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Abstract: Coronary artery disease (CAD) is a disease with high mortality and disability. By 2019,
there were 197 million CAD patients in the world. Additionally, the number of disability-adjusted
life years (DALYs) owing to CAD reached 182 million. It is widely known that the early and accurate
diagnosis of CAD is the most efficient method to reduce the damage of CAD. In medical practice,
coronary angiography is considered to be the most reliable basis for CAD diagnosis. However,
unfortunately, due to the limitation of inspection equipment and expert resources, many low- and
middle-income countries do not have the ability to perform coronary angiography. This has led to
a large loss of life and medical burden. Therefore, many researchers expect to realize the accurate
diagnosis of CAD based on conventional medical examination data with the help of machine learning
and data mining technology. The goal of this study is to propose a model for early, accurate and
rapid detection of CAD based on common medical test data. This model took the classical logistic
regression algorithm, which is the most commonly used in medical model research as the classifier.
The advantages of feature selection and feature combination of tree models were used to solve the
problem of manual feature engineering in logical regression. At the same time, in order to solve the
class imbalance problem in Z-Alizadeh Sani dataset, five different class balancing methods were
applied to balance the dataset. In addition, according to the characteristics of the dataset, we also
adopted appropriate preprocessing methods. These methods significantly improved the classification
performance of logistic regression classifier in terms of accuracy, recall, precision, F1 score, specificity
and AUC when used for CAD detection. The best accuracy, recall, F1 score, precision, specificity and
AUC were 94.7%, 94.8%, 94.8%, 95.3%, 94.5% and 0.98, respectively. Experiments and results have
confirmed that, according to common medical examination data, our proposed model can accurately
identify CAD patients in the early stage of CAD. Our proposed model can be used to help clinicians
make diagnostic decisions in clinical practice.

Keywords: cardiovascular disease; coronary artery disease; lightGBM; logistic regression; class
balance; feature combination; classification

1. Introduction

With the development of economy and the aged tendency of population, the burden
of disease and factors of death have changed dramatically all over the world. In the
light of the analysis data of the World Health Statistics 2019, noncommunicable diseases
have become the leading cause of death globally. In 2016, 41 million deaths, accounting
for about 71% of global deaths, were caused by noncommunicable diseases. The main
noncommunicable diseases incorporate cardiovascular disease, cancer, diabetes and chronic
respiratory diseases [1]. Among them, cardiovascular disease (CVD) has become the leading
cause of premature death and rising healthcare costs. In 2019, the worldwide cases of CVD
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were 523 million, and the deaths caused by CVD reached 18.5 million, which accounted
for approximately one-third of all deaths universally [2–4]. CVD mainly includes ischemic
heart disease (IHD) and stroke. By 2019, there were 197 million IHD patients in the world.
Additionally, the number of disability-adjusted life years (DALYs) because of IHD reached
182 million [5,6]. The detailed analysis of the Global Burden of Diseases, Injuries, and Risk
Factors Study (GBD) 2019 shows that (See Table 1), in all age groups, the top three causes
of DALYs are neonatal disorders, IHD and stroke, respectively. In the 50 to 74 years age
group and 75 years and older age group, the top two causes of DALYs are IHD and stroke.
Additionally, in the 25 to 49 years age group, the top three reasons of DALYs are road
injuries, HIV/AIDS and IHD [6]. It’s clear that IHD, a typical type of CVD, has become a
major cause of death and disability.

Table 1. Top three causes of whole world DALYs and percentage of all DALYs in 2019.

Order Causes 1 Percentag 1 Causes 2 Percentag 2 Causes 3 Percentag 3 Causes 4 Percentag 4

1 Neonatal
disorders 7.3 Road

injuries 5.1 IHD 11.8 IHD 16.2

2 IHD 7.2 HIV/AIDS 4.8 Stroke 9.3 Stroke 13.0
3 Stroke 5.7 IHD 4.7 Diabetes 5.1 COPD 8.5

1 In all age groups. 2 In 25 to 49 years age group. 3 In 50 to 74 years age group. 4 In 75 years and older age group.
DALY, disability-adjusted life-year. IHD, ischemic heart disease. COPD, chronic obstructive pulmonary disease.
HIV, human immunodeficiency virus. AIDS, acquired immunodeficiency syndrome. The data in the table are
from [6].

IHD, namely, coronary atherosclerotic heart disease (coronary artery disease (CAD) for
short), refers to one kind of heart disease that manifests myocardial ischemia, hypoxia or
necrosis caused by coronary artery narrowing or occlusion, which is caused by atheroscle-
rosis. To be consistent with other literature, coronary artery disease (CAD) is also used in
the later part of the article. According to the anatomical structure of coronary artery, there
are three main arteries supplying blood to the heart, namely, (1) left anterior descending
coronary artery (LAD), (2) left circumflex coronary artery (LCX) and (3) right coronary
artery (RCA). CAD occurs when the lumen of any one of the three coronary arteries is
narrowed by 50% or more [7].

CAD is a highly lethal disease, so early detection and diagnosis is crucial for saving
lives and improving prognosis. At present, the auxiliary examinations used in CAD diag-
nosis in medical include laboratory examination, electrocardiogram (ECG) examination,
radionuclide examination, multislice spiral CT coronary angiography imaging, echocar-
diography and coronary angiography. Other examination methods include fractional flow
reserve (FFR), optical coherence tomography and intravenous ultrasound (IVUS). Among
them, coronary angiography is regarded as the gold standard for the diagnosis of CAD.
Unfortunately, many developing and low-income countries do not have the equipment and
specialized doctors to perform coronary angiography. Moreover, imaging examinations
with high cost and technical requirements are difficult to be popularized in many countries
and regions. Therefore, more and more doctors, scholars and researchers are devoted to
finding other methods that can detect and diagnose CAD early. Machine learning and data
mining technology are such a field that they focus on. In the past few years, machine learn-
ing and data mining technology have been broadly applied in various aspects of medical
researches, for instance disease screening, disease risk stratification, disease prediction and
assistant decision-making [8–10].

Similarly, machine learning technology has also played an important role in the
prediction tasks of CAD. Numerous studies have been carried out. According to the
data types used in study, these studies can be divided into studies based on the ECG
signals [11–22], studies based on the imaging data [23–29], and studies based on the data of
multiple routine examination items. As mentioned above, many imaging examinations are
difficult to popularize in some countries and regions. Therefore, there are certain regional
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restrictions on the application of research based on the imaging data. The research based
on the ECG signal that is easy to obtain can only identify the CAD with significant ECG
changes. Nevertheless, for some hidden CAD, it is difficult to diagnose these CAD timely
and accurately. The research based on the data of multiple routine examination items has
the advantages of easy access to data and comprehensive reflection of CAD. Therefore, this
study proposed a machine learning model for early and accurate detection of CAD based
on conventional medical examination data. This study was carried out on Z-Alizadeh Sani
dataset, which is the latest dataset with multiple examination indicators.

The rest of the paper is arranged as follows. Section 2, related work, summarizes the
related research based on Z-Alizadeh Sani dataset in the past decades. Section 3 introduces
the dataset used in our research. An introduction of our proposed method is exhibited in
Section 4. Section 5 shows detailed information about the experiments and results, and
provides a detailed analysis of the results. Section 6 discusses this study. The conclusion of
the study is expressed in Section 7.

2. Related Work

In this section, we review the application and results of machine learning technology
on CAD prediction tasks in the past ten years. We emphatically analyze the progress in
technology and design of research based on the data of multiple routine examination items.

Alizadehsani et al. applied feature selection and feature construction techniques to
process input data, and used multiple classification models on it. Finally, 94.08% classifi-
cation accuracy was obtained on the sequence minimum optimization (SMO) model [30].
Elham et al. developed a technique called heterogeneous hybrid feature selection to select
features that were related to CAD diagnosis from the Z-Alizadeh Sani dataset. Then, they
applied two oversampling techniques, namely, synthetic minority oversampling technology
(SMOTE) and adaptive synthetic (ADASYN) to deal with the imbalanced class problem
in dataset. The classification accuracy gained was 92.58% [31]. Arabasadi et al. improved
the classification performance of neural network on Z-Alizadeh Sani dataset by using a
genetic algorithm to increase the initial weight value of the neural network. The classifica-
tion performance with accuracy of 93.85%, specificity of 92% and sensitivity of 97% was
achieved [32]. Alizadehsani et al. used the meta cost-sensitive algorithm to distinguish
patients with CAD from healthy individuals. Naive bayes, support vector machines (SVM),
k-nearest neighbors (KNN), SMO, and C4.5 algorithm were used for classification. The
best classification result was obtained by SMO algorithm with accuracy of 92.09% and
sensitivity of 97.22% [33]. Zomorodi-Moghadam et al. proposed a method discovering
the rules of CAD classification. By using the feature selection method based on particle
swarm optimization (PSO) and multi-objective evolutionary search, this method selected
the features most related to CAD classification, and formed two different rule sets with
11 features and 13 features, respectively. The classification accuracy was evaluated on two
rule sets. The results showed that this method has the ability to generate effective CAD
detection rules [34].

Abdar et al. proposed a new nested integrated kernel support vector classification
(NE-nu-SVC) model. The model improved the performance of traditional machine learning
methods by applying ensemble learning technology, feature selection method and data
balancing method. The model obtained 94.66% classification accuracy [35]. Abdar et al.
introduced a method called N2Genetic optimizer to improve the performance of tradi-
tional algorithms. On the Z-Alizadeh Sani dataset, the method achieved an accuracy of
93.08% and F1 score of 91.51% [36]. Alizadehsani et al. realized the prediction of CAD
by constructing a classifier for each coronary artery of LAD, LCX, and RCA. It was used
to the extended Z-Alizadeh Sani dataset containing 500 patients and achieved 96.40%
CAD detection accuracy [37]. Shahid et al. utilized four different feature selection means:
Relief-F, Fisher, Weight by SVM, and Minimum Redundancy Maximum Relevance to im-
prove the performance of emotional neural networks (EmNNs) on Z-Alizadeh Sani dataset.
Finally, they obtained 88.34% classification accuracy [38]. Wang et al. developed a two-level



Electronics 2022, 11, 1495 4 of 44

stacking model based on stacking ensemble learning idea for CAD detection. This model
showed 95.43% detection accuracy on Z-Alizadeh Sani dataset [39]. Tama et al. designed a
two-tier integration framework. The first layer was feature selection, which integrated two
methods of feature selection, namely correlation-based feature selection (CFS) and PSO.
The second layer was classifier modeling, which mixed the class label of three integrated
learners through the stacking architecture. The integration framework achieved 98.13%
accuracy on the Z-Alizadeh Sani dataset [40]. Gupta et al. proposed a system (C-CADZ)
for CAD detection. C-CADZ automatically realized feature extraction, feature selection,
class balance and model prediction. This system used random forest (RF) and extreme
tree (ET) models as machine learning classifiers and obtained 97.37% prediction accuracy
on Z-Alizadeh Sani dataset [41]. Kolukisa et al. processed the Z-Alizadeh Sani dataset
by applying linear discriminant analysis (LDA) dimensionality reduction technique and a
hybrid feature selection technique that combined four feature selection methods, namely,
gain ratio (GR), information gain (IG), Relief-F (RF) and chi -square (CS) test. Finally,
a multiclass fisher linear discriminant analysis (FLDA) ensemble classifier was used to
classify, and the accuracy was 92.07% [42].

Dekamin et al. adopted K-means algorithm to preprocess data and used naive bayes,
KNN and decision tree to classify. This method achieved 90.91% efficiency [43]. Al-
izadehsani et al. performed CAD prediction research based on laboratory and echocar-
diography data. This research used SMO, naive Bayes, C4.5 and AdaBoost algorithms for
classification prediction and achieved a classification accuracy of more than 82% [44]. Yadav
et al. proposed a CAD prediction method based on association rule mining, and obtained
92.09% classification accuracy on SMO classification algorithm [45]. Ghiasi et al. applied a
decision tree learning algorithm called CART to the detection of CAD, and achieved 92.41%
accuracy [46]. Joloudari et al. proposed a hybrid machine learning model. The model took
SVM as the basic classifier, used analysis of variance as the kernel function of SVM, and
used genetic optimization algorithm for feature selection. This model obtained 89.45%
classification accuracy [47]. In our previous research, we applied four feature processing
techniques and two kinds of class balancing methods to develop a CAD prediction model
based on Random Forest algorithm and XGBoost algorithm. The model effectively realized
the early detection of CAD and achieved 94.7% prediction accuracy [48].

