values y(t; α) and y(t; α), of y′(t; α) and y′(t; α), we utilize the
RK-4 method defining

y(tn+1; α)− y(tn; α) =
4

∑
i=1

wiKi(tn; y(tn; α)),

y(tn+1; α)− y(tn; α) =
4

∑
i=1

wiKi(tn; y(tn; α)),

with

K1(t; φ(t; α)) = min, max
{

h f
(

t, φ(t), φ(t− µ), ρ(φ(tk))

)∣∣∣∣
φ(t) ∈ [φ(tk,n; α), φ(tk,n; α)], φ(tk) ∈ [φ(tk,0; α), φ(tk,0; α)]

φ(t− µ) ∈ [φ(tk,n − µ; α), φ(tk,n − µ; α)]

}
,
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K2(t; φ(t; α)) = min, max
{

h f
(

t +
h
2

, φ(t), φ(t− µ), ρ(φ(tk))

)∣∣∣∣
φ(t) ∈ [z1(tk,n, φ(tk,n; α)), z1(tk,n, φ(tk,n; α))],

φ(tk) ∈ [φ(tk,0; α), φ(tk,0; α)]

φ(t− µ) ∈ [z1(tk,n − µ, φ(tk,n − µ; α)), z1(tk,n − µ, φ(t− µ; α))]

}
,

K3(t; φ(t; α)) = min, max
{

h f
(

t +
h
2

, φ(t), φ(t− µ), ρ(φ(tk))

)∣∣∣∣
φ(t) ∈ [z2(tk,n, φ(tk,n; α)), z2(tk,n, φ(tk,n; α))],

φ(tk) ∈ [φ(tk,0; α), φ(tk,0; α)]

φ(t− µ) ∈ [z2(tk,n − µ, φ(tk,n − µ; α)), z2(tk,n − µ, φ(t− µ; α))]

}
,

K4(t; φ(t; α)) = min, max
{

h f
(

t + h, φ(t), φ(t− µ), ρ(φ(tk))

)∣∣∣∣
φ(t) ∈ [z3(tk,n, φ(tk,n; α)), z3(tk,n, φ(tk,n; α))],

φ(tk) ∈ [φ(tk,0; α), φ(tk,0; α)]

φ(t− µ) ∈ [z3(tk,n − µ, φ(tk,n − µ; α)), z3(tk,n − µ, φ(t− µ; α))]

}
,

where h is the size of every step and tk,n = tk,0 + nh. Now, we state

z1(tk,n, φ(tk,n; α)) = φ(tk,n; α) +
1
2

K1(tk,n, φ(tk,n; α)),

z2(tk,n, φ(tk,n; α)) = φ(tk,n; α) +
1
2

K2(tk,n, φ(tk,n; α)),

z3(tk,n, φ(tk,n; α)) = φ(tk,n; α) + K3(tk,n, φ(tk,n; α)).

Then, we establish

P1[(t, φ(t; α), y(t; α))] = K1(t, φ(t; α)) + 2K2(t, φ(t; α)) + 2K3(t, φ(t; α)) + K4(t, φ(t; α)),

P2[(t, φ(t; α), y(t; α))] = K1(t, φ(t; α)) + 2K2(t, φ(t; α)) + 2K3(t, φ(t; α)) + K4(t, φ(t; α)).

Therefore, the fuzzy-valued approximate solution is given by

y(tn+1) = φ(tn+1) + y(tn − µ),

y(tn+1) = φ(tn+1) + y(tn − µ),

where 
φ(tn+1; α) = φ(tn; α) +

1
6

S[(tn, φ(tn; α), φn(t; α))],

φ(tn+1; α) = φ(tn; α) +
1
6

T[(tn, φ(tn; α), φn(t; α))].
(6)

Note that the expressions stated in (6) allow the final computation of y(tn+1) and
y(tn+1).

