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Abstract: Whether by habit or necessity, people tend to spend most of their time indoors. Built-up
Carbon dioxide (CO2) can lead to a series of negative health effects such as nausea, headache, fatigue,
and so on. Thus, indoor air quality must be monitored for a variety of health reasons. Various air
quality monitoring systems are available on the market. However, since they are expensive and
difficult to obtain, they are not commonly employed by the general population. With the advent of
the Internet of Things (IoT), the Indoor Air Quality (IAQ) monitoring system has been simplified, and
a number of studies have been conducted in order to monitor the IAQ using IoT. In this paper, we
propose an improved IoT-based, low-cost IAQ monitoring system using Artificial Intelligence (AI)
to provide recommendations. In our proposed system, the IoT sensors transmit data via Message
Queuing Telemetry Transport (MQTT) protocol which can be visualised in real time on a user-friendly
dashboard. Furthermore, the AI technique referred to as Long Short-Term Memory (LSTM) is applied
to the collected CO2 data for the purpose of predicting future CO2 concentrations. Based on the
predicted CO2 concentration, our system can compute CO2 steady state in advance with an error
margin of 5.5%.

Keywords: IoT; LSTM; AI; deep learning; CO2; IAQ monitoring; smart living

1. Introduction

The term ’indoors’ refers to an area inside a building or structure such as a cafe,
restaurant, home, office, or even a vehicle. Whether for personal or professional reasons,
the weather or other factors, most of us spend the majority of our time indoors. A study by
the Environmental Protection Agency (EPA) estimates that Americans spend 93% of their
time indoors [1]. The average British citizen spends 53 years of their life indoors, making
the British population the largest indoor nation [2]. Since these studies were published
prior to the COVID-19 pandemic, the figures may have increased significantly due to
influential factors associated with the pandemic [3]. Indeed, it has become apparent to
some individuals that they can work from home instead of travelling to their respective
workplaces. Due to the fact that people spend most of their time indoors, the quality of air
inside buildings and other structures bears a substantial impact on their health, comfort and
well-being. Poor Indoor Air Quality (IAQ) can cause or contribute to the development of
allergies, asthma, and other respiratory conditions. It can also cause headaches, dizziness,
nausea and fatigue [4].

IAQ can be affected by gases, particles, mould, bacteria, and other contaminants.
Several sources of pollution are responsible for poor IAQ, both indoors and outdoors. Out-
door sources of air pollution such as traffic and industrial emissions, can enter buildings
through doors, windows, and ventilation systems [5]. Indoor sources of pollution include
combustion appliances, building materials, cleaning products and office equipment. CO2
has been considered an important and common indicator for measuring IAQ [6,7]. CO2 is
produced each time an individual exhales. It is also produced by combustion appliances
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and certain office equipment. The level of CO2 in indoor air is typically higher than that
of outdoor air. Many studies have shown that CO2 can lead to reduced cognitive per-
formance [8], and high concentrations of CO2 lead to several health-related issues such
as nausea, headache, and fatigue [9]. Recent studies also show that the concentration of
CO2 can affect risk of COVID-19 infection [10]. This is because both pathogens and CO2
are exhaled by infected individuals, rendering indoor CO2 levels an effective proxy for
identifying potential infection risk. Therefore, monitoring CO2 levels has been proposed
as an indicator to indirectly evaluate the potential risk of respiratory infectious disease
transmission [11]. The study of indoor CO2 levels is also relevant to the issue of occupancy
counting, which can further impact building energy consumption [12]. Using CO2 sensors
to determine occupancy presents a promising approach that has been explored in several
studies [13–15]. Accurately determining building occupancy is important for achieving en-
ergy savings, and in some cases can lead to a 30–40% reduction in energy consumption [16].
Understanding indoor CO2 levels is crucial to ensuring the health and safety of occupants
present. Government regulations and industrial guidelines establish different acceptable
CO2 concentration limits for indoor spaces. For instance, a safety boundary of no more
than 1000 ppm CO2 concentration is commonly used in many applications [17], while the
European standards establish 1500 ppm as the maximum acceptable concentration of CO2
for indoor IAQ [18]. Since a substantial amount of CO2 is emitted by the breathing of
occupants, it is necessary to design an efficient CO2 level monitoring system as well as a
forecasting system to effectively prevent associated health risks. With the development of
the IoT, low-cost sensors and open-source IoT platforms have become widely available and
can be integrated together with AI technologies into IAQ systems. Therefore, this paper
proposes not only an IoT-enabled, real-time CO2 monitoring dashboard, but also the smart
forecasting of CO2 concentration and CO2 steady state or equilibrium. This paper provides
two main contributions:

• Exploitation of IoT sensors to achieve a real-time indoor air monitoring system.
• Application of LSTM to predict or forecast future levels of CO2 concentration based

on the collected or historical data. Following that, the indoor steady-state CO2 value
can be calculated in advance to provide health and well-being recommendations.