In the past ten years, researchers have carried out a large number of exploratory
research on CAD prediction based on machine learning technology on the dataset con-
taining the results of multiple routine examination items. In reference [49], Alizadehsani
et al. have analyzed 149 literatures related to the subject of machine learning-based CAD
prediction published from 1992 to 2019. Reference [49] mainly summarized the investigated
papers from the aspects of classification algorithm, feature selection algorithm and model
evaluation. At the level of classification algorithm, most studies have applied traditional
machine learning algorithms, such as SVM, Naive Bayes, KNN, decision tree, SMO, C4.5
and artificial neural network. Among them, artificial neural network and decision tree
algorithm were the two most widely used algorithms. In the application of feature selection
algorithm, the most commonly used methods include information gain, Gini index, PCA
and weight by SVM. In the model evaluation, the application proportions of accuracy, recall,
specificity and precision were 96%, 68.8%, 63.2% and 65.6%, respectively. The application
proportions of F measurement and AUC was less than 20%.

Through the analysis, it can be found that the previous studies have made some
achievements and progress, but there are still some limitations. For example, firstly, in the
application of classification algorithm, there is less research on the application of classical
logistic regression algorithm suitable for small datasets. Secondly, these kinds of data sets
often have the problem of class imbalance. Several articles used some common sampling
methods and cost sensitive algorithms to solve this problem, such as SMOTE algorithm and
ADASYN algorithm. However, there are few studies on the application of more sampling
methods. In addition, in terms of model evaluation indicators, the application of AUC and
F measurement indicators is insufficient. However, these two indexes are very important
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to evaluate the performance of the CAD prediction model. Especially in the dataset with
class imbalance problem, the accuracy index often cannot accurately reflect the ability of
the model.

In view of this, in this study, we proposed a machine learning model for early, accurate
and rapid detection of CAD based on common medical detection data. The model used the
classical logistic regression algorithm, which is the most commonly used in medical model
research as the classifier. Additionally, we applied the advantages of feature selection and
feature combination of tree models to solve the problem of manual feature engineering
in logical regression algorithm. At the same time, five different sampling methods were
applied to solve the class imbalance problem of Z-Alizadeh Sani dataset. Accuracy, recall,
specificity, precision, F1 score, ROC and AUC were used to evaluate the performance of
the model. Ten-fold cross-validation technology was also applied in the study. In addition,
according to the characteristics of the dataset, we also adopted appropriate preprocessing
methods. The frame diagram of our proposed machine learning model for CAD prediction
is shown in Figure 1. The list of abbreviations used in this paper is shown in Table A1 of
Appendix A.
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3. Dataset

From UCI Machine Learning Repository we downloaded the Z-Alizadeh Sani dataset
used by us. The Z-Alizadeh Sani dataset is the latest dataset with multiple examination
indicators. This dataset contains 303 medical records derived from 303 cases who visited
Shaheed rajaei hospital because of chest pain. Each record includes 55 features belonging
to four categories. Four categories are demographic features; symptoms and physical
examination; ECG; and laboratory tests and echocardiography features. A record is a
sample. These 303 samples belong to two classes, namely, CAD class and normal class.
When the stenosis of coronary arteries lumen of a sample reaches or exceeds 50%, this
sample is classified as CAD class; otherwise it belongs to the normal class. Accordingly, in
303 samples, 216 instances accounting for 71.29% are CAD class, and 87 instances accounting
for 28.71% are normal class [30]. Details of the Z-Alizadeh Sani dataset are shown in Table 2.
To intuitively explain the features of Z-Alizadeh Sani dataset, in Figure 2, we showed an
ECG waveform and an echocardiac image. The ECG features of Z-Alizadeh Sani dataset are
obtained by professional doctors analyzing the ECG waveform in Figure 2a. Similarly, the
echocardiography features of Z-Alizadeh Sani dataset are obtained by professional doctors
detecting the echocardiac image in Figure 2b.
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Table 2. Detailed information of each feature and feature attribute in Z-Alizadeh Sani dataset.

Category Feature Name Range Type

Demographic features Age 30–86 continuous
Weight 48–120 continuous
Length 140–188 continuous

Sex Male, Female categorical
BMI 18.12–40.90 continuous
DM 0, 1 categorical

HTN 0, 1 categorical
Current smoker 0, 1 categorical

Ex-smoker 0, 1 categorical
FH 0, 1 categorical

Obesity (Yes (BMI > 25), else No) Y, N categorical
CRF Y, N categorical
CVA Y, N categorical

Airway disease Y, N categorical
Thyroid disease Y, N categorical

CHF Y, N categorical
DLP Y, N categorical

Symptoms and Physical examination BP 90.0–190.0 continuous
PR 50.0–110.0 continuous

Edema 0, 1 categorical
Weak peripheral pulse Y, N categorical

Lung rales Y, N categorical
Systolic murmur Y, N categorical
Diastolic murmur Y, N categorical
Typical chest pain 0, 1 categorical

Dyspnea Y, N categorical
Function class 1–4 categorical

Atypical Y, N categorical
Nonanginal Y, N categorical

Exertional CP N categorical
LowTH Ang Y, N categorical

Electrocardiography Q Wave 0, 1 categorical
St elevation 0, 1 categorical

St depression 0, 1 categorical
T inversion 0, 1 categorical

LVH Y, N categorical
Poor R progression Y, N categorical

BBB N, LBBB, RBBB categorical

Laboratory Tests and Echocardiography FBS 62.0–400.0 continuous
CR 0.5–2.2 continuous
TG 37.0–1050.0 continuous

LDL 18.0–232.0 continuous
HDL 15.9–111.0 continuous
BUN 6.0–52.0 continuous
ESR 1–90 continuous
HB 8.9–17.6 continuous
K 3.0–6.6 continuous

Na 128.0–156.0 continuous
WBC 3700–18,000 continuous

Lymph 7.0–60.0 continuous
Neut 32.0–89.0 continuous
PLT 25.0–742.0 continuous

EF-TTE 15.0–60.0 continuous
Region RWMA 0, 1, 2, 3, 4 categorical

VHD Mild, N, moderate, severe categorical
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The 55 features of Z-Alizadeh Sani dataset can be split into two types: continuous
features and categorical features. The statistical description of continuous features is shown
in Table 3.

Table 3. Statistical description of continuous features of Z-Alizadeh Sani dataset.

Feature Min Max Ave Med 1th 5th 10th 50th 90th 95th 99th

Age 30 86 58.9 58.00 36.08 43.00 47.00 58.00 73.00 76.00 81.00
Weight 48 120 73.83 74.00 50.00 55.00 60.00 74.00 89.00 94.80 107.88
Length 140 188 164.72 165.00 145.00 150.00 152.00 165.00 176.60 179.00 185.96

BMI 18.12 40.90 27.25 26.78 18.83 21.10 22.31 26.78 33.21 34.88 38.24
BP 90 190 129.55 130.00 90.00 100.00 110.00 130.00 160.00 160.00 180.00
PR 50 110 75.14 70.00 60.00 64.00 70.00 70.00 87.20 90.00 109.60
FBS 62 400 119.18 98.00 69.04 77.00 80.00 98.00 193.20 223.80 358.40
CR 0.50 2.20 1.06 1.00 0.60 0.70 0.80 1.00 1.40 1.50 1.90
TG 37 1050 150.34 122.00 43.12 67.40 76.00 122.00 250.00 309.00 469.20

LDL 18 232 104.64 100.00 30.24 52.60 64.40 100.00 154.20 170.00 212.60
HDL 15.9 111.0 40.23 39.00 18.16 25.20 28.00 39.00 53.00 55.80 81.40
BUN 6 52 17.50 16.00 8.00 10.00 11.00 16.00 25.60 31.80 42.92
ESR 1 90 19.46 15.00 1.04 3.00 4.00 15.00 41.00 51.00 79.84
HB 8.9 17.6 13.15 13.20 9.00 10.02 11.00 13.20 15.10 15.68 17.19
K 3.0 6.6 4.23 4.20 3.20 3.50 3.70 4.20 4.80 5.00 5.40

Na 128 156 141.00 141.00 130.04 135.00 137.00 141.00 145.00 147.00 153.00
WBC 3700 18,000 7562.05 7100.00 3812.00 4700.00 5100.00 7100.00 10,700.00 12,100.00 16,960.00

Lymph 7 60 32.40 32.00 9.04 15.20 19.00 32.00 44.00 49.00 58.96
Neut 32 89 60.15 60.00 35.12 44.00 49.00 60.00 73.60 78.00 84.96
PLT 25 742 221.49 210.00 118.44 158.20 170.00 210.00 293.60 331.60 391.52

EF-TTE 15 60 47.23 50.00 20.00 26.00 35.00 50.00 55.00 55.00 60.00

Min, minimum value. Max, maximum value. Ave, average value. Med, median. th, th percentile.

By analyzing Tables 2 and 3, it can be seen that Z-Alizadeh Sani dataset has the
following characteristics: (1) Exertional CP feature has the same values on 303 samples.
In other words, External CP feature does not contribute to the classification prediction of
CAD; (2) the dimensions of continuous features are not uniform, and the distribution of
continuous features has a certain skewness; and (3) the dataset has class imbalance problem.

4. Proposed Method

This section describes the machine learning techniques used by the study in detail.

4.1. Preprocessing of Data

In view of the characteristics of Z-Alizadeh Sani dataset, we processed the dataset as
follows: (1) delete the External CP feature directly; and (2) standardize the continuous features.

The method of data standardization is as follows:

X =
{

χ(1), χ(2), χ(3) . . . , χ(m)
}

(1)
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where X is sample set, χ(1), χ(2), χ(3) . . . , χ(m) are samples of X, m is the number of samples.
Suppose that sample χ(i) of X has n features, that is:

χ(i) =
{

χ
(i)
1 , χ

(i)
2 , χ

(i)
3 . . . , χ

(i)
n

}
(2)

Then, for the continuous feature j there is:

µj =
1
m

m

∑
i=1

χi
j (3)

where χ
(i)
j is the value of feature j on sample χ(i). µj is the average value of feature j.

Additionally, there is:

σj =

√
1
m

m

∑
i=1

(χi
j − µj)

2 (4)

Thereinto, σj is the standard deviation of feature j. Then:

χi
j∗ =

χi
j − µj

σj
(5)

χi
j∗ is the value of feature j on sample χ(i) after standardization.

4.2. Methods of Balancing Classes

We applied five different methods of classes balancing on Z-Alizadeh Sani dataset.
We agree that the sample set of minority class is Smin, the sample set of majority class is
Smaj, x1, x2, x3, . . . . . . xm are the samples of Smin, m is the number of samples of Smin, and
xi refers to any sample of Smin.

4.2.1. SMOTE

Synthetic Minority Oversampling Technique (SMOTE) [50–54] is one of the most
commonly used and classic oversampling methods. Simply put, SMOTE synthesizes
new samples artificially by analyzing the distance between minority samples and their
nearest neighbors. The specific process of synthesizing samples is as follows: (1) distance
calculation: calculate the distance between xi and all samples of Smin; thus, the k-nearest
neighbors of sample xi are obtained; (2) nearest neighbors selection: set the number of
oversampling of each sample of minority class according to the ratio of Smin and Smaj,
assuming this number is n. Then, n samples are randomly selected from the k-nearest
neighbors of sample xi. Here, we assume that xj is one of the n-nearest neighbors samples;
(3) new samples synthesis: the new sample xnew between the sample xi and xj is synthesized
according to the following formula:

xnew = xi + rand(0, 1)×
∣∣∣xi− xj

∣∣∣ (6)

where rand(0, 1) refers to generate a random number uniformly distributed between
0 and 1,

∣∣xi− xj
∣∣ is the distance between the sample xi and xj.

All new samples are synthesized in the same way until the class balance requirements
are met. The essence of SMOTE algorithm is to select a random point on the connection line
of two specific samples as a new sample. This method increases the number of minority
samples effectively.

4.2.2. Borderline_SMOTE

Unlike SMOTE, which synthesizes new samples for each minority sample, Border-
line_SMOTE algorithm [55] only resamples or strengthens the minority examples at the
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class borderline. Firstly, the k-nearest neighbors of sample xi are found. Then, the number of
samples belonging to the majority class in the k-nearest neighbors of sample xi is analyzed,
assuming this number is b. When b〈 k

2 , sample xi is put into the SAFE set. When b〉 k
2 , sample

xi is put into the DANGER set. When b = k, sample xi is put into the NOISE set, as shown
in Figure 3. Finally, the minority samples belonging to the DANGER set are resampled to
synthesize new samples. The process of new sample synthesis is the same as SMOTE.
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Borderline_SMOTE algorithm includes Borderline_SMOTE1 and Borderline_SMOTE2.
Borderline_SMOTE1 will randomly select minority sample from the k-nearest neighbors of
sample xi to synthesize new samples. While Borderline_SMOTE2 will randomly select any
sample from the k-nearest neighbors of sample xi to synthesize new samples. In this article,
we applied Borderline_SMOTE1.