Next, we introduce the pure HFNDDE by reformulating the HFNDDE as
y′(t) = Ay(t) + By′(t− µ) + Cm(t)ρ(y(tk)), 0 ≤ t ≤ 3;
y(t) = φ(t), −µ ≤ t ≤ 0;
y(t0) = y0 ∈ φ(t);

(7)
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where A, B, and C are constant coefficients. When the coefficient of y(t) is equal to zero; that
is, A = 0, the equation leads to the pure HFNDDE. It obeys all the properties of HFNDDEs
and using the RK-4 method, we solve the problem as illustrated in the next section.

4. Numerical Example

In the following example, we solve the pure HFNDDE by employing the RK-4 method
given in Section 3. We find numerical solutions by utilizing both the RK-4 and classical
Euler methods. The fuzzy-valued numerical solutions obtained by the RK-4 and Euler
methods are compared to exact solutions, and their error analysis is also conducted.

The plots are displayed for both ordinary (t ∈ [0, 3]) and fuzzy (t = 3, α = 0 and
α = 1-2D plot; with t ∈ [0, 3] and α ∈ [0, 1]-3D plot) values. As it is well-known, the Euler
method is given by yn+1 = yn + h f (tn, yn). We use the same step size of the RK-4 method
for comparison of its fuzzy values, as reported in Tables 1 and 2.

Consider the PHFNDDE, whose mathematical model is formulated as{
y′(t) = y′(t− 1) + m(t)ρ(y(tk)), 0 ≤ t ≤ 3;
y(t) = [(F1)et, (F2)et], −1 ≤ t ≤ 0;

(8)

where m(t) = |sin(πt)|, for k ∈ {0, 1, . . . }, and

ρk(µ) =

{
0̂, k = 0;
µ, k ∈ {1, . . . }.

Throughout the problem stated here, we take h = 0.1 as the step size. To obtain
y(3.0; α), the approximate solution is tabulated and plotted to show the accuracy of the
method for the given problem.

The exact solution of the expression defined in (8) is given by

Y(t; α) =


[(F1)et, (F2)et], −1 ≤ t ≤ 0;
[(F1)et−1 − e cos(πt)

π − 1
e + e

π + (F2)et−1 − e cos(πt)
π − 1

e + e
π + 1], 0 ≤ t ≤ 1;

[(F1)et−2 + 2− 2
e + 2e

π , (F2)et−2 + 2− 2
e + 2e

π ], 1 ≤ t ≤ 2;
[(F1)et−3 − e cos(πt)

π − 3
e + 3e

π + 3, (F2)et−3 − e cos(πt)
π − 3

e + 3e
π + 3], 2 ≤ t ≤ 3;

(9)

where Y(t; α) = [Y(t; α), Y(t; α)].
The approximate solution of the expression defined in (8) is stated as

y(n; α) =


[(F1), (F2)], −10 ≤ n ≤ 0;
[(F1)(y0 + h(A1 + A2)), (F2)(y0 + h(A1 + A2))], 1 ≤ n ≤ 10;
[(F1)(y0 + h(A2 + B1 + B2)), (F2)(y0 + h(A2 + B1 + B2))], 11 ≤ n ≤ 20;
[(F1)(y0 + h(A3 + A4 + B1 + B3 + B4)), (F2)(y0 + h(A3 + A4 + B1 + B3 + B4))], 21 ≤ n ≤ 30;

(10)

where n takes only integer values and y(n; α) = [y(n; α), y(n; α)].
Now, consider

A1 = c0

2n

∑
s=0

e−1+sh/2, (11)

A2 = c0

2n

∑
s=0

H sin
(

shπ

2

)
, (12)

A3 = c1

20

∑
s=0

H sin
(

shπ

2

)
, (13)

A4 = c4

2n

∑
s=40

H sin
(

shπ

2

)
, (14)
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B1 = c1

20

∑
s=0

e−1+sh/2, (15)

B2 = c2

2n

∑
s=20

e−2+sh/2, (16)

B3 = c3

40

∑
s=20

e−2+sh/2, (17)

