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Abstract: Monitoring and predicting the environment in an indoor space plays an important role
in securing big data and detecting abnormal conditions in the industrial environment and living
space. This study proposes an indoor multi-environment sensor system based on intelligent edge
computing that collects and predicts environmental data. The system collects data using 14 types
of environmental sensors and object detection technology models and implements a model that
predicts indoor air quality based on the bi-directional LSTM network. The trained model shows high
performance in predicting indoor air quality (IAQ) factors, such as CO2, PM2.5, and total volatile
organic compounds (TVOC). The indoor multi-environment sensor system based on intelligent edge
computing is available for data collection and environmental prediction in various spaces without
restrictions on specific locations. This study proposes an integrated approach with various functions
by applying edge computing to indoor environment monitoring. We verify the proposed system
through various experiments.

Keywords: embedded artificial intelligence; environmental multi-sensor; flexible combination; pre-
diction; edge computing; LSTM; serial data

1. Introduction

Development in the technology of sensors, such as Microelectromechanical systems
(MEMS), embedded systems, wireless communications, and distributed processing, have
improved work performance in both industry and our daily lives. Othman et al. men-
tioned that environmental monitoring in particular has become a primary area of control
and protection which can provide real-time system and control communications with the
physical world. Therefore, it was proposed that intelligent and smart wireless sensor
network systems can collect and process large amounts of data and manage air quality,
traffic conditions, etc. [1]. As a result, they found that effective monitoring systems can
be used to replace the use of traditional human power. In particular, measuring indoor
environmental data such as carbon dioxide, fine dust, and indoor air quality is very im-
portant in modern society. An increase in mechanical and electronic components harms
the indoor environment and occurs in various spaces, such as factories, hospitals, and
daycare centers, which can be a health and accident risk for workers, indoor workers, and
even young children. Although various environmental monitoring systems have been
built in society, it is impossible to solve the problem because it deals only with a limited
space or specific data. Therefore, Peng et al. proposed a volatile organic compounds
(VOC)-centered indoor air quality monitoring system, and Dan et al. implemented an
intelligent agricultural greenhouse monitoring system to monitor temperature, illuminance,
and carbon dioxide in the greenhouse environment [2,3]. However, a simple monitoring
system without a predictive model has limitations in detecting and preventing prior risks.
To solve these problems, Qian et al., based on artificial intelligence technology, predicted
the predicted mean vote (PMV), CO2, and PM2.5 using multiple data such as classroom
occupancy, number of people, external airflow, PMV, CO2, temperature, and PM2.5 in a
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school building [4]. However, they were not able to apply this model to other environ-
ments because it is difficult to collect qualitative information such as space occupancy and
external air inflow in real time. It is difficult to use universally because it is a model that
predicts the environment when certain conditions are given. Therefore, we developed a
system capable of predicting data under universal conditions. In this paper, we develop a
multi-environment data collection and monitoring system that can be extended to various
environments using only quantitative data. We propose a deep learning model that can
predict indoor air quality after 10 min by referencing 600 histories based on the collected
environmental data.

As the amount of data collected and processed by systems increases, and the need
for intelligent models with real-time computation capabilities increases, the more edge
computing technology, a new computing paradigm, is being focused on rather than server
clouds [5]. Edge computing is a technology that facilitates rapid calculation by enabling
real-time artificial intelligence inference from sensors without an internet connection, unlike
conventional cloud-based artificial intelligence technology. As people pay more and more
attention to the quality of the environment, indoor environment monitoring combining
the Internet of Things with edge computing has become an important branch of study.
Sophisticated indoor environment monitoring can increase energy efficiency and inform
people of dangerous situations. In 2017, Tu et al. presented a series of lightweight intelli-
gent solutions for computer room management by applying the IoT [6]. They proposed a
system that could use sensors that obtain environment information and work with Rasp-
berry Pi controllers to provide adaptive responses such as air conditioning control and
alarm alerts. Their proposed system smartly changed specific spaces by being installed
in underdeveloped rooms. Assante et al. developed a low-cost sensor network system
to achieve high indoor environment quality [7]. They increased the possibility of saving
energy in indoor space by creating a system that automatically controls heating, ventilation,
and air conditioning systems by measuring the temperature and humidity through an
Arduino board. In this way, by integrating the Internet of Things and indoor environment
monitoring, which can collect sensor data, indoor energy efficiency could be increased,
and the space could be changed smartly. Therefore, this technology is suitable for systems
that collect diverse data without constraints on the installed environment and require
immediate response through real-time analysis in the field. In this study, we build a system
with edge computing technology as shown in Figures 1 and 2 because it aims to collect
more than a dozen kinds of different environmental sensor data and operate a real-time
indoor air quality prediction model based on artificial intelligence.