4.2.3. SVM_SMOTE

SVM_SMOTE algorithm [56] is the combination of SVM algorithm and SMOTE algo-
rithm. Similar to Borderline_SMOTE algorithm, SVM_SMOTE algorithm also focuses on the
minority samples at the class borderline and only resamples or strengthens these samples.
Firstly, the SVM classifier is applied on the training set to obtain the support vector, which is
approximately the boundary region. Then, the new minority samples will be synthesized
according to the following decision mechanism. The decision mechanism for synthesizing
minority class samples depends on the distribution density of majority class samples around
minority class support vector samples (See Figure 4). When more than half of the k-nearest
neighbor samples of a minority class support vector sample belong to the minority class, the
new minority class samples will be synthesized by an external interpolation mechanism.
When more than half of the k-nearest neighbor samples of a minority class support vector
sample belong to the majority class, the new minority class samples will be synthesized by
an internal interpolation mechanism. When all the k-nearest neighbor samples of a minority
class support vector sample belong to the majority class, it is considered that the minority
class support vector sample is noise data and should be relabeled.

The essence of SVM_SMOTE algorithm is over-sampling based on support vector.
Near the class boundary approximated by the support vector, different decision mecha-
nisms are selected to synthesize the minority class samples according to the distribution
density of the majority class samples around the minority class support vector. After
applying SVM_SMOTE algorithm, the minority groups can be expanded to areas with low
sample density of the majority class.
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4.2.4. SMOTE_Tomek

The above three methods are all oversampling methods, which achieve class balance
by increasing the number of minority class samples. However, the SMOTE_Tomek al-
gorithm [57] introduced in this section is a comprehensive sampling method combining
oversampling and undersampling. Before introducing the SMOTE_Tomek algorithm in
depth, we need to understand the definition of Tomek links. Simply put, Tomek links is
defined as a pair of connections between two nearest neighbor samples belonging to the op-
posite class. Assuming that xi and xj are two samples belonging to different class, d(xi, xj) is
the distance between xi and xj. If there is no sample xe, which can make d(xe, xi) < d(xi, xj)
or d(xe, xj) < d(xi, xj), the sample pair (xi, xj) is a Tomek link. Two samples of a Tomek link,
either one of them is noise, or both of them are in the boundary area. Therefore, Tomek
links can be used for both data undersampling and data cleaning. When Tomek links are
used as an undersampling method, samples belonging to the majority class in Tomek links
are deleted. When Tomek links are used as a data cleaning method, two samples in Tomek
links are deleted.

The SMOTE_Tomek algorithm applied in this paper takes advantage of the data
cleaning effect of Tomek links. Firstly, SMOTE algorithm was applied to the original
dataset, and a balanced dataset TSMOTE was obtained. Then, we found the Tomek links
from TSMOTE and deleted the two samples in Tomek links. Finally, a new balanced dataset
was obtained for training and testing.

4.2.5. SMOTENC

SMOTENC algorithm [51] is an oversampling method that can deal with categorical
features. It is assumed that sample xi is a minority class sample containing both continuous
and categorical features, sample xnew is a new sample synthesized from sample xi by
SMOTENC algorithm, and feature j is one of the categorical features. The value of feature
j of sample xnew is the value with the highest frequency among the values of feature j of
the k-nearest neighbors of sample xi.

4.3. Feature Combination

In this study, logistic regression (lr) algorithm is used as a classifier for classification and
prediction. Logistic regression is a classification model with the advantages of easy under-
standing, easy implementation and fast operation. However, when used for classification, a
large number of feature engineering, such as feature extraction and feature combination,
need to be carried out manually to improve the performance of lr classifier. Undoubtedly, it
takes a lot of time to carry out feature engineering manually. Therefore, many researchers
tried to improve the classification ability of lr through automatic feature engineering.
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For a long time, decision tree model and neural network model have shown better
performance in disease classification and prediction tasks [58–61]. The former has good
interpretability, while the latter shows high efficiency on large data sets. The splitting
process of the model based on decision tree algorithm in each node is the process of
feature screening. Each leaf node on the decision tree is the output of the decision tree
trained on a set of effective feature subsets. That is, in the decision tree, the path from
the root node to each leaf node is a feature combination process. Each leaf node contains
a set of unique feature combination information. Therefore, models based on decision
tree algorithm often have good functions of feature selection and feature combination.
Deepfm model is a classic model in neural network, which was proposed by Huawei Noah
Ark laboratory in 2017 [62]. Deepfm model is the combination of factorization machines
(FM) and neural network structure. Deepfm model can automatically learn low-order
explicit feature combination and high-order implicit feature combination at the same time.
Therefore, the Deepfm model can also be used for automatic feature combination.

Using the feature combination function of models based on decision tree algorithm
and Deepfm model to improve the performance of lr classifier has been widely used in the
prediction task of advertising click through rate, and has shown good performance. However,
in the prediction task of CAD, the research on this method has not been carried out. Therefore,
in this paper, we will utilize the feature combination advantages of decision tree model or
Deepfm model to improve the performance of lr classifier on Z-Alizadeh Sani dataset.

To select the best tree model for feature combination, we applied five classification
models based on ensemble learning technology to the original dataset. The five classification
models are random forest (RF), extratrees, adaptive boosting (AdaBoost), eXtreme gradient
boosting (XGBoost) and light gradient boosting machine (lightGBM). The performance
results of the five models on the original dataset are shown in Table 4. It can be seen from
Table 4 that on the original dataset the lightGBM model has the best performance. In
addition, we also applied the DeepFM model to the original dataset. Unfortunately, the
highest accuracy obtained by DeepFM model was only 83.52%. This may be related to the
small sample size of the dataset. Therefore, we select the ligthGBM model with the best
performance to play the function of feature combination for lr classifier.

Table 4. The performance results obtained by the five models on the original dataset.

Algorithms Accuracy Recall F1 Precision Specificity AUC

RF 0.887 ± 0.056 0.909 ± 0.051 0.923 ± 0.038 0.940 ± 0.051 0.834 ± 0.117 0.92 ± 0.05
Extratrees 0.891 ± 0.045 0.932 ± 0.045 0.923 ± 0.033 0.916 ± 0.055 0.788 ± 0.123 0.91 ± 0.06
AdaBoost 0.904 ± 0.059 0.929 ± 0.067 0.934 ± 0.038 0.944 ± 0.050 0.842 ± 0.111 0.93 ± 0.05
XGBoost 0.894 ± 0.068 0.909 ± 0.072 0.929 ± 0.044 0.954 ± 0.046 0.856 ± 0.106 0.93 ± 0.05
lightGBM 0.911 ± 0.060 0.922 ± 0.068 0.940 ± 0.038 0.963 ± 0.041 0.881 ± 0.095 0.93 ± 0.05

LightGBM [63] is a machine learning algorithm framework based on boosting ensem-
ble learning technology proposed by Microsoft in 2017. Compared with GBDT (Gradient
Boosting Decision Tree) algorithm and XGBoost algorithm, lightGBM algorithm can not
only achieve the same prediction performance, but also has more obvious advantages
in training speed and memory consumption. On the basis of GBDT algorithm and XG-
Boost algorithm, lightGBM algorithm integrates several optimization strategies, such as
histogram algorithm, grandient-based one-side sampling (GOSS) algorithm, exclusive fea-
ture bundling (EFB) strategy, leaf-wise strategy, supporting category feature strategy and
supporting efficient parallel strategy. These optimization strategies make lightGBM become
a classification model with high efficiency, low consumption, more accuracy and more
convenient. The parameter boosting_type was set to GBDT (Gradient Boosting Decision
Tree) [64–67] algorithm when we used the lightGBM algorithm.

The method where lightGBM algorithm plays the function of feature combination
for lr classifier is to use the output of lightGBM algorithm as the input of lr algorithm for
training to obtain the final prediction output. This is the application of stacking ensemble
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learning technology. It is worth noting that the input of lr algorithm is not the category
labels (such as 0 or 1) predicted by lightGBM algorithm for each instance, but the index of
leaf node of each instance on each decision tree. These indexes need to be processed by
One-Hot Encoding before inputting lr algorithm. The specific process is as follows:

(1) LightGBM model is applied to the training set, and the trained LightGBM classifier
is obtained.

(2) After the training, the index of leaf node on each decision tree in the lightGBM model
is output for each instance of the training set. After all iterations, all indexes of each
instance form a new set of features. At this time, a set of m× n-dimensional dataset is
formed, where m is the size of the training set, and n is the number of weak estimators
(decision trees) in the lightGBM model.

(3) The m× n-dimensional dataset obtained in step (2) is encoded by One-Hot Encoding,
and a sparse matrix Mtrain with m × n × l-dimensional is obtained, where l is the
number of leaf nodes per decision tree in the lightGBM model. The sparse matrix
Mtrain is the training set of lr algorithm.

(4) lr model is applied to the sparse matrix Mtrain, and the trained lr classifier is obtained.
(5) Similarly, the testing set is processed by steps (1)–(3) to obtain the sparse matrix Mtest, and

the sparse matrix Mtest is entered into the trained lr classifier to obtain the final prediction.

The above is the process of realizing automatic feature combination based on lightGBM
model (see Figure 5). In addition, we also tried another feature combination method, that is,
the method of combination the sparse matrix output by ightGBM model with the original
feature set. In other words, in this study, we tried two methods of feature combination. One
is to input the sparse matrix Mtrain combined by lightGBM mode directly into the lr model
for training. The other is to recombine the sparse matrix Mtrain combined by lightGBM
mode with the training set of the original feature set and then input them into the lr model
for training. For the sake of distinction, we record the lr classifier trained by the former as
lightGBM + lr, and the lr classifier trained by the latter as lightGBM + LR.
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4.4. Classification Algorithm

Logistic Regression (lr) algorithm [68] is one of the most commonly used exploration
tools in medical research, especially in the medical binary prediction task, lr model has a
wide range of applications. The classification decision-making process of lr algorithm for a
specific sample is shown in Equations (7)–(10).

For binary classification problem, suppose any sample X has:

X = {x0, x1, x2, x3, . . . , xn} (7)
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where n is the number of features contained in sample X, x0 is the bias term, xi is the value
of sample X on the ith feature, i = 1, 2, 3, . . . n.

Then, the probability P̂ (or called it as decision function hθ(X)) that the lr model
predicts sample X as a positive class is calculated according to the following equation:

P̂ = hθ(X) = σ(XTθ) (8)

where θ is the weight vector and θ = {θ0, θ1, θ2, θ3, . . . , θn}, θi is the weight value corre-
sponding to xi, i = 0, 1, 2, 3, . . . , n. σ is the sigmoid function i.e., σ(t) = 1

1+exp(−t) , then:

P̂ = hθ(X) =
1

1 + exp(−XTθ)
(9)

hθ(X) is the probability that the sample X belongs to the positive class calculated by
the lr model. Combined with the classification threshold, the prediction class of sample
X can be obtained. Assuming that the classification threshold is set to 0.5, the prediction
function of lr model is:

ŷ(X) = {0, i f hθ(X)<0.5
1, i f hθ(X)≥0.5 (10)

where ŷ(X) represents the prediction function, 0 and 1 represent the class codes of negative
class and positive class, respectively, 0.5 is the classification threshold.

The above is the process of lr model classifying a specific sample. It can be summarized
as follows: firstly, the probability that sample X in Equation (7) belongs to positive class
is calculated through Equations (8) and (9). Then, the probability is compared with the
classification threshold according to Equation (10). At this time, the prediction class of
sample X can be obtained.

In the training process of the model, we directly take the classification evaluation index
as the objective function of key hyperparametric optimization. In order to take into account
the performance of the two classes at the same time, we take the evaluation index FI score
as the objective function and use the learning curve to find the optimal hyperparameter.
The hyperparameters setting of the proposed model and an example is shown in Table A2
of Appendix A.

5. Experiments Results
5.1. Evaluation Metrics

In order to comprehensively evaluate the classification performance and effectiveness
of our proposed method, we applied accuracy, recall, F1 score, precision, specificity, ROC
and AUC evaluation metrics. For the sake of expression of the significance and calculation
formula of these evaluation metrics, we introduced the confusion matrix (See Table 5) first.
The confusion matrix is a specific matrix used to visually present the performance of the
algorithm. The confusion matrix of binary classification consists of two rows and two
columns. Rows represent the true labels of the two classes in the dataset (denoted ytrue).
Columns represent the predicted label of the two classes acquired by the model (denoted
as ypre). As shown in Table 5, the confusion matrix of binary classification includes four
indicators: TN, FN, FP and TP. The four indicators are defined as follows. We specified that
the label of positive class is 1 and the label of negative class is 0.

Table 5. Confusion matrix.

ypre = 0 ypre = 1

ytrue = 0 TN FP
ytrue = 1 FN TP

TN (true negative) refers to the number of correctly predicted samples in the samples
with the real class label of 0.
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FN (false negative) refers to the number of incorrectly predicted samples in the samples
with the real class label of 1.