The remainder of the paper is arranged as follows. Section 2 presents the related
works, while Section 3 explains our proposed method for collecting and presenting data.
Section 4 describes our methodology. The results are discussed in Section 5. Finally, we
provide concluding remarks in Section 6 along with an outline of our future works.

2. Related Work

In the field of buildings, monitoring CO2 levels is important for a variety of appli-
cations, including Heating, Ventilation and Air conditioning (HVAC) system controls,
occupancy predictions, building datasets that contain building operations as well as Com-
putational Fluid Dynamics (CFD) analysis. By using CO2 monitoring in conjunction with
these other building data, it is possible to improve building performance and energy effi-
ciency. The authors of [19] employed genetic algorithms and varying CO2 concentrations
to optimize the performance of standard HVAC systems in terms of power savings. By
combining genetic algorithms with CO2 concentrations, they were able to achieve a 21%
reduction in chiller costs and reduce the maximum flow of water through the cooling coil
by 83%. CO2 concentrations also play a key role in predicting building occupancy. Addi-
tionally, empirical results provided in [20] showed that indoor CO2 levels were consistently
among the top 15 most important features for predicting occupancy across all space types.
Accurately determining building occupancy can lead to significant reductions in energy
consumption, with potential savings of up to 30–40% [16]. The authors of [21] built com-
prehensive building operation datasets containing a CO2 parameter, aimed at providing a
unique perspective on the operation of a net-zero energy building and establishing a useful
benchmark against existing buildings. In a study by [22], a low-cost CO2 measurement
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device was developed to remotely monitor IAQ. In addition, CFD modeling was used to
study indoor air flows and identify potential measurement locations.

CO2 is the most common indoor air parameter related to IAQ, and is widely used
for comfort definition and Indoor Environmental Quality (IEQ) detection [23]. Based on
IAQ sensors and a machine learning strategy, the authors of [3] proposed a solution for
IAQ monitoring, consisting in providing users with access to both a web portal and a
mobile app that display a visual representation of the air quality. In their study, a total
of five air parameters (CO2, CO, NO2, CH4 and PM2.5) were calculated and classified
according to the IAQ level. Using neural networks, the authors classified IAQ conditions
with a 99.1% accuracy rate. Long Short-Term Memory (LSTM) was also used to predict
future CO2 concentrations. However, the achieved IAQ classification results were based
on the outdoor Air Quality Index (AQI) which is influenced by many other parameters
and may not be suitable for an indoor environment. Furthermore, their method may
pose a challenge due to sensor lifetime and calibration factors. On the other hand, based
on LSTM and its variant Gated Recurrent Unit (GRU), in a study by [24], the authors
developed an IAQ prediction system. In that work, the authors found that GRU has a better
performance than LSTM and achieved an accuracy rate of up to 84.69% when using GRU.
However, this model takes 38 h to find the step size of the optimal time step. In addition,
an architecture was proposed for collecting data through the IoT network in [23], where
two prediction models were also built: one for predicting the comfort conditions in a day
regarding temperature, humidity and CO2, and another for predicting CO2 concentration
from neural networks. According to their results, the Mean Square Error (MSE) during
the test period is around 75 ppm (10.6%) compared to the average concentration of CO2.
In another study [25], researchers compared two different CO2 forecasting methods, and
found that a decision tree was more efficient than Artificial Neural Network (ANN) in
terms of computation and energy consumption. Furthermore, the adoption of one-minute-
ahead forecasting time-window strategy has the highest accuracy compared to a ten- or
fifteen-minute-ahead time window. However, the addition of other variables such as
temperature and humidity does not improve the prediction accuracy. Based on a dynamic
mobile window, the authors of [26] proposed a progressively updated CO2 prediction
model. It is possible for this model to improve its accuracy on a daily basis. Using their
own CO2 data, they integrated this model on an edge device that is capable of updating
the model and forecasting future levels of CO2. In most studies, the focus is on building a
data collection system for indoor environments and predicting air parameters as well as
classifying the level of air conditions based on predicted air parameters. However, there
is no unified standard for the classification of IAQ, and the prediction result of a longer
future forecasting time window is poorer than that of a shorter one. In this work, CO2
is utilized as an indicator of IAQ since it is produced whenever an individual exhales.
Based on the authors’ conclusion in [25], a one-minute forecasting time window strategy is
adopted to output better performance in our prediction model. We first design a real-time
IAQ monitoring system, and then apply a deep learning LSTM model to predict future
CO2 concentration data. Subsequently, the steady state of the concentration is calculated in
advance to help guide and protect occupants from negative health effects associated with
poor air quality.