In summary, the main contributions of this study are as follows:

• The proposed system collects and monitors data simultaneously via 14 general-
purpose sensors. Furthermore, the user may set a data collection cycle and prediction
target data.

• The proposed indoor human detection model is implemented with the MobileNet
structure and collects the number of humans. Aside from that, we construct and
evaluate indoor human object datasets for accurate object detection.

• The proposed environmental prediction model is implemented based on the bi-
directional LSTM structure and predicts PM2.5, TVOC, and CO2. We also validate
our prediction performance by comparing its performance with gated recurrent units
(GRU), bi-directional GRU, and LSTM.

• This study proposes an integrated system through various experiments and builds a
multi-environment sensor system based on the NVIDIA Jetson Nano board, which is
the representative edge computing environment.
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Figure 1. Intelligent multi-environment sensor module: (left) front of the module (center), side of
the module, and (right) top of the module.

Figure 2. Multi-environment sensor monitoring dashboard.

Recently, environmental monitoring has evolved into a primary area apart from safety
and pollution control. In 2022, Bhoi et al. mentioned environmental monitoring as be-
ing unstable and inaccurate because it has been performed by physical models of the
atmosphere [8]. They proposed a cost-effective standardized environment-monitoring
system in a computing environment by capturing the dynamics of the environment using
machine learning technologies such as MLP, k-NN, multiple regression, and SVM. Envi-
ronmental monitoring fields such as the IoT, edge computing, and greenhouse continue to
develop [9–12], and research has been carried out to expand novel tasks such as ensuring
students’ safety and air quality measurement using machine learning technology [13,14].
Research is also being conducted to monitor the environment using qualitative data such
as human occupancy [4,15]. In particular, it was revealed that CO2 emitted by humans is
closely related to the number of people in the office space by correlating their presence and
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concentration, since CO2 is exhaled by human beings [16–18]. Therefore, environmental
monitoring research can find innovative contributions in various aspects by combining
environmental data, qualitative data, and machine learning. Based on these related studies,
we apply edge computing to indoor environment monitoring and mount an artificial intel-
ligence model for environment data collection and prediction. It collects diverse indoor
data by mounting an artificial intelligence (AI) model and not just a system that collects
data through sensors. In addition, the environmental prediction model implemented in
our proposed system can increase the efficiency of energy saving, pollution prediction, and
safety in indoor spaces by predicting future environments based on indoor environment
monitoring data. Ultimately, our study demonstrates an integrated approach to intelligent
monitoring by showing the system and experimental results of applying edge computing
to indoor environment monitoring.

2. Proposed Multi-Environment Sensor System

This study proposes an indoor multi-environment sensor system based on intelligent
edge computing that is applicable to various general-purpose spaces such as hospitals,
offices, and kindergartens. Therefore, we used NVIDIA’s Jetson Nano board to build
the entire system with a low-cost, high-performance board capable of edge computing.
Jetson Nano is a representative single-board computer developed by NVIDIA for AI
systems. Recently, it has been used as the main board for projects applying AI by loading
high-performance Maxwell GPUs for artificial intelligence operations. The indoor multi-
environment sensor system based on intelligent edge computing comprises a data collection
unit and a data processing unit, both of which are implemented in an edge computing
environment.

2.1. Data Collection Unit

The data collection unit is implemented to be linked with 14 sensors and supports 6
communication interfaces (I2C, Digital TTL, UART, RS485, USB, and Ethernet). Table 1
shows the whole communication interface and the data in our system. We manufactured
a module dedicated to a multi-environment sensor which could connect to the GPIO 40
pin of the Jetson Nano board, as shown in Figure 3. When the system was driven, each
sensor measured data according to their sampling frequency and collected integrated data
according to the user’s settings; that is, the sensors measured data individually, and when
the period set by the user became a period, the data of each sensor were simultaneously
received and stored in the database. Every sensor datum was collected at default 1-minute
intervals, which could be changed according to the user’s settings, as mentioned earlier.

Table 1. Types and details of sensors linked to intelligent multi-environment sensor modules.