FP (false positive) refers to the number of incorrectly predicted samples in the samples
the real class label of 0.

TP (true positive) refers to the number of correctly predicted samples in the samples
with the real class label of 1.

5.1.1. Accuracy

Accuracy refers to the proportion of samples that can be correctly predicted by the
model in all samples. The calculation equation of accuracy is as follows. TN, TP, FN and FP
refer to true negative, true positive, false negative and false positive, respectively.

Accuracy =
TN + TP

TN + TP + FN + FP
(11)

Accuracy is one of the most frequently used and most important model performance
evaluation metrics. However, in the dataset with a class imbalance problem, due to the
influence of majority class samples, the accuracy is often difficult to accurately measure the
classification ability of the model. Therefore, in the dataset with a class imbalance problem,
in addition to accuracy, more evaluation indicators need to be applied.

5.1.2. Recall

Recall refers to the proportion of samples that can be correctly predicted by the model
in all samples with positive real class labels. Recall is an important indicator to measure
the ability of model to identify positive samples. In medical models, it is necessary to pay
attention to recall. Recall is calculated according to the following equation:

Recall =
TP

TP + FN
(12)

where TP and FN are true positive and false negative, respectively. In medical application,
the cost of undiagnosed positive cases and wrongly diagnosed negative cases is different.
The former may cause loss of life, while the latter may lead to excessive treatment. Com-
pared with the former, the latter costs less. At the time of diagnosis, doctors and patients
pay more attention to the detection of positive cases. Therefore, the recall is one of the
important indicators to judge whether the model can be applied in practice.

5.1.3. Precision

Precision, like recall, is an important indicator to measure the ability of the model
to correctly predict positive samples. Precision refers to the proportion of samples with
positive real class labels among all samples predicted as positive by the model. According
to the definition of precision, its calculation formula is as follows. TP and FP in the formula
are true positive and false positive, respectively.

Precision =
TP

TP + FP
(13)

5.1.4. F1 Score

Sometimes the performance of the model evaluated by recall and precision may be
show the opposite result, that is, one index has a good result but the other index has a
poor result, so the ability of the model cannot be evaluated accurately. Therefore, F1 score
is introduced. F1 score combines the results of recall and precision, and is the weighted
harmonic mean of recall and precision. Only when the results of recall and precision
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are good, the F1 score will be higher. The higher the F1 score is, the better the model
classification effect is. The following is the calculation formula of F1 score.

F1 = 2× Precision× Recall
Precision + Recall

(14)

5.1.5. Specificity

Specificity refers to the proportion of samples that can be correctly predicted by the
model in all samples with negative real class labels. Specificity measures the ability of the
model to recognize negative samples. Specificity is calculated according to the following
formula. TN and FP correspond to true negative and false positive, respectively.

Specificity =
TN

TN + FP
(15)

5.1.6. ROC and AUC

Area under curve (AUC) is the area under the receiver operating characteristic (ROC)
curve. The ROC curve is drawn with the false positive rate (FPR) as x-axis and the true
positive rate (TPR) as y-axis. ROC curve intuitively reflects the relationship between
specificity and recall. The value of AUC is between 0 and 1, when the value of x-axis (i.e.,
the false positive rate (FPR) of the model) is closer to 0, and the value of y-axis (i.e., the true
positive rate (TPR) of the model) is closer to 1, the value of AUC is closer to 1. The closer
the AUC value is to 1, the higher the prediction performance of the classifier.

5.2. Experimental Results

In this section, we reported the classification results obtained by our proposed model
on various data sets used in our study. The classification results are described from the
accuracy, recall, precision, F1 score, specificity, ROC and AUC indicators. In order to explore
the impact of data preprocessing method and class balancing methods on the classification
performance of the model, we applied five class balancing methods on the original dataset
and the standardized dataset, respectively. After the above processing, a total of 12 datasets
were generated for research. At the same time, in order to verify whether our proposed
method has competitive advantage in CAD prediction task, we also output the prediction
results of lightGBM model and lr model without feature combination on each dataset during
the experiment. Therefore, we obtained four groups of experimental results on each dataset.
To facilitate narration, we record the classifiers that produce the four groups of experimental
results as lightGBM, lr, lightGBM + lr and lightGBM + LR, respectively.

5.2.1. Results Obtained on Source Dataset

The performance results of the classification models used for CAD prediction on the
source dataset are reported in this section. There is a certain class imbalance in the source
dataset, which shows that 216 instances belong to CAD class (accounting for 71.29%) and
87 instances belong to the normal class (accounting for 28.71%). The average results of
10 tests in terms of accuracy, recall, precision, F1 score, specificity and AUC obtained by the
classification models on the source dataset are shown in Table 6. Figure 6 is an intuitive
display of Table 6. Figure 7 shows the ROC curve of the classification model on the 10 fold
test set and the AUC value corresponding to each fold ROC curve.

Table 6. The average results of 10 tests obtained by classification models on the source dataset.

Classifiers Accuracy Recall F1 Precision Specificity AUC

lightGBM 0.911 ± 0.060 0.922 ± 0.068 0.940 ± 0.038 0.963 ± 0.041 0.881 ± 0.095 0.93 ± 0.05
lr 0.884 ± 0.052 0.911 ± 0.059 0.921 ± 0.032 0.935 ± 0.042 0.819 ± 0.099 0.93 ± 0.05

lightGBM + lr 0.907 ± 0.047 0.921 ± 0.059 0.937 ± 0.028 0.958 ± 0.038 0.873 ± 0.081 0.93 ± 0.06
lightGBM + LR 0.914 ± 0.045 0.925 ± 0.059 0.942 ± 0.029 0.963 ± 0.035 0.886 ± 0.074 0.93 ± 0.05
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It can be seen from Table 6 and Figure 6 that on the original dataset, the performance
of lr model without feature combination processing is weaker than that of the ensemble
algorithm ligthGBM. However, the classification performance of lr model is significantly
improved after combining our proposed feature combination processing method. On the
original dataset with new features combined by ligthGBM, lr model obtains the classifica-
tion result better than ligthGBM model, which is also the best classification result on the
dataset. The highest accuracy is 91.4%, recall is 92.5%, F1 score is 94.2%, precision is 96.3%,
specificity is 88.6%, and AUC is 0.93. Figure 7 shows the ROC curve and corresponding
AUC value of each fold in the 10-fold cross-validation obtained by classification model on
the original dataset. It can be seen from the curve that, due to the distribution difference of
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10 fold data, the AUC values obtained by the model on each fold test set are different. In
addition, although the average AUC of the four classification models on 10 fold data are all
about 0.93, the AUC disturbance of lightGBM + lr model, which has a standard deviation
of 0.06, is slightly larger than that of the other three models.

5.2.2. Results Obtained on Dataset Processed by SMOTE

This part reports the performance results of the classification models for CAD pre-
diction on the balanced dataset processed by SMOTE algorithm. The balanced dataset
after SMOTE algorithm processing contains 432 sample instances, with CAD class and
normal class accounting for 50%, respectively. The average results of 10 tests on accuracy,
recall, precision, F1 score, specificity and AUC obtained by the classification models on the
dataset processed by SMOTE are shown in Table 7. Figure 8 is a visual display of Table 7.
Figure 9 shows the ROC curve of the classification model on the 10 fold test set of the
dataset processed by SMOTE and the AUC value corresponding to each fold ROC curve.

Table 7. The average results of 10 tests obtained by classification models on the dataset processed
by SMOTE.

Classifiers Accuracy Recall F1 Precision Specificity AUC

lightGBM 0.931 ± 0.055 0.930 ± 0.090 0.934 ± 0.048 0.944 ± 0.035 0.932 ± 0.039 0.96 ± 0.03
lr 0.915 ± 0.057 0.932 ± 0.096 0.917 ± 0.049 0.911 ± 0.058 0.897 ± 0.047 0.96 ± 0.03

lightGBM + lr 0.933 ± 0.054 0.950 ± 0.083 0.934 ± 0.047 0.926 ± 0.052 0.916 ± 0.053 0.97 ± 0.04
lightGBM + LR 0.940 ± 0.048 0.945 ± 0.078 0.942 ± 0.043 0.944 ± 0.041 0.935 ± 0.037 0.97 ± 0.03
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As can be seen from Table 7 and Figure 8, compared with Table 6 and Figure 6, the
classification performance of the four classification models in terms of accuracy, recall,
specificity and AUC has been significantly improved on the balanced dataset processed by
SMOTE. The performance of four classification models on the dataset used in this section is
also different. Similarly, on the balanced dataset after SMOTE processing, the performance
of lr model without feature combination processing is still worse than lightGBM. After
the feature combination processing of lightGBM model, the performance of lr classifier in
accuracy, recall, F1 score, precision, specificity and AUC has been significantly improved.
From the point of view of all classification indicators, the best classification performance
appears in the lightGBM + LR model, with accuracy of 94.0%, recall of 94.5%, F1 score
94.2%, precision of 94.4%, specificity of 93.5% and AUC of 0.97. However, from the recall
alone, the best recall result appears in the lightGBM + lr model, which is 95.0%. Figure 9
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shows the ROC curve and corresponding AUC value of each fold in the 10-fold cross-
validation obtained by classification model on the dataset balanced by SMOTE. It can be
seen from the curve that, due to the distribution difference of 10 fold data, the AUC values
obtained by the model on each fold test set are different. However, it is obvious that model
lightGBM + LR has the best AUC value.
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5.2.3. Results Obtained on Dataset Processed by Borderline_SMOTE

In this part, we describe the classification results of the models on the balanced dataset
processed by Borderline_SMOTE. The results are described based on six classification
indicators: accuracy, recall, precision, F1 score, specificity and AUC. The balanced dataset
processed by Borderline_SMOTE contains 432 sample instances, including 216 cases of
CAD class and 216 cases of normal class. The average results of 10 tests on six classifi-
cation indicators obtained by classification models on the balanced dataset processed by
Borderline_SMOTE are exhibited in Table 8. Figure 10 is an intuitive display of Table 8.
Figure 11 shows the ROC curve of the classification model on the 10 fold test set of the
dataset processed by Borderline_SMOTE and the AUC value corresponding to each fold
ROC curve.

Table 8. The average results of 10 tests obtained by classification models on the dataset processed by
Borderline_SMOTE.

Classifiers Accuracy Recall F1 Precision Specificity AUC

lightGBM 0.933 ± 0.041 0.938 ± 0.081 0.935 ± 0.035 0.939 ± 0.042 0.928 ± 0.033 0.97 ± 0.03
lr 0.903 ± 0.052 0.919 ± 0.087 0.904 ± 0.046 0.897 ± 0.059 0.887 ± 0.049 0.96 ± 0.03

lightGBM + lr 0.933 ± 0.047 0.949 ± 0.068 0.933 ± 0.046 0.921 ± 0.057 0.917 ± 0.056 0.97 ± 0.03
lightGBM + LR 0.938 ± 0.053 0.938 ± 0.081 0.940 ± 0.048 0.948 ± 0.058 0.938 ± 0.058 0.97 ± 0.03
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By comparing Tables 6 and 8, we can find that Borderline_SMOTE class balancing
method improves the classification performance of models in terms of accuracy, recall,
specificity and AUC. On this dataset, the feature combination function of lightGBM model
can still significantly improve the performance of lr model in terms of accuracy, recall,
F1 score, precision, specificity and AUC. The best classification results in this dataset are
obtained by lr model on the dataset combining the combined features output by lightGBM
and the original feature set, with accuracy of 93.8%, recall of 93.8%, F1 score 94.0%, precision
of 94.8%, specificity of 93.8% and AUC of 0.97. The best recall result in this section appears
in the lightGBM + lr model, which is 94.9%. Similarly, when comparing the classification
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ability of lightGBM and lr model without feature combination processing separately, the
classification ability of lightGBM model is stronger. Figure 11 shows the ROC curve
and corresponding AUC value of each fold in the 10-fold cross-validation obtained by
classification model on the dataset balanced by Borderline_SMOTE. It can be seen from the
curve that, due to the distribution difference of 10 fold data, the AUC values obtained by
the model on each fold test set are different. The lr model without any feature processing
in the four models obtained the lowest AUC average value on the 10 fold data. After
the feature combination processing of ligthGBM algorithm, the AUC value obtained by lr
model has been improved.