3. System Design

The purpose of this study is to monitor IAQ and CO2 concentration using IoT sensors.
We also measured the change of Particulate matter (PM) with an occupant present in the
room but found PM level almost unchanged. The experiment result in [27] showed a weak
correlation in PM levels between indoor and outdoor environments (Pearson’s r = 0.01,
p-value = 0.91). Indoor activities, such as regular desk work or rest, seldom influence the
change in PM level, while CO2 is the most common indoor pollutant related to high people
density. From the data we obtained, the change level of CO2 is significantly higher than
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that of PM. Therefore, in this work we adopt CO2 as an IAQ indicator. Our study involves
the following hardware and software.

3.1. Hardware Solution

Among the hardware components of this system are the Raspberry Pi 3B single-board
computer, the ESP8266 Wi-Fi module, the SCD30 CO2 sensor and the BME680 IAQ sensor.

Raspberry Pi: is a single-board computer responsible for handling and displaying the
dashboard or monitoring system for our study.

SCD30: is a highly accurate nondispersive infrared sensor (NDIR) for detecting CO2
parameters. This sensor provides two digital interface options: Inter-Integrated Circuit
(I2C) and Universal Asynchronous Receiver-Transmitter (UART). The measurement range
of SCD30 is from 400 ppm to 10,000 ppm with accuracy of ±(30 ppm + 3%). Because of
its high precision and wide measurement range, it is suitable for indoor IoT monitoring to
support user well-being.

BME680: is an IoT environment sensor that measures temperature, humidity
(±3% r.H. accuracy tolerance), pressure and Volatile Organic Compounds (VOC) gas param-
eters with high accuracy from BOSCH. Utilising its own algorithm library, it can calculate
the air quality index based on four parameters and previous environmental conditions.

ESP8266: is a Wi-Fi module microchip that is integrated with a TCP/IP protocol
stack. Both I2C and UART communication are supported by this module. Because of its
compatibility with other embedded devices, small size, and ultra-low power consumption,
it is widely used in IoT applications [28].

3.2. Software and Protocol Solution

Message Queuing Telemetry Transport (MQTT): MQTT is a lightweight and efficient
machine to machine (M2M) network protocol designed for IoT applications due to its
reliability of message delivery.

Node-Red: is an open source flow-based tool for connecting hardware devices, APIs
and other IoT services. Node-Red’s MQTT node can subscribe data from MQTT, cloud and
store it in a database. By utilising the features of visual programming, Node-Red is able to
detect system malfunctions such as sensor failure.

Influxdb: is a time-series database developed by influxData organisation. Due to its
support by the Node-Red tool and the requirement for a timestamp to record the data,
Influxdb was adopted as the database for this design.

Grafana: is a tool for visualising and analysing time-series data. It integrates a rich
dashboard plugin that simplifies the presentation of data.

This study’s system design is illustrated in Figure 1. Both sensors are connected to Wi-
Fi modules. The sensors and Wi-Fi modules are configured using Arduino programming
language to connect to the Wi-Fi gateway. Raspberry Pi is used as a hub which interacts
with the IoT software owing to its flexible and powerful processing performance [29]. On
the Raspberry Pi, Node-Red, infuxdB and Grafana are installed for retrieving, displaying
and processing data from the MQTT server.