Sensors Interface Data

SCD30 I2C Temperature, humidity, CO2
SHT35 I2C Temperature, humidity

BME680 I2C Temperature, humidity
SGP30 I2C TVOC, eCO2

BH1750 I2C Illumination
BMP388 I2C Air pressure
SEN0376 I2C Alcohol
SEN0321 I2C Ozone
SEN50135 Digital TTL Motion
PMS5003 UART PM2.5, PM10 (indoor)
S-pH-01A RS-485 pH

C930 USB The number of people
AirKorea Ethernet PM2.5, PM10 (outdoor)

Korea Meteorological
Administration Ethernet Temperature, humidity

(outdoor)



Electronics 2023, 12, 137 5 of 15

Serial communication (I2C, Digital TTL, UART, and RS-485) sensors were connected
to the multi-environment sensor module to measure environmental data around the sensor
in real time. Additionally, we received data measured by external monitoring stations
through Air Korea and Korea Meteorological Administration APIs and transmitted them to
the data collection unit using Ethernet communication. Therefore, the proposed system is
designed to allow users to set data collection locations for external fine dust-, temperature-,
and humidity-monitoring stations. In addition, to collect the number of people [19,20]
around the sensor module, which is directly related to the indoor environment data, the
multi-environment sensor module was loaded with our indoor human object detection
model. We obtained RGB images of a 1280 × 720 resolution around the sensor via a C930
USB camera and obtained quantitative data of the number of people calculated in our AI
model. The input image was used only for human detection and was not stored as data in
the module. The measured number of people is stored in the multi-environment database
according to the period set by the user.

Figure 3. Designed environment sensor module.



Electronics 2023, 12, 137 6 of 15

We used a low-cost Jetson Nano board to make it easy for anyone to use our system.
However, Jetson Nano has limited hardware performance, so it needed a lightweight
network. For this reason, the human object detection model was composed of networks
based on MobileNet V2, showing both high performance and light memory usage in object
recognition studies [21]. In detail, we used SSDLite, which replaced all the convolution
layers of the SSD object detection network with the separable convolution used in Mo-
bileNet V1. In addition, through it replacing the backbone of SSDLite with MobileNet V2,
we used a MobileNet V2 + SSDLite network. This study builds its own human dataset for
high-accuracy human object tracking indoors, as shown in Figure 4. The dataset collected
RGB images with a 1280 × 720 resolution using cameras installed in the center of the in-
door office space and built a VOC-style dataset using camera capture tools provided by
NVIDIA. Our own human dataset contained bounding box information and human classes
about many people in the image frame. The human object contained both the whole body
and the upper body, and the dataset consisted of a total of 1433 images with a bounding
box for 3459 people. Our own human dataset compared them in PennFudan [22] and
Aihub [23]. The PennFudan dataset is a representative human object dataset produced by
the University of Pennsylvania and the University of Fudan, and the Aihub dataset is a
human motion open dataset consisting of 2 million images. In Table 2, it is shown that our
own model based on our dataset showed higher performance than other datasets (learning
rate = 0.01, momentum = 0.9, weight decay = 5 × 10−4 , gamma = 0.1, initial learning rate
= 0.001, scheduler = cosine, and batch = 32).

Figure 4. Indoor human object detection model’s implemented data collection unit.

Table 2. Human object detection benchmark.

MobileNet V2 + SSDLite

Train Dataset Test Dataset mAP

Own human dataset Own human dataset 0.62
Own human dataset Aihub 0.79
Own human dataset PennFudan 0.80

PennFudan Own human dataset 0.19
PennFudan Aihub 0.76
PennFudan PennFudan 0.95

Aihub Own human dataset 0.10
Aihub Aihub 0.91
Aihub PennFudan 0.65
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2.2. Data Processing Unit

One of the proposed embedded system’s significant features is predicting indoor air
quality (IAQ) [24–27]. IAQ is one of the most integral components of wellness at home
and in the workplace. Our device can collect versatile air quality-related data sequentially
from the installed sensors. According to the collected time series information, the proposed
system predicts three primary vital values of IAQ, which are as follows:

1. PM2.5 (Fine dust 2.5): Fine dust is classified into PM10 and PM2.5. PM10 is dust less
than 10/1000 mm in size, and PM2.5 is dust less than 2.5/1000 mm in size [28]. Fine
dust is emitted as a mixture of solid and liquid particles in the air and is produced
by chemical reactions or naturally. Fine dust worsens respiratory diseases such as
asthma and causes a decrease in lung function. PM2.5 is not filtered through the nasal
mucosa due to its fine particles, but it directly penetrates the alveoli during inhalation,
increasing the prevalence and early mortality due to asthma or lung diseases [29]. In
addition, fine dust worsens visibility, deposits on the leaf surfaces of plants, interferes
with metabolism, and deposits on buildings, historical sites, and statues, causing
corrosion [30].