5.2.4. Results Obtained on Dataset Processed by SMOTE_SVM

The classification performance of the classifiers on the dataset after SMOTE_SVM
processing is described in this part. The balanced dataset processed by SMOTE_SVM
contains the same number of CAD class instances and normal class instances. Each class
includes 216 samples, and the entire dataset contains 432 sample instances. The average
results of 10 tests on accuracy, recall, precision, F1 score, specificity and AUC obtained by
the classifiers on the dataset processed by SMOTE_SVM are displayed in Table 9. Figure 12
is the visual presentation of Table 9. Figure 13 shows the ROC curve of the classification
model on the 10 fold test set of the dataset processed by SMOTE_SVM and the AUC value
corresponding to each fold ROC curve.

Table 9. The average results of 10 tests obtained by classification models on the dataset processed by
SMOTE_SVM.

Classifiers Accuracy Recall F1 Precision Specificity AUC

lightGBM 0.931 ± 0.052 0.937 ± 0.084 0.933 ± 0.046 0.935 ± 0.043 0.925 ± 0.044 0.97 ± 0.03
lr 0.903 ± 0.059 0.926 ± 0.087 0.903 ± 0.055 0.888 ± 0.068 0.880 ± 0.062 0.95 ± 0.04

lightGBM + lr 0.926 ± 0.059 0.936 ± 0.087 0.928 ± 0.052 0.926 ± 0.043 0.916 ± 0.050 0.95 ± 0.04
lightGBM + LR 0.928 ± 0.062 0.933 ± 0.098 0.932 ± 0.054 0.939 ± 0.047 0.924 ± 0.049 0.96 ± 0.03
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It can be seen from Table 9 and Figure 12 that when compared with Table 6 and Figure 6,
the classification performance of the models on the dataset processed by the SMOT_SVM
method is significantly improved, mainly reflected in accuracy, recall, specificity and AUC
evaluation indicators. On the dataset used in this section, the feature combination method
proposed by us has significantly improved the classification ability of lr model. However,
the improved results do not exceed the results obtained by the lightGBM model. Therefore,
on the dataset studied in this part, lightGBM classifier produced the best classification
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results, with accuracy of 93.1%, recall of 93.7%, F1 score of 93.3%, precision of 93.5%,
specificity of 92.5% and AUC of 0.97. Figure 13 shows the ROC curve and corresponding
AUC value of each fold in the 10-fold cross-validation obtained by classification model
on the dataset balanced by SMOTE_SVM. It can be seen from the curve that, due to the
distribution difference of 10 fold data, the AUC values obtained by the model on each
fold test set are different. Among the four models, the lr model without any feature
processing has the lowest average AUC value on the 10 fold data. On the dataset processed
by ligthGBM, the AUC value of lr model increases slightly, but it is lower than the AUC
value obtained by ligthGBM model itself.
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5.2.5. Results Obtained on Dataset Processed by SMOTE_Tomek

The dataset used in this section is processed by SMOTE_Tomek method. The dataset
consists of 390 sample instances, among them 195 cases belong to CAD class and 195 cases
belong to normal class. The average results of 10 tests on accuracy, recall, precision, F1
score, specificity and AUC obtained by the classification models on the dataset processed
by SMOTE_Tomek are expressed in Table 10. Figure 14 is an intuitive display of Table 10.
Figure 15 shows the ROC curve of the classification model on the 10-fold test set of the dataset
processed by SMOTE_Tomek and the AUC value corresponding to each fold ROC curve.

Table 10. The average results of 10 tests obtained by classification models on the dataset processed
by SMOTE_Tomek.

Classifiers Accuracy Recall F1 Precision Specificity AUC

lightGBM 0.946 ± 0.044 0.950 ± 0.065 0.948 ± 0.040 0.948 ± 0.040 0.942 ± 0.044 0.97 ± 0.03
lr 0.926 ± 0.051 0.943 ± 0.083 0.927 ± 0.044 0.917 ± 0.043 0.904 ± 0.046 0.96 ± 0.04

lightGBM + lr 0.946 ± 0.049 0.951 ± 0.071 0.948 ± 0.045 0.949 ± 0.040 0.941 ± 0.045 0.97 ± 0.04
lightGBM + LR 0.941 ± 0.038 0.954 ± 0.064 0.942 ± 0.034 0.933 ± 0.034 0.925 ± 0.036 0.97 ± 0.04



Electronics 2022, 11, 1495 22 of 44

Electronics 2022, 11, x FOR PEER REVIEW 23 of 46 
 

 

that, due to the distribution difference of 10 fold data, the AUC values obtained by the 
model on each fold test set are different. Among the four models, the lr model without 
any feature processing has the lowest average AUC value on the 10 fold data. On the da-
taset processed by ligthGBM, the AUC value of lr model increases slightly, but it is lower 
than the AUC value obtained by ligthGBM model itself. 

5.2.5. Results Obtained on Dataset Processed by SMOTE_Tomek 
The dataset used in this section is processed by SMOTE_Tomek method. The dataset 

consists of 390 sample instances, among them 195 cases belong to CAD class and 195 cases 
belong to normal class. The average results of 10 tests on accuracy, recall, precision, F1 score, 
specificity and AUC obtained by the classification models on the dataset processed by 
SMOTE_Tomek are expressed in Table 10. Figure 14 is an intuitive display of Table 10. Fig-
ure 15 shows the ROC curve of the classification model on the 10-fold test set of the dataset 
processed by SMOTE_Tomek and the AUC value corresponding to each fold ROC curve. 

Table 10. The average results of 10 tests obtained by classification models on the dataset processed 
by SMOTE_Tomek. 

Classifiers Accuracy Recall F1 Precision Specificity AUC 
lightGBM 0.946 ± 0.044 0.950 ± 0.065 0.948 ± 0.040 0.948 ± 0.040 0.942 ± 0.044 0.97 ± 0.03 

lr 0.926 ± 0.051 0.943 ± 0.083 0.927 ± 0.044 0.917 ± 0.043 0.904 ± 0.046 0.96 ± 0.04 
lightGBM + lr 0.946 ± 0.049 0.951 ± 0.071 0.948 ± 0.045 0.949 ± 0.040 0.941 ± 0.045 0.97 ± 0.04 

lightGBM + LR 0.941 ± 0.038 0.954 ± 0.064 0.942 ± 0.034 0.933 ± 0.034 0.925 ± 0.036 0.97 ± 0.04 

 
Figure 14. The histogram of Table 10. Figure 14. The histogram of Table 10.

Electronics 2022, 11, x FOR PEER REVIEW 24 of 46 
 

 

 
Figure 15. The ROC curve and AUC value of each fold in the 10-fold cross-validation obtained by 
classification models on the dataset processed by SMOTE_Tomek. (a–d) are the ROC curves of 
lightGBM, lr, lightGBM + lr and lightGBM + LR classifiers, respectively. 

The results of Table 10 and Table 6 show that the classification performance of the 
four models on the balanced dataset processed by SMOTE_Tomek method has been 
greatly improved in addition to the precision index. The best classification results are gen-
erated by lr model on the feature set combined by lightGBM, and the best accuracy, recall, 
F1 score, precision, specificity and AUC are 94.6%, 95.1%, 94.8%, 94.9%, 94.1% and 0.97, 
respectively. In particular, the highest recall in this section appears in the lightGBM + LR 
model, which is 95.4%. Similarly, our proposed feature combination method has signifi-
cantly improved the classification ability of lr model. Figure 15 shows the ROC curve and 
corresponding AUC value of each fold in the 10-fold cross-validation obtained by classi-
fication model on the dataset balanced by SMOTE_Tomek. It can be seen from the curve 
that, due to the distribution difference of 10 fold data, the AUC values obtained by the 
model on each fold test set are different. Moreover, the average AUC value obtained by lr 
model on the dataset without feature combination processing is the lowest. However, on 
the dataset processed by ligthGBM model, the AUC result of lr model is improved. 

5.2.6. Results Obtained on Dataset Processed by SMOTENC 
The dataset processed by the SMOTENC method in this section contains 432 sample 

instances, of which 216 are classified as CAD class and 216 as normal class. The average 
results of 10 tests on accuracy, recall, precision, F1 score, specificity and AUC of the clas-
sification models on the dataset processed by SMOTENC are shown in Table 11. Figure 
16 is a visual representation of Table 11. Figure 17 shows the ROC curve of the classifica-
tion model on the 10-fold test set of the dataset processed by SMOTENC and the AUC 
value corresponding to each fold ROC curve. 

  

Figure 15. The ROC curve and AUC value of each fold in the 10-fold cross-validation obtained
by classification models on the dataset processed by SMOTE_Tomek. (a–d) are the ROC curves of
lightGBM, lr, lightGBM + lr and lightGBM + LR classifiers, respectively.

The results of Tables 6 and 10 show that the classification performance of the four
models on the balanced dataset processed by SMOTE_Tomek method has been greatly
improved in addition to the precision index. The best classification results are generated by
lr model on the feature set combined by lightGBM, and the best accuracy, recall, F1 score,
precision, specificity and AUC are 94.6%, 95.1%, 94.8%, 94.9%, 94.1% and 0.97, respectively.
In particular, the highest recall in this section appears in the lightGBM + LR model, which
is 95.4%. Similarly, our proposed feature combination method has significantly improved
the classification ability of lr model. Figure 15 shows the ROC curve and corresponding
AUC value of each fold in the 10-fold cross-validation obtained by classification model
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on the dataset balanced by SMOTE_Tomek. It can be seen from the curve that, due to the
distribution difference of 10 fold data, the AUC values obtained by the model on each fold
test set are different. Moreover, the average AUC value obtained by lr model on the dataset
without feature combination processing is the lowest. However, on the dataset processed
by ligthGBM model, the AUC result of lr model is improved.

5.2.6. Results Obtained on Dataset Processed by SMOTENC

The dataset processed by the SMOTENC method in this section contains 432 sample
instances, of which 216 are classified as CAD class and 216 as normal class. The average
results of 10 tests on accuracy, recall, precision, F1 score, specificity and AUC of the classifi-
cation models on the dataset processed by SMOTENC are shown in Table 11. Figure 16
is a visual representation of Table 11. Figure 17 shows the ROC curve of the classification
model on the 10-fold test set of the dataset processed by SMOTENC and the AUC value
corresponding to each fold ROC curve.

Table 11. The average results of 10 tests obtained by classification models on the dataset processed
by SMOTENC.

Classifiers Accuracy Recall F1 Precision Specificity AUC

lightGBM 0.931 ± 0.040 0.938 ± 0.080 0.932 ± 0.035 0.935 ± 0.052 0.924 ± 0.043 0.97 ± 0.03
lr 0.912 ± 0.051 0.936 ± 0.087 0.912 ± 0.046 0.897 ± 0.060 0.888 ± 0.054 0.97 ± 0.02

lightGBM + lr 0.933 ± 0.048 0.946 ± 0.075 0.934 ± 0.044 0.926 ± 0.037 0.920 ± 0.039 0.96 ± 0.04
lightGBM + LR 0.931 ± 0.052 0.933 ± 0.092 0.934 ± 0.044 0.944 ± 0.046 0.929 ± 0.038 0.97 ± 0.03
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Comparing Tables 6 and 11, it can be seen that on the dataset processed by the SMO-
TENC method, the performance of the classification models in accuracy, recall, specificity
and AUC has been improved. The feature combination function of lightGBM model can
significantly improve the classification performance of lr model and produce the best clas-
sification results. Overall, the best classification results are generated by lightGBM + LR
model. The best accuracy, recall, F1 score, precision, specificity and AUC are 93.1%, 93.3%,
93.4%, 94.4%, 92.9% and 0.97, respectively. However, it is worth noting that the highest
accuracy and recall of this section appear in the lightGBM + lr model, with the highest
accuracy of 93.3% and the highest recall of 94.6%. Figure 17 shows the ROC curve and
corresponding AUC value of each fold in the 10-fold cross-validation obtained by classi-
fication model on the dataset balanced by SMOTENC. It can be seen from the curve that,
due to the distribution difference of 10 fold data, the AUC values obtained by the model on
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each fold test set are different. In addition, the lr model obtained the highest average AUC
value on the dataset without feature combination processing. Additionally, the AUC result
obtained by lr model on the dataset processed by ligthGBM is reduced.
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5.2.7. Results Obtained on Standardized Dataset

This section reports the performance results of the classification models used for CAD
prediction in terms of accuracy, recall, precision, F1 score, specificity and AUC on the
standardized dataset. Data standardization only eliminates the dimension of continuous
features, and does not change the size of the dataset. Therefore, there is still a certain class
imbalance in the standardized dataset, showing that 71.29% of the samples belong to the
CAD class, and 28.71% of the samples belong to the normal class. The average results
of 10 tests in terms of accuracy, recall, precision, F1 score, specificity and AUC obtained
by the four classification models on the standardized dataset are listed in Table 12. The
intuitive exhibition of Table 12 is drawn in Figure 18. Figure 19 shows the ROC curve of the
classification model on the 10-fold test set of the standardized dataset and the AUC value
corresponding to each fold ROC curve.