MQTT broker

Database

Dashboard

IoT Platform

Publish

Publish

Subscribe

Wi-Fi gateway

 
 

SCD30 & Wi-Fi module

Bme680 & Wi-Fi module

Database

Dashboard

IoT Platform

Raspberry pi 
Hub

Figure 1. Architecture of our deployed IAQ monitoring system.
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4. Methodology

We discuss our data collection and processing method in this section. With the help of
sensor library from Arduino programming language, data is collected from the BME680 air
quality sensor and SCD30 CO2 sensors. These data are sent to a cloud server via Wi-Fi gateway
using the MQTT protocol. Sensor data were received from MQTT cloud on the Raspberry Pi
with Node-Red. The data are then processed in order to be stored in the influxdb database.
Here, Node-Red can be considered as a data bridge. The system receives data from the MQTT
cloud and links it to the influxdb database. Finally, we used the data imported from influxdb
to create a real-time dashboard using Grafana. The dashboard is displaying temperature,
humidity, CO2 as well as IAQ index parameters. Using Grafana, the dashboard can trigger
alerts such as emails in response to critical events such as excessively high temperatures or
carbon dioxide concentrations which may pose danger to indoor occupants.

Figure 2 displays an overview of Grafana’s dashboard containing real-time indoor
ambient air conditions. It incorporates ambient data from InfluxDB database and displays
them as a variety of UI charts to the user. The displayed data include CO2 concentrations,
temperature, humidity as well as the IAQ index.

Figure 2. IAQ monitoring dashboard.

4.1. LSTM-Based Prediction Model

Recurrent Neural Networks (RNN) is a common time-series forecasting model that
provides more advantages than other types of neural networks dealing with time sequence
data [23]. The RNN is made up of single layer networks with loops which can pass the
time information from one network to the other. It can learn the information from previous
data and combine it with current input to make a decision. A historical limitation in RNN
is the gradient disappearance issue, particularly when dealing with a massive amount of
time series data [30]. However, this issue can be overcome by using LSTM which is an
updated version of RNN with additional memory elements. LSTM consists of a cell and
four layers, namely, input layer, forget gate layer, updated layer, and output layer. The
additional forget gate handles the input information in memory for a longer period of time
compared to RNN. By using gates to control the flow of information and prevent gradients
from exploding or vanishing, LSTM is able to effectively store information for extended
time steps and solve complex time-series problems. This renders them an improvement
over traditional RNN, which struggle with these issues [31]. Therefore, LSTM is considered
as one of the state-of-the-art algorithms in solving time-series prediction problems [32].
There are many popular LSTM variants proposed. In this work, we used three different
variants of LSTM: single cell, stacked and bidirectional, and compared their benchmark
scores. Among the popular LSTM variants, in this work we adopted three different ones
(i.e., single cell, stacked, and bidirectional LSTM).

4.2. CO2 Steady-State Model

Steady state is a key factor in the CO2 mass balance equation which represents the
maximum CO2 level in a room. It is determined by the number of people and ventilation
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rate. The importance of studying CO2 steady state is that it is used in the CO2 mass
balance equation to solve the occupancy issue, which is directly related to the energy
consumption of residential and office buildings [12,33]. The European standard stipulates
that a concentration of 1500 ppm CO2 is the acceptable upper limit of IAQ [18]. Therefore,
if the maximum value of CO2 can be predicted in advance, the health problems caused by
CO2 can be prevented. Indoor CO2 is produced primarily by the respiration of occupants
according to the CO2 mass balance theory [34]. CO2 levels inside the building remain in
dynamic equilibrium with the outside air for a sufficient period of time, and these levels
are referred to as steady state. Its differential equation is shown in Equation (1):

C(t) = (C0 − Css)e−
Q
V t + Css, (1)

where C0 is indoor CO2 concentration at t = 0; Css is CO2 steady state; V is volume of
indoor space; Cot is outdoor CO2 concentration; Q and G are volumetric flow rate of air
into the space and CO2 generation rate. In general, Cot, Q and G are functions of time but
are assumed constant in this model [35]. The Css can be defined as follows:

Css = Cot +
G
Q

, (2)

Figure 3 illustrates the trend of indoor CO2 concentration levels. Observing the CO2
trend curve for a sufficient amount of time is one way to obtain steady state values for Css.
However, Equation (2) shows that steady state concentration is normally time consuming,
since it depends on respiration rate G and airflow Q. A second method of acquiring steady
state values in advance is to solve the equilibrium level from the trend curve [36]. This
equation can be expressed as follows:

Css =
C2

b − CaCc

2Cb − Ca − Cc
, (3)

where Ca, Cb and Cc are concentrations at evenly spaced time points a, b, and c. Theoreti-
cally from Figure 3, steady-state Css can be calculated from any three evenly spaced time
points on the entire time axis. In order to avoid fluctuation errors caused by the actual
measurement of CO2, the interval distance between Ca, Cb and Cc are ten time points.