B4 = c4

2n

∑
s=40

e−3+sh/2, (18)

where c0, c1, c2, c3, and c4 are the coefficients given by

c0 =


1/6, s ∈ {0, 2n};
2/3, s ∈ {1, 3, . . . , 2n− 1};
1/3, s ∈ {2, 4, . . . , 2n− 2};

c1 =


1/6, s ∈ {0, 20};
2/3, s ∈ {1, 3, . . . , 19};
1/3, s ∈ {2, 4, . . . , 18};

c2 =


1/6, s ∈ {20, 2n};
2/3, s ∈ {21, 23, . . . , 2n− 1};
1/3, s ∈ {22, 24, . . . , 2n− 2};

c3 =


1/6, s ∈ {20, 40};
2/3, s ∈ {21, 23, . . . , 39};
1/3, s ∈ {22, 24, . . . , 38};

c4 =


1/6, s ∈ {40, 2n};
2/3, s ∈ {41, 43, . . . , 2n− 1};
1/3, s ∈ {42, 44, . . . , 2n− 2};

with H = (1 + h + h2/2 + h3/6, h4/24)10, for t ∈ [t0, tn]; that is, t ∈ [0, 3], h = 0.1, n = 10t
and y(t) = y(n).

An error analysis is conducted by using the formula

E = |exact solution− approximate solution|,

with the absolute errors E being reported in Table 3. Figures 4 and 5 compare the exact
and approximate solutions graphically for different values of α and t. Figure 6 shows the
approximate solution for values of α and t in the interval [0, 3].

Table 1. Values of exact and approximate solutions by using the RK-4 method for the indicated
configuration.

Approximate Exact

α y(n; α) y(n; α) Y(t; α) Y(t; α)

0.0 4.76804606005959 7.15206909008938 4.76803919566105 7.15205879349158
0.1 4.92698092872824 7.07260165575506 4.92697383551642 7.07259147356389
0.2 5.08591579739689 6.99313422142073 5.08590847537179 6.99312415363621
0.3 5.24485066606555 6.91366678708640 5.24484311522715 6.91365683370852
0.4 5.40378553473420 6.83419935275208 5.40377775508252 6.83418951378084
0.5 5.56272040340285 6.75473191841775 5.56271239493789 6.75472219385315
0.6 5.72165527207151 6.67526448408342 5.72164703479326 6.67525487392547
0.7 5.88059014074016 6.59579704974910 5.88058167464863 6.59578755399779
0.8 6.03952500940881 6.51632961541477 6.03951631450400 6.51632023407010
0.9 6.19845987807746 6.43686218108044 6.19845095435937 6.43685291414242
1.0 6.35739474674612 6.35739474674612 6.35738559421473 6.35738559421473
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Table 2. Values of exact and approximate solutions by using the Euler method for the indicated
configuration.

Approximate Exact

α y(n; α) y(n; α) Y(t; α) Y(t; α)

0.0 4.676726124815156 7.015089187222735 4.76803919566105 7.15205879349158
0.1 4.832616995642328 6.937143751809149 4.92697383551642 7.07259147356389
0.2 4.988507866469501 6.859198316395563 5.08590847537179 6.99312415363621
0.3 5.144398737296671 6.781252880981976 5.24484311522715 6.91365683370852
0.4 5.300289608123844 6.703307445568391 5.40377775508252 6.83418951378084
0.5 5.456180478951015 6.625362010154805 5.56271239493789 6.75472219385315
0.6 5.612071349778188 6.547416574741219 5.72164703479326 6.67525487392547
0.7 5.767962220605360 6.469471139327633 5.88058167464863 6.59578755399779
0.8 5.923853091432531 6.391525703914047 6.03951631450400 6.51632023407010
0.9 6.079743962259703 6.313580268500461 6.19845095435937 6.43685291414242
1.0 6.235634833086875 6.235634833086875 6.35738559421473 6.35738559421473

Table 3. Error analysis of approximate solutions by using the RK-4 and Euler methods for the
indicated configuration.