Table 12. The average results of 10 tests obtained by classification models on the dataset processed
by data standardization.

Classifiers Accuracy Recall F1 Precision Specificity AUC

lightGBM 0.897 ± 0.049 0.909 ± 0.058 0.931 ± 0.030 0.958 ± 0.044 0.869 ± 0.093 0.92 ± 0.06
lr 0.884 ± 0.059 0.900 ± 0.062 0.922 ± 0.037 0.949 ± 0.045 0.844 ± 0.105 0.93 ± 0.06

lightGBM + lr 0.914 ± 0.040 0.922 ± 0.058 0.942 ± 0.025 0.968 ± 0.036 0.895 ± 0.074 0.92 ± 0.06
lightGBM + LR 0.914 ± 0.060 0.931 ± 0.074 0.942 ± 0.038 0.958 ± 0.038 0.871 ± 0.086 0.93 ± 0.06
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classification models on the dataset processed by data standardization. (a–d) are the ROC curves of
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By analyzing Tables 6 and 12, we can conclude that on the standardized dataset, the
classification performance of lr model has been improved in general. Especially on the
dataset processed by lightGBM, lr model obtains the best classification results. The best
classification results are accuracy 91.4%, recall 93.1%, F1 score 94.2%, precision 95.8%,
specificity 87.1% and AUC 0.93. However, when the lightGBM classifier is applied on a
standardized dataset separately, the results are inferior to those obtained on the original
dataset. Figure 19 shows the ROC curve and corresponding AUC value of each fold in
the 10-fold cross-validation obtained by classification model on the dataset processed by
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data standardization. It can be seen from the curve that, due to the distribution difference
of 10-fold data, the AUC values obtained by the model on each fold test set are different.
Additionally, the lr model obtained the highest average AUC value on the dataset without
feature combination processing.

5.2.8. Results Obtained on Dataset Processed by Standardization and SMOTE

The research in this section is developed based on the dataset processed by standard-
ization and SMOTE algorithm. The dataset after standardization and SMOTE processing
contains 216 samples of CAD class and 216 samples of normal class. The average results
of 10 tests on accuracy, recall, precision, F1 score, specificity and AUC obtained by the
classification models on this dataset are shown in Table 13. Figure 20 is an intuitive display
of Table 13. Figure 21 shows the ROC curve of the classification model on the 10-fold test set
of the dataset processed by standardization and SMOTE and the AUC value corresponding
to each fold ROC curve.

Table 13. The average results of 10 tests obtained by classification models on the dataset processed
by data standardization and SMOTE.

Classifiers Accuracy Recall F1 Precision Specificity AUC

lightGBM 0.924 ± 0.067 0.931 ± 0.100 0.927 ± 0.058 0.930 ± 0.043 0.917 ± 0.048 0.97 ± 0.03
lr 0.912 ± 0.049 0.923 ± 0.081 0.913 ± 0.044 0.911 ± 0.058 0.902 ± 0.053 0.96 ± 0.03

lightGBM + lr 0.935 ± 0.035 0.942 ± 0.066 0.936 ± 0.033 0.935 ± 0.038 0.929 ± 0.035 0.97 ± 0.03
lightGBM + LR 0.935 ± 0.045 0.946 ± 0.071 0.936 ± 0.042 0.930 ± 0.049 0.924 ± 0.049 0.97 ± 0.03
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It can be seen from Table 13 and Figure 20 that when compared with Table 12 and
Figure 18, the performance of the classification models on the dataset processed by SMOTE
has been significantly improved, mainly reflected in accuracy, recall, specificity and AUC
indicators. The best classification performance is obtained by lr model on the dataset
combined by lightGBM, with accuracy of 93.5%, recall of 94.6%, F1 score of 93.6%, pre-
cision of 93.0%, specificity of 92.4% and AUC of 0.97. Figure 21 shows the ROC curve
and corresponding AUC value of each fold in the 10-fold cross-validation obtained by
classification model on the dataset processed by data standardization and SMOTE. It can
be seen from the curve that, due to the distribution difference of 10 fold data, the AUC
values obtained by the model on each fold test set are different. Additionally, the proposed
feature combination method has improved the AUC value of lr model on the dataset.
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Figure 21. The ROC curve and AUC value of each fold in the 10-fold cross-validation obtained by
classification models on the dataset processed by data standardization and SMOTE. (a–d) are the
ROC curves of lightGBM, lr, lightGBM + lr and lightGBM + LR classifiers, respectively.

5.2.9. Results Obtained on Dataset Processed by Standardization and Borderline_SMOTE

In this section, the Borderline_SMOTE class balancing method is applied to the
standardized dataset to obtain a new dataset. Four classifiers, namely lightGBM, lr,
lightGBM + lr and lightGBM + LR, are applied on this dataset. The dataset processed
by standardization and Borderline_SMOTE contains 432 samples, with CAD class and
normal class accounting for 50 %, respectively. The average results of 10 tests on accuracy,
recall, precision, F1 score, specificity and AUC obtained by the classification models on
dataset used in this part are displayed in Table 14. Figure 22 is a visual representation of
Table 14. Figure 23 shows the ROC curve of the classification model on the 10 fold test set
of the dataset processed by standardization and Borderline_SMOTE and the AUC value
corresponding to each fold ROC curve.

Table 14. The average results of 10 tests obtained by classification models on the dataset processed
by data standardization and Borderline_SMOTE.

Classifiers Accuracy Recall F1 Precision Specificity AUC

lightGBM 0.935 ± 0.048 0.944 ± 0.079 0.937 ± 0.044 0.935 ± 0.048 0.926 ± 0.044 0.97 ± 0.03
lr 0.914 ± 0.052 0.934 ± 0.081 0.914 ± 0.048 0.902 ± 0.065 0.895 ± 0.064 0.96 ± 0.02

lightGBM + lr 0.940 ± 0.036 0.957 ± 0.054 0.939 ± 0.035 0.926 ± 0.048 0.923 ± 0.047 0.97 ± 0.03
lightGBM + LR 0.947 ± 0.036 0.961 ± 0.054 0.947 ± 0.034 0.935 ± 0.043 0.932 ± 0.042 0.97 ± 0.03

The comparison of Tables 12 and 14 shows that Borderline_SMOTE significantly im-
proves the ability of the classifiers. Specifically, in addition to precision, the performance of
the four classifiers in other evaluation indicators is significantly improved. The best results
consistently appear in the lightGBM + LR classification model. The best accuracy, recall, F1
score, precision, specificity and AUC are 94.7%, 96.1%, 94.7%, 93.5%, 93.2% and 0.97, respec-
tively. From the results, it can be concluded that our proposed feature combination method
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has significantly improved the classification performance of lr model. Figure 23 shows
the ROC curve and corresponding AUC value of each fold in the 10-fold cross-validation
obtained by classification model on the dataset processed by data standardization and
Borderline_SMOTE. It can be seen from the curve that, due to the distribution difference
of 10 fold data, the AUC values obtained by the model on each fold test set are different.
Additionally, the proposed feature combination method has improved the AUC value of lr
model on this dataset.

Electronics 2022, 11, x FOR PEER REVIEW 29 of 46 
 

 

It can be seen from Table 13 and Figure 20 that when compared with Table 12 and 
Figure 18, the performance of the classification models on the dataset processed by 
SMOTE has been significantly improved, mainly reflected in accuracy, recall, specificity 
and AUC indicators. The best classification performance is obtained by lr model on the 
dataset combined by lightGBM, with accuracy of 93.5%, recall of 94.6%, F1 score of 93.6%, 
precision of 93.0%, specificity of 92.4% and AUC of 0.97. Figure 21 shows the ROC curve 
and corresponding AUC value of each fold in the 10-fold cross-validation obtained by 
classification model on the dataset processed by data standardization and SMOTE. It can 
be seen from the curve that, due to the distribution difference of 10 fold data, the AUC 
values obtained by the model on each fold test set are different. Additionally, the pro-
posed feature combination method has improved the AUC value of lr model on the da-
taset. 

5.2.9. Results Obtained on Dataset Processed by Standardization and Borderline_SMOTE 
In this section, the Borderline_SMOTE class balancing method is applied to the stand-

ardized dataset to obtain a new dataset. Four classifiers, namely lightGBM, lr, lightGBM 
+ lr and lightGBM + LR, are applied on this dataset. The dataset processed by standardi-
zation and Borderline_SMOTE contains 432 samples, with CAD class and normal class 
accounting for 50 %, respectively. The average results of 10 tests on accuracy, recall, pre-
cision, F1 score, specificity and AUC obtained by the classification models on dataset used 
in this part are displayed in Table 14. Figure 22 is a visual representation of Table 14. 
Figure 23 shows the ROC curve of the classification model on the 10 fold test set of the 
dataset processed by standardization and Borderline_SMOTE and the AUC value corre-
sponding to each fold ROC curve. 

Table 14. The average results of 10 tests obtained by classification models on the dataset processed 
by data standardization and Borderline_SMOTE. 

Classifiers Accuracy Recall F1 Precision Specificity AUC 
lightGBM 0.935 ± 0.048 0.944 ± 0.079 0.937 ± 0.044 0.935 ± 0.048 0.926 ± 0.044 0.97 ± 0.03 

lr 0.914 ± 0.052 0.934 ± 0.081 0.914 ± 0.048 0.902 ± 0.065 0.895 ± 0.064 0.96 ± 0.02 
lightGBM + lr 0.940 ± 0.036 0.957 ± 0.054 0.939 ± 0.035 0.926 ± 0.048 0.923 ± 0.047 0.97 ± 0.03 

lightGBM + LR 0.947 ± 0.036 0.961 ± 0.054 0.947 ± 0.034 0.935 ± 0.043 0.932 ± 0.042 0.97 ± 0.03 

 
Figure 22. The histogram of Table 14. Figure 22. The histogram of Table 14.

Electronics 2022, 11, x FOR PEER REVIEW 30 of 46 
 

 

 
Figure 23. The ROC curve and AUC value of each fold in the 10-fold cross-validation obtained by 
classification models on the dataset processed by data standardization and Borderline_SMOTE. (a–
d) are the ROC curves of lightGBM, lr, lightGBM + lr and lightGBM + LR classifiers, respectively. 

The comparison of Tables 14 and 12 shows that Borderline_SMOTE significantly im-
proves the ability of the classifiers. Specifically, in addition to precision, the performance 
of the four classifiers in other evaluation indicators is significantly improved. The best 
results consistently appear in the lightGBM + LR classification model. The best accuracy, 
recall, F1 score, precision, specificity and AUC are 94.7%, 96.1%, 94.7%, 93.5%, 93.2% and 
0.97, respectively. From the results, it can be concluded that our proposed feature combi-
nation method has significantly improved the classification performance of lr model. Fig-
ure 23 shows the ROC curve and corresponding AUC value of each fold in the 10-fold 
cross-validation obtained by classification model on the dataset processed by data stand-
ardization and Borderline_SMOTE. It can be seen from the curve that, due to the distribu-
tion difference of 10 fold data, the AUC values obtained by the model on each fold test set 
are different. Additionally, the proposed feature combination method has improved the 
AUC value of lr model on this dataset. 

5.2.10. Results Obtained on Dataset Processed by Standardization and SMOTE_SVM 
This section shows the performance of classification models combined with data 

standardization and SMOTE_SVM processing methods. The number of sample instances 
in CAD class and normal class in the dataset processed by standardization and 
SMOTE_SVM method is the same, and both contain 216 cases. The average results of 10 
tests in terms of accuracy, recall, precision, F1 score, specificity and AUC obtained by the 
classification models on this dataset are listed in Table 15. Figure 24 is a graphical repre-
sentation of Table 15. Figure 25 shows the ROC curve of the classification model on the 10 
fold test set of the dataset processed by standardization and SMOTE_SVM and the AUC 
value corresponding to each fold ROC curve. 

  

Figure 23. The ROC curve and AUC value of each fold in the 10-fold cross-validation obtained
by classification models on the dataset processed by data standardization and Borderline_SMOTE.
(a–d) are the ROC curves of lightGBM, lr, lightGBM + lr and lightGBM + LR classifiers, respectively.
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5.2.10. Results Obtained on Dataset Processed by Standardization and SMOTE_SVM

This section shows the performance of classification models combined with data
standardization and SMOTE_SVM processing methods. The number of sample instances in
CAD class and normal class in the dataset processed by standardization and SMOTE_SVM
method is the same, and both contain 216 cases. The average results of 10 tests in terms
of accuracy, recall, precision, F1 score, specificity and AUC obtained by the classification
models on this dataset are listed in Table 15. Figure 24 is a graphical representation of
Table 15. Figure 25 shows the ROC curve of the classification model on the 10 fold test
set of the dataset processed by standardization and SMOTE_SVM and the AUC value
corresponding to each fold ROC curve.