Figure 3. Trends in indoor CO2 concentrations.

4.3. Data Collection and Pre-Processing

The selected study site was located in the bedroom of an occupant’s two-story residen-
tial building. We deployed two sensors in the room, SCD30 and BME680, that measured
the CO2 concentration, and temperature and humidity in the room, respectively. The two
sensors were placed on a wall 1.5 m above the ground. The SCD30 sensor recorded the
change level of CO2 in the house for a period of 5 days in which the sampling interval was
1 min and the recording time period spanned from 18 January to 23 January 2022. Thus,
a total of 7461 data samples were obtained. The measured changes in CO2 levels of the
room are shown in Figure 4. On the last day of measuring, we experimented with the
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steady-state value of CO2. We kept a person in the room where all doors and windows
were closed. The experiment duration was 250 min lasting from 12:12 to 16:21 GMT.

Figure 4. CO2 concentration trend in the bedroom.

In order to predict the change level of CO2 in the room, we input the 7461 collected data
samples into the LSTM model, of which 6500 served as training data and the rest constituted
the test data. The time-step was set to ten steps, and the slide window was one step, which
means we used the previous ten-minute CO2 concentration data to forecast next-minute
(step) data. For the data pre-possessing, we used min-max normalization to accelerate
the training time and improve the robustness of the model. The model configuration
parameters of the three LSTM variants (i.e., single cell, stacked, and bidirectional LSTM)
are listed in Table 1.

Table 1. LSTM simulation hyperparameters for three variants.

Hyperparameter Single Cell Stacked Bidirectional

Layers 1 2 1
Timestamps 10 10 10

Slide window 1 1 1
Hidden units 32 32, 64 32

Dropout 0.5 0.5 0.5
Activation function relu relu relu

Loss function MSE MSE MSE
Optimizer Adam Adam Adam

5. Experimental Results and Discussion

In this section, we present the steady-state CO2 results derived from our predictive
model. It consists of two parts. First, we describe the setup of the experiment for the
real-world steady state of CO2 in a dweller’s bedroom. In the second part, we describe the
various variants of the LSTM strategy that we employed to predict future next step data.
We also calculate the steady-state concentration of the room.

According to Figure 5, there are several periods of rapid decline in CO2 concentration
during the recording period. The whole measuring period is divided into two parts. For
the first four days of recording, changes in CO2 concentration in the selected room were
recorded. The occupants of the room were able to enter and exit the room without any
restrictions. During these periods, there were several instances of rapid decline in CO2
concentration. This phenomenon occurred because an occupant had opened doors or
windows for ventilation. As a precautionary measure, we established a 1000 ppm alert
boundary to alert occupants of potential danger. In addition, from the figure it can be
clearly observed that during this period the concentration of CO2 exceeded 1000 ppm, with
the highest concentration reaching 1170 ppm. On the fifth day, we started to investigate
CO2 steady state. During this time, the occupant had to remain in the room and was
not allowed to leave until the experiment was completed. The steady state of the CO2
experiment did not exceed 1000 ppm. In light of Equation (2), we are able to see that
the steady state of indoor CO2 is not only affected by outdoor CO2; there is a correlation
between the CO2 concentration, air flow rate, and the respiratory rate of an individual. The
occupant performed only light intensity activities during steady-state monitoring, such as
desk work. For the remainder of the time, the occupant conducted some indoor exercises,
such as push-ups. The different activity intensities resulted in different respiratory rates
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which caused the CO2 steady-state concentration during the experiment to measure lower
than at other times. As the room considered for the experiment was naturally ventilated
and the airflow rate was affected by outside wind speed and pressure [36], ventilation rate
at different time periods was also a contributor to the CO2 steady-state change.

Figure 5. Indoor CO2 concentration level over 5-day period.