2. TVOC (Total volatile organic compounds): Total volatile organic compounds (TVOC)
is a generic term for liquid or gaseous organic compounds that are easily evaporated
into the atmosphere (benzene, toluene, ethylbenzene, xylene, styrene, etc.) [31]. These
volatile organic compounds usually cause odors even at low concentrations, and the
compounds themselves are directly harmful to the environment and the human body
or participate in photochemical reactions in the atmosphere to produce secondary
pollutants such as photochemical oxides [32]. They mainly occur in petrochemical
oil refining, the manufacturing and storage process of paint, automobile exhaust,
construction materials such as paint and adhesives, and storage tanks at gas stations.
The main sources of indoor occurrence are building materials, laundry solvents, paints,
and pesticides, which are mainly absorbed by the human body through breathing and
the skin, and acute poisoning can cause difficulty breathing, lethargy, headaches, and
vomiting, while chronic poisoning can cause blood disorders and anemia [33].

3. CO2 (Carbon dioxide): This is a colorless and tasteless gas and has little toxicity, but if
it exists in large quantities, it can increase the breathing speed of a person, resulting
in respiratory disorders, headaches, tinnitus, and increased blood pressure due to
inhalation of many harmful gases [34–36]. Indoor carbon dioxide is mainly generated
during human respiration, heating, and cooking, and it is influenced by the indoor
volume, indoor personnel, heating status, and ventilation, so it is used as a major
indicator of indoor pollution. The carbon dioxide concentration is expressed in ppm,
which means parts per million, and this is used to indicate the toxic gas ratio for an
amount of fresh air. A typical indoor level of CO2 is about 400 ppm, and an indoor
level of CO2 above 3000 ppm causes health problems [37,38].

In order to predict the above three critical IAQ metrics, the proposed data processing
unit utilizes long short-term memory (LSTM), a gated recurrent neural network, for training
the time series data [39,40]. Conventional recurrent neural networks (RNNs) train the time
series data via backpropagation through time (BPTT). However, when processing the
large-scale time step, the RNN suffers the vanishing and exploding gradient problem.
To alleviate this problem in BPTT, truncated BPTT is proposed, dividing the total time
step into sections of a certain size and computing the backpropagation. However, the
truncated BPTT disturbs the training of long-term patterns, which is called the long-term
dependency problem. The reason for the long-term dependency problem is that the input
data are converted through specific operations through the RNN cell, and some information
disappears at each time step.

Long short-term memory (LSTM) cells not only solve the long-term dependence
problem of RNN cells but also accelerate learning convergence [41–43]. The LSTM cell
divides a state into two vectors: ht and ct, where ht denotes a short-term state and ct denotes
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a long-term state. The key to LSTM is to learn what the network will remember, what
to delete, and what to read in the long-term state ct. Long-term memory passes through
the forget gate through the LSTM, loses some memory (information), and then adds some
new memory from the input gate through an addition operation. The ct created in this
way is immediately output without additional operations, and this long-term memory ct
goes through a process of deleting and adding some memories at each time step. Then,
after the addition operation, ct is copied and transferred to the tanh function of the output
gate to produce the short-term state and the output of the cell ht [44–46]. Therefore, LSTM
networks are well-suited to making predictions based on time series data, since there can
be lags of unknown durations between important events in a time series.

Based on the Pearson correlation analysis, we set the input values concerning the
prediction values. These analysis results are reported in Table 3. Several LSTM-based time
series data prediction studies showed that the bi-directional LSTM architecture enhances
the performance of the standard LSTM model [40,47–50]. Following this neural architecture
design trend, the proposed system adopts the bi-directional LSTM architecture, which
entirely makes the LSTM model understand sequential data.

Table 3. Input data of the proposed IAQ prediction model.

Prediction Model Input Values Unit

PM2.5 (indoor)
UTC time, day, humidity,

PM10 (indoor or outdoor),
PM2.5 (indoor or outdoor)

µg/m3

TVOC
UTC time, day, temperature,

TVOC, PM2.5 (indoor), PM10
(indoor), eCO2

mg/m3

CO2

UTC time, day, temperature,
CO2, TVOC, PM2.5 (outdoor),
PM10 (outdoor), the number

of people

mg/m3

3. Experimental Results
3.1. Implementation Details

For environmental prediction, AI models were actualized using TensorFlow and Keras
in a GPU implementation. For human object detection, our MobileNet V2 SSDLite model
was pretrained on MS COCO object detection and downloaded from NVIDIA Jetson. We
trained all models on an RTX 2080 Ti 11-GB GPU and AMD Ryzen 7 3800× CPU. The