Table 15. The average results of 10 tests obtained by classification models on the dataset processed
by data standardization and SMOTE_SVM.

Classifiers Accuracy Recall F1 Precision Specificity AUC

lightGBM 0.938 ± 0.058 0.944 ± 0.080 0.939 ± 0.052 0.939 ± 0.052 0.932 ± 0.056 0.97 ± 0.03
lr 0.917 ± 0.047 0.936 ± 0.082 0.917 ± 0.043 0.906 ± 0.061 0.898 ± 0.056 0.96 ± 0.03

lightGBM + lr 0.942 ± 0.040 0.963 ± 0.065 0.942 ± 0.037 0.926 ± 0.038 0.922 ± 0.037 0.96 ± 0.04
lightGBM + LR 0.945 ± 0.036 0.951 ± 0.062 0.945 ± 0.033 0.944 ± 0.041 0.939 ± 0.036 0.96 ± 0.03
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As shown in Table 15 and Figure 24, when compared with Table 12 and Figure 18,
it can be found that SMOTE_SVM processing significantly improves the ability of the
classifiers. Specifically, in addition to precision, the performance of the four classifiers in
other evaluation indexes is significantly improved. Overall, the best results are produced
by the lightGBM + LR model. The best accuracy, recall, F1 score, precision, specificity
and AUC are 94.5%, 95.1%, 94.5%, 94.4%, 93.9% and 0.96, respectively. However, on the
dataset used in this section, the highest recall and AUC appear in lightGBM + lr model
and the lightGBM model, respectively. The highest recall and AUC are 96.3% and 0.97. It
can be seen that the feature combination of lightGBM model can significantly improve the
classification ability of lr model. Figure 25 shows the ROC curve and corresponding AUC
value of each fold in the 10-fold cross-validation obtained by classification model on the
dataset processed by data standardization and SMOTE_SVM. It can be seen from the curve
that, due to the distribution difference of 10 fold data, the AUC values obtained by the
model on each fold test set are different. Additionally, the proposed feature combination
method does not improve the AUC value of lr model on this dataset.
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Figure 25. The ROC curve and AUC value of each fold in the 10-fold cross-validation obtained by
classification models on the dataset processed by data standardization and SMOTE_SVM. (a–d) are
the ROC curves of lightGBM, lr, lightGBM + lr and lightGBM + LR classifiers, respectively.

5.2.11. Results Obtained on Dataset Processed by Standardization and SMOTE_Tomek

In this section, we applied SMOTE_Tomek class balancing method to the standardized
dataset, and obtained a balanced dataset. The balanced dataset contains 430 samples,
of which 215 belong to CAD class and 215 belong to normal class. Table 16 shows the
average results of 10 tests on accuracy, recall, precision, F1 score, specificity and AUC
obtained by the classification models on this dataset. Figure 26 is an intuitive display of
Table 16. Figure 27 shows the ROC curve of the classification model on the 10 fold test
set of the dataset processed by standardization and SMOTE_Tomek and the AUC value
corresponding to each fold ROC curve.

Table 16. The average results of 10 tests obtained by classification models on the dataset processed
by data standardization and SMOTE_Tomek.

Classifiers Accuracy Recall F1 Precision Specificity AUC

lightGBM 0.937 ± 0.048 0.939 ± 0.085 0.940 ± 0.041 0.948 ± 0.039 0.936 ± 0.032 0.98 ± 0.02
lr 0.912 ± 0.051 0.926 ± 0.089 0.913 ± 0.045 0.911 ± 0.066 0.898 ± 0.055 0.96 ± 0.03

lightGBM + lr 0.947 ± 0.050 0.948 ± 0.073 0.948 ± 0.046 0.953 ± 0.047 0.945 ± 0.048 0.98 ± 0.02
lightGBM + LR 0.944 ± 0.048 0.952 ± 0.075 0.946 ± 0.043 0.944 ± 0.046 0.936 ± 0.045 0.97 ± 0.03

By comparing Tables 12 and 16, we can infer that the classification performance of the
four models has significantly improved on the dataset balanced by the SMOTE_Tomek class
balancing method. On the dataset used in this section, four models show good classification
ability. In particular, on the feature set combined by lightGBM, lr model achieved the best
classification results in this study, with accuracy of 94.7%, recall of 94.8%, F1 score of 94.8%,
precision of 95.3%, specificity of 94.5% and AUC of 0.98. This shows that the method of
using the feature combination function of lightGBM model to improve the classification
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ability of lr model is effective. This also fully proves the effectiveness of our proposed
method. Figure 27 shows the ROC curve and corresponding AUC value of each fold in
the 10-fold cross-validation obtained by classification model on the dataset processed by
data standardization and SMOTE_Tomek. It can be seen from the curve that, due to the
distribution difference of 10 fold data, the AUC values obtained by the model on each
fold test set are different. Additionally, the proposed feature combination method has
significantly improved the AUC value of lr model on this dataset. Additionally, the highest
AUC value of this study was produced.
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5.2.12. Results Obtained on Dataset Processed by Standardization and SMOTENC

The performance results of the four classification models for CAD prediction in terms
of accuracy, recall, precision, F1 score, specificity and AUC on the dataset processed by data
standardization and SMOTENC method are reported in this section. The dataset used in
this part consists of 432 samples, including 216 instances of CAD class and 216 instances
of normal class. Table 17 exhibits the average results of 10 tests obtained by the four
classification models on this dataset. Figure 28 is a histogram of Table 17. Figure 29 shows
the ROC curve of the classification model on the 10 fold test set of the dataset processed by
standardization and SMOTENC and the AUC value corresponding to each fold ROC curve.

Table 17. The average results of 10 tests obtained by classification models on the dataset processed
by data standardization and SMOTENC.

Classifiers Accuracy Recall F1 Precision Specificity AUC

lightGBM 0.931 ± 0.058 0.934 ± 0.089 0.933 ± 0.052 0.939 ± 0.056 0.928 ± 0.055 0.97 ± 0.03
lr 0.917 ± 0.046 0.926 ± 0.086 0.919 ± 0.042 0.921 ± 0.061 0.908 ± 0.052 0.96 ± 0.03

lightGBM + lr 0.945 ± 0.050 0.942 ± 0.080 0.947 ± 0.045 0.958 ± 0.049 0.947 ± 0.047 0.97 ± 0.03
lightGBM + LR 0.938 ± 0.043 0.944 ± 0.074 0.939 ± 0.040 0.940 ± 0.055 0.931 ± 0.050 0.97 ± 0.02
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It can be seen from Table 17 and Figure 28, compared with Table 12 and Figure 18,
SMOTENC method improves the performance of the classification models in terms of
accuracy, recall, specificity and AUC. On the dataset used in this section, the feature
combination of lightGBM also has significantly improved the classification ability of lr
model. The lightGBM + lr model obtained the best results with accuracy of 94.5%, recall of
94.2%, F1 score 94.7%, precision of 95.8%, specificity of 94.7% and AUC of 0.97. Figure 29
shows the ROC curve and corresponding AUC value of each fold in the 10-fold cross-
validation obtained by classification model on the dataset processed by data standardization
and SMOTENC. It can be seen from the curve that, due to the distribution difference of
10-fold data, the AUC values obtained by the model on each fold test set are different.
Additionally, the proposed feature combination method has significantly improved the
AUC value of lr model on this dataset.

5.3. Results Analysis
5.3.1. Analysis of the Influence of Class Balancing Methods on the Performance of
Classification Models

This section reports the impact trend of five class balancing methods on the performance
of classification models. In order to eliminate the impact of the data standardization process-
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ing method on the performance of the model, we analyze it based on the same basic dataset
and the same feature processing. Therefore, study of this section is divided into two parts,
one is based on the original dataset, and the other is based on the standardized dataset.
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Figure 29. The ROC curve and AUC value of each fold in the 10-fold cross-validation obtained by
classification models on the dataset processed by data standardization and SMOTENC. (a–d) are the
ROC curves of lightGBM, lr, lightGBM + lr and lightGBM + LR classifiers, respectively.

1. Research Based on Original Dataset

In this part, we describe in detail the change trend of the performance of the classifica-
tion models after applying five class balancing methods on the original dataset, as shown
in Figure 30a.

The three child figures from top to bottom in Figure 30a are the trend charts of the
performance evaluation indexes of the three classification models with the five class bal-
ancing methods, respectively. The three classification models are lr, lightGBM + lr and
lightGBM + LR. The mark ‘None’ in Figure 30 refers to the dataset that does not apply
the class balancing methods. The marks ‘SMOTE’, ‘BorderLine_SMOTE’, ‘SMOTE_SVM’,
‘SMOTE_Tomek’ and ‘SMOTENC’ correspond to the datasets that applied the correspond-
ing class balancing methods, respectively.

By analyzing the results of three classification models on the ‘None’ dataset, it can
be found that the distribution of results is scattered, that is, the model obtains good
results on some indicators, but it is poor on other indicators. This may be related to the
skewness and class imbalance of the original dataset. After applying the class balancing
methods, the results of the model are improved, and the distribution of the results tends
to be concentrated. For lr and lightGBM + lr classification models, the most concentrated
and best results appear on the dataset balanced by SMOTE_Tomek method. For the
lightGBM + LR model, the most concentrated results appear on the dataset balanced by
the BorderLine_SMOTE method, and the best results also appear on the dataset balanced
by the SMOTE_Tomek method. The reason for this phenomenon in the lightGBM + LR
model may be related to the addition of the original dataset to the recombined dataset. The
change trend of the results of the three classification models in Figure 30a confirms that the
five class balancing methods can effectively improve the classification performance and
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stability of the model on the original dataset. Especially, SMOTE_Tomek algorithm is a
more effective method.
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2. Research Based on Standardized Dataset

The change trend of the performance of the three classification models after applying
five class balancing methods on the standardized dataset are described in Figure 30b.

By analyzing Figure 30b, we can find that after applying the class balancing methods,
the results of the models are improved, and the distribution of the results tends to be
concentrated. For lightGBM + lr model, the most concentrated and best results appear on
the dataset balanced by SMOTE_Tomek method. For the lr model, the most concentrated
results appear on the dataset balanced by the SMOTE_Tomek method, and the best results
appear on the dataset balanced by the SMOTE_SVM method. For the lightGBM + LR
model, the most concentrated results appear on the dataset balanced by the SMOTE_SVM
method, and the best results appear on the dataset balanced by the BorderLine_SMOTE
method. The variation trend of the results of the three classification models in Figure 30b
confirms that on the standardized dataset, the five class balancing methods can effectively
improve the classification performance and stability of the model.
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5.3.2. Analysis of the Influence of Data Standardization Method on the Performance of
Classification Models

In this part, we analyze the impact trend of data standardization method on the
performance of classification models. According to the foregoing, the best classification
results on each dataset often come from the lightGBM + lr model or the lightGBM + LR
model. Therefore, this part mainly analyzes the influence of data standardization method
on lightGBM + lr model and lightGBM + LR model. As shown in Figures 31 and 32,
respectively. The study of this part adopts the matching method, that is, the application
of other processing methods is the same for the two sets of datasets used for comparison,
except whether data standardization processing method is applied or not. Therefore, each
model has six groups of comparative datasets, which are the datasets without balancing and
the datasets processed by SMOTE, BorderLine_SMOTE, SMOTE_SVM, SMOTE_Tomek and
SMOTENC, respectively. Figure 31 shows the performance comparison of lightGBM + lr
model on six groups of datasets. Figure 32 shows the performance comparison of lightGBM
+ LR model on six groups of datasets. The (a) to (f) of Figures 31 and 32 correspond to the
datasets without balancing and the datasets processed by SMOTE, BorderLine_SMOTE,
SMOTE_SVM, SMOTE_Tomek and SMOTENC, respectively.
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Figure 31. The performance comparison of lightGBM + lr model on six groups of datasets. (a–f) corre-
spond to the datasets without balancing and the datasets processed by SMOTE, BorderLine_SMOTE,
SMOTE_SVM, SMOTE_Tomek and SMOTENC, respectively.

From the 6 groups comparison diagram of (a)–(f) in Figure 31, it can be find that the
standardization of datasets can significantly improve the classification ability of
lightGBM + lr model.