RK-4 Method Euler Method

α y(n; α) y(n; α) y(t; α) y(t; α)

0.0 0.000006864 0.000010297 0.091313071 0.136969606
0.1 0.000007093 0.000010182 0.094356840 0.135447722
0.2 0.000007322 0.000010068 0.097400609 0.133925837
0.3 0.000007551 0.000009953 0.100444378 0.132403953
0.4 0.000007780 0.000009839 0.103488147 0.130882068
0.5 0.000008008 0.000009725 0.106531916 0.129360184
0.6 0.000008237 0.000009610 0.109575685 0.127838299
0.7 0.000008466 0.000009496 0.112619454 0.126316415
0.8 0.000008695 0.000009381 0.115663223 0.124794530
0.9 0.000008924 0.000009267 0.118706992 0.123272646
1.0 0.000009153 0.000009153 0.121750761 0.121750761
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Figure 4. Graphical comparison of the approximate and exact solutions for h = 0.1, α = 1 and
t ∈ [0, 3].
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Figure 5. Graphical comparison between the approximate and exact solutions for h = 0.1, α ∈ [0, 1]
and t = 3.
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Figure 6. Approximate solution obtained with the RK-4 method for h = 0.14, α ∈ [0, 1] and t ∈ [0, 3].

5. Results, Discussion and Conclusions

Next, we summarize the significance and novelty of the paper, so that it may be helpful
for readers and other researchers:

• We developed hybrid fuzzy neutral delay differential equations and pure hybrid fuzzy
neutral delay differential equations as governing equations for new systems based on
fuzzy differential equations.

• Many authors have extended the fuzzy differential equations so far to include fuzzy
hybrid differential equations and fuzzy delay differential equations. However, in this
study, the fuzzy differential equations are extended to combinations of hybrid and
delay differential equations, particularly neutral delay differential equations.

• The theoretical details were applied to a numerical example, and both analytical
and numerical solutions were found. In this way, we generalized the approximate
solutions algebraically.

• Though it is dealing with fuzzy solutions, it is enough to provide fuzzy plots. Nev-
ertheless, we provided both non-fuzzy and fuzzy types of solutions. In both the
non-fuzzy and fuzzy types of solutions, the coincidence of the exact and approximate
solutions was shown graphically. For different values of t, the fuzzy valued plots
were provided.
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• The most important part of the paper involved using the Runge–Kutta method for
solving non-pure (that is, including y(t)) hybrid fuzzy neutral delay differential
equations, which we employed to solve a pure form of it (that is, without y(t)).

• We evaluated analytical solutions to the problem that we offered in the study, even
though we dealt with numerical answers. The numerical solutions obtained by means
of the fourth-order Runge–Kutta method were generalized and mentioned in the
problem. Thus, when increasing the order to solve a different problem, the readers
themselves can find the numerical solution. For the numerical results, we compared
the numerical solutions obtained by means of the fourth-order Runge–Kutta and Euler
methods with the exact solutions.

• Note that the fourth-order Runge–Kutta method gives better accuracy than the Euler
method. Nonetheless, we compared the result with the Euler method to establish that
the system obeys even the lower order methods.

• Though it is a more complicated form of a fuzzy differential equation, we also provided
a numerical example to verify the theoretical results.

The application of numerical methods obtained by the fourth-order Runge–Kutta
method for finding numerical solutions to hybrid fuzzy neutral delay differential equations
has been viewed with an illustrative example. The comparison of solutions represented in
Figure 4, for the non-fuzzy initial value problem, and in Figure 5, for the fuzzy initial value
problem, established the accuracy of the fourth-order Runge–Kutta method in relation to
the exact solution. The 3D graphical representation of the approximate solution given in
Figure 6 shows all the values in t ∈ [0, 3] and α ∈ [0, 1] obtained by the fourth-order Runge–
Kutta method, which allowed us to understand that the exact solution coincides with this
plot displayed in Figure 5. The same system of hybrid fuzzy neutral delay differential
equations can be adopted for the case of fractional order. Therefore, as a future direction
of the present investigation, we will try to find applications, such as particle motion in
a circular cavity, spring pendulum, coupled oscillator, and new physical systems with
non-singular derivatives, such as that provided in [33–36]. Also as a future work, we could
model a hybrid system with a rate of change with respect to time for the delay response in
signal processing.
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