Figure 4 shows a change trend curve in CO2 in a room that fits very well with the CO2
mass Equation (1). We averaged the last 20 data points of the measured data in order to
determine the steady-state value of CO2 in the room. The calculated result was 983.2 ± 8 ppm.

A comparison of the prediction results of the three LSTM models can be seen in
Figure 6. In this work, Keras, a high-level, open source deep learning platform was applied
to our LSTM prediction model. Table 1 presents the hyperparameters of the training model.
Following fine-tuning of the forecasting model, the most successful results were obtained
by setting the training period of the three LSTM models to 20 and the batch size to 32. It
can be concluded from Figure 6 that the predicted result after applying bidirectional LSTM
is closer to the test results, and the benchmark comparison results in Table 2 also indicate
that the bidirectional LSTM produces the most effective score performance out of the three
LSTM variants.

Figure 6. Forecasting CO2 steady-state concentration level.
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Table 2. Performance evaluation.

MSE RMSE R2 MAE

Single Layer 482.32 21.96 0.968 19.46

Two layers 371.35 19.27 0.975 13.80

Bidirectional 281.24 16.77 0.981 8.95

In Figure 7, the result of using bidirectional LSTM is presented. As can be seen in
the first 600 data points, the prediction effect is decent; however, there is a noticeable
deviation between the predicted value and the test value as a result of the rapid decline in
CO2 concentration. Moreover, the residual value increases rapidly during this time period
which indicates that although this LSTM model had reasonable prediction results for stable
and slow-changing data, it still has some limitations concerning fast-changing data.

Figure 7. Results of the overall prediction and residual plot.

Based on the predicted values from the bidirectional LSTM model, we collected each
21 data points into a group. A moving window with a time step of one was used. A
steady-state value of CO2 can be calculated by selecting the first, eleventh and twenty-first
data points in accordance with Equation (3). Because the steady-state value of a single
calculation fluctuates greatly, we averaged every 30 steady-state values and calculated the
steady-state value every 30 minutes over a total period of 4 hours.

The results are shown in Figure 8 where yellow bars represent the real-world, steady-
state value of CO2, while blue bars represent the predicted steady-state value. The steady-
state value calculated in the first half hour of the experiment differed substantially from
the actual value, because CO2 concentration increased rapidly at the beginning, and the
predicted curve did not match the ideal change function of CO2. During the second half
hour, the calculated steady-state value of CO2 was 928.7 ppm. This value has a margin of
error of 5.5% when compared with the real steady-state value. After the third half hour,
the steady-state value was 908.8 ppm and the error rate was 7.6%. In the bar chart, it can
be seen that the calculated steady-state value becomes closer to the real-world value over
time. The steady-state values calculated in the last two bars were 980.5 ppm and 979.7 ppm,
respectively.
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Figure 8. Steady-state prediction for CO2.

6. Conclusions

Monitoring IAQ and CO2 levels is crucial for ensuring the health and safety of occu-
pants, especially in the wake of the COVID-19 pandemic. Poor IAQ can lead to a range of
health problems, including respiratory issues and headaches, while high levels of ambient
CO2 can lead to drowsiness and impaired cognitive function. By applying a prediction
model for indoor IAQ monitoring, building managers can ensure in advance that indoor
spaces are adequately ventilated and free from harmful pollutants, which can help prevent
the spread of COVID-19 and other illnesses. This work presents an implementation of IAQ
monitoring in real time integrating both IoT and AI technologies. For this purpose, we em-
ployed CO2 measurement data to conduct our analysis. These data were fed into the deep
learning LSTM model to predict the expected concentration level of CO2. This prediction
was combined with the steady-state equation to achieve CO2 steady-state concentration.

One limitation of this work is that it relies on regularly calibrating and maintaining the
sensors in order to ensure the accuracy and reliability of the measurements. Additionally,
the airflow rate G in this model is assumed as a constant parameter; however, it can vary
over time in real-world conditions due to factors such as indoor and outdoor pressure and
wind pressure. This can lead to changes in the measured steady-state value, which can be
significant and require careful control of the airflow rate to ensure accuracy. As a result,
this assumption may limit the accuracy of the model. As part of future work, additional
parameters will be considered such as temperature and humidity, to better observe their
relationship with CO2 and enhance accuracy. Moreover, multi-step LSTM prediction can
be added as a training step to further enhance accuracy.
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