From the 6 groups comparison diagram of (a)–(f) in Figure 32, it can be find that, on
the whole, the data standardization method can significantly improve the classification
ability of lightGBM + LR model. Although the data standardization method does not
improve the performance of lightGBM + LR model on the dataset processed by SMOTE
method, the recognition ability of lightGBM + LR model to positive samples, namely the
recall index, has been improved on the standardized dataset, which is also considered to be
very important.
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5.3.3. Analysis of Ablation Study

The composition of the CAD prediction model studied in this paper can be divided into
four modules, namely data preprocessing, class balance processing, feature combination
and class prediction. The modules of data preprocessing, class balance processing and
feature combination are designed to optimize the performance of classification algorithm.
To understand which modules are critical to detection performance, we analyzed the
ablation study of the model. That is, after removing one module in turn, the change of the
model’s detection performance will be observed. This can intuitively reflect the impact of
the module on the classification performance of model. In this study, five different class
balancing algorithms are tried. The experimental results show that the best classification
results are obtained by lr model on the dataset processed by SMOTE_Tomek method and
lightGBM algorithm. Therefore, the class balance processing module studied in this part
applies SMOTE_Tomek method, and the feature combination module does not involve
the recombination of the original dataset. Tables 18–20 show the classification results of
the prediction model after removing the modules of data preprocessing, class balance
processing and feature combination in turn. Figure 33 compares the improvement effects
of different modules on the performance results of model.

Table 18. The classification results of the prediction model after removing the modules of data
preprocessing.

Modules Accuracy Recall F1 Precision Specificity AUC

ALL 0.947 ± 0.050 0.948 ± 0.073 0.948 ± 0.046 0.953 ± 0.047 0.945 ± 0.048 0.98 ± 0.02
NP 0.946 ± 0.049 0.951 ± 0.071 0.948 ± 0.045 0.949 ± 0.040 0.941 ± 0.045 0.97 ± 0.04
P 0.001 −0.003 0.000 0.004 0.004 0.01

NP, no data preprocessing. P, data preprocessing.
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Table 19. The classification results of the prediction model after removing the modules of class
balance processing.

Modules Accuracy Recall F1 Precision Specificity AUC

ALL 0.947 ± 0.050 0.948 ± 0.073 0.948 ± 0.046 0.953 ± 0.047 0.945 ± 0.048 0.98 ± 0.02
NBC 0.914 ± 0.040 0.922 ± 0.058 0.942 ± 0.025 0.968 ± 0.036 0.895 ± 0.074 0.92 ± 0.06
BC 0.033 0.026 0.006 −0.015 0.050 0.06

NBC, no methods of balancing classes. BC, balancing classes.

Table 20. The classification results of the prediction model after removing the modules of
feature combination.

Modules Accuracy Recall F1 Precision Specificity AUC

ALL 0.947 ± 0.050 0.948 ± 0.073 0.948 ± 0.046 0.953 ± 0.047 0.945 ± 0.048 0.98 ± 0.02
NFC 0.912 ± 0.051 0.926 ± 0.089 0.913 ± 0.045 0.911 ± 0.066 0.898 ± 0.055 0.96 ± 0.03
FC 0.035 0.022 0.035 0.042 0.047 0.02

NFC, no feature combination. FC, feature combination.
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By analyzing Tables 18–20, it can be seen that the feature combination module can
significantly improve the results of all performance indicators. In addition to the precision,
the class balance processing module also shows a significant improvement in other perfor-
mance indexes. Additionally, the data preprocessing module also shows an improvement
in other performance indexes, in addition to the recall and F1 score. Figure 33 intuitively
shows the comparison of the three processing modules on the improvement of model
prediction performance. It can be seen from Figure 33 that the three processing modules
are all effective methods to improve the classification ability of the model, but they have
different effects on the performance improvement of the classification model. Among them,
the feature combination has the strongest effect on the improvement of model performance.
The second is class balance processing. The data preprocessing module has the weakest
effect on the improvement of model performance. Specifically, the class balance processing
has the strongest ability to improve recall, specificity and AUC. Feature combination pro-
cessing has the strongest ability to improve accuracy, F1 score and precision. Therefore, the
combination of class balance and feature combination is an effective method to realize the
early and accurate diagnosis of CAD.

5.3.4. Analysis of Model Loss

In this section, we analyze the loss of the proposed model on the training set and test
set. As mentioned earlier, lr model obtains the best classification performance in this study
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on the dataset processed by data preprocessing, SMOTE_Tomek method and ligthGBM
algorithm. This model is the complete embodiment of our proposed method. This section
is analyzed and discussed based on this model, namely ligthGBM + lr classifier. At the
same time, we also calculate the loss of lr model on the dataset without feature combination
processing, that is, lr classifier. In the development process of the model, we applied the
10-fold cross-validation technology. Therefore, the loss in each epoch is the average of the
10-fold data. Figures 34 and 35, respectively, show the change trend of the loss of the two
models on the training set and the test set with the update of the number of epochs. It can
be seen from Figures 34 and 35 that, on the training set, with the increase of epoch times,
the loss of both models gradually decreases and finally approaches a stable value. On the
test set, with the update of the number of epochs, the loss of lr model gradually decreases
and finally tends to be stable. The loss of lightGBM + lr model shows a trend of decreasing
first, then increasing finally stabilizing. The lowest loss occurs when epoch = 4. These
indicate that the model shows a certain over fitting when epochs increases to 5. Therefore,
we take epochs = 4 to predict the test set.
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6. Discussion

In this study, we proposed a model for early, accurate and rapid detection of CAD. The
model is based on the classical logistic regression algorithm. Logistic regression algorithm
with good interpretability is the most commonly used research method in medical problems.
Especially in medical binary classification problems, logistic regression algorithm has
irreplaceable advantages. However, the disadvantage of logistic regression algorithm is
also obvious, that is, it needs a lot of manual feature engineering. There is no doubt that
this will take a lot of time. Tree model algorithm has been widely used in feature selection
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and feature combination, because of its efficient node splitting mechanism. Therefore, in
this study, we used the tree model algorithm to realize the feature engineering automation
of lr algorithm. At the same time, in order to improve the classification performance of the
proposed model, we applied five sampling methods to solve the class imbalance problem
in the dataset. The corresponding solutions to the problem of feature distribution skewness
in the dataset were proposed. In addition, the 10 fold cross validation technique was
used to test the robustness of the model. Seven important evaluation indexes, namely,
accuracy, recall, F1 score, precision, specificity, ROC curve and AUC, were used for the
evaluation and analysis of the model. The experimental results shown that the data
preprocessing, class balance processing and feature combination methods can significantly
improve the classification ability of lr model. However, different processing methods
have different effects on the classification performance of the model. In general, the
feature combination processing based on lighthGBM algorithm has the strongest effect on
improving the performance of the model, followed by class balance processing. The data
standardization method has the weakest effect on the improvement of model performance.
When it comes to the performance evaluation metrics of the model, we can find that
class balance processing has the strongest ability to improve recall, specificity and AUC.
Feature combination processing based on lighthGBM algorithm has the strongest ability
to improve accuracy, F1 score and precision. Besides, the data standardization method
does not contribute to the recall rate and F1 score index of the model, but also improved
the performance of the model in other indicators. Therefore, the combination of data
preprocessing method, class balance method and feature combination method can improve
the performance of the classification model in all evaluation metrics. Our experimental
results also confirm this. The best classification result of this study is generated by lr model
on the dataset after standardization, resampling and feature combination. The best results
we obtained were accuracy of 94.7%, recall of 94.8%, F1 score of 94.8%, precision of 95.3%,
specificity of 94.5% and AUC of 0.98.

In order to more intuitively show whether our proposed method has the ability to
improve lr model and whether the results of the proposed model can compete with the
ensemble learning algorithm, which has obvious advantages in classification task. During
the experiment, we applied lr model without feature combination effect on the same
dataset. Additionally, the prediction results of lighthGBM model on each dataset were
output. By comparing the results on each dataset, it can be seen that the best classification
results on each dataset are almost produced by the lr model with the feature combination
effect of lighthGBM. This showed that our proposed method has the ability to improve
the classification performance of lr model. Additionally, our proposed method has a
competitive advantage.

In addition, we compared the results obtained by our proposed method with those
obtained on Z-AlizadehSani dataset reported in previous literature (See Table 21). As
shown in Table 21, our proposed method is very competitive. On the Z-Alizadeh Sani
dataset, our proposed method achieves better results than existing research. It is worth
noting that there are many cell values labeled as ‘N’ in Table 21, which means that the
corresponding indicators are not reported in the literature. However, these indicators are
very valuable for evaluating the performance and stability of medical models, especially
recall, F1 score and AUC indicators.

To sum up the above, the main contributions of this paper in technology and experi-
mental design are as follows: (1) in the prediction task of CAD, we applied the automatic
feature combination function based on ligthGBM model to improve the performance of
lr classifier; (2) five sampling methods were applied to Z-Alizadeh Sani dataset to solve
the class imbalance problem of dataset; and (3) recall, F1 score, ROC curve and AUC of
metrics, which are critical to the evaluation of medical models, were used to evaluate the
models. At the same time, our article also has some limitations, such as: (1) more feature
combination methods were not tried; and (2) more classification algorithms were not tried.
These are also our future research directions.
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Table 21. The comparison of classification results between our study and other studies on the
Z-Alizadeh Sani dataset.

Method Accuracy % Recall % F1% Precision % Specificity % AUC

SMO [33] 92.09 97.22 N N 79.31 N
SMO + IG [30] 94.08 96.30 N N 88.51 N

KNN [43] 90.91 93.33 93.33 93.33 85.71 N
NN + genetic algorithm [32] 93.85 97 N N 92 N
NB + genetic algorithm [69] 88.16 88.00 N N 87.78 N

Ensemble [70] 86.49 73.61 0.75 N 91.67 0.83
SVM + feature engineering +

500 examples [37] 96.4 100 N N 88.1 0.92

NE-nu-SVC [35] 94.66 94.70 94.70 94.70 N 0.966
N2GC-nuSVM [36] 93.08 N 91.51 N N N

XGBoost + hybrid FSA + FA +
ETCA + SMOTE [31] 92.58 92.99 90.62 92.59 N N

Hybrid PSO-EmNN coupled with
feature selection [38] 88.34 91.85 92.12 92.37 78.98 N

XGBoost + feature construction +
SMOTE [48] 94.7 96.1 94.6 93.4 93.2 0.98

GSVMA [47] 89.45 81.22 80.49 N 100 100
C-CADZ [41] 97.37 98.15 N N 95.45 N

CART [46] 92.41 98.61 N N 77.01 N
lightGBM + lr + SMOTE_Tomek * 94.7 94.8 94.8 95.3 94.5 0.98

* Our proposed methods.

7. Conclusions

CAD is the major cause of global health burden and death. The early, accurate and
rapid diagnosis of CAD is the only effective way to reduce the damage of CAD. In this
paper, we proposed a model that can accurately detect CAD according to the results of
clinical routine examination in the early stage. The model took the logistic regression
algorithm as the base classifier, and combined the feature combination processing based on
lighthGBM algorithm and the class balance method of resampling. In addition, according
to the characteristics of the dataset, the corresponding data preprocessing method was
applied. A 10-fold cross validation technique was used to test the robustness of the model.
Accuracy, recall, specificity, precision, F1 score, ROC curve and AUC indicators were used
to evaluate the model. The experimental results and analysis show that our proposed
model has strong advantages in the models used for CAD detection. Our proposed model
can be used to assist doctors in making decisions.
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Appendix A

Table A1. A list of abbreviations used in this paper.

Abb Full Name Abb Full Name

CAD coronary artery disease ADASYN adaptive synthetic

DALYs disability-adjusted life years SVM support vector machines



Electronics 2022, 11, 1495 41 of 44

Table A1. Cont.

Abb Full Name Abb Full Name

CVD cardiovascular disease KNN k-nearest neighbors

IHD ischemic heart disease PSO particle swarm optimization

HIV human immunodeficiency virus PCA principal component analysis

AIDS acquired immunodeficiency syndrome RF random forest

LAD left anterior descending coronary artery ET extreme tree

LCX left circumflex coronary artery LDA linear discriminant analysis

RCA right coronary artery GR gain ratio

ECG electrocardiogram IG information gain

FFR fractional flow reserve FLDA fisher linear discriminant analysis

IVUS intravenous ultrasound CS chi-square

COPD chronic obstructive pulmonary disease CART classification and regression tree

SMO sequence minimum optimization ROC receiver operating characteristic

SMOTE synthetic minority oversampling technology AUC area under curve

Abb, Abbreviations.

Table A2. The hyperparameters setting of the proposed model on the dataset processed by data
standardization and SMOTE_Tomek method.

Model Algorithms Hyperparameters Value of Hyperparameters

lightGBM + lr

lightGBM

boosting_type ‘gbdt’

objective ‘binary’

learning_rate 0.52488778

n_estimators 231

max_depth 2

num_leaves 3

max_bin 74

min_data_in_leaf 21

bagging_fraction 0.676450

bagging_freq 2

feature_fraction 0.610

lr

C 1.79532

class_weight {0:0.5,1:0.5}

dual False

fit_intercept True

intercept_scaling 1

max_iter 4

multi_class ‘ovr’

n_jobs 1

penalty ‘l1’

random_state 69

solver “liblinear”

tol 0.01

verbose 0

warm_start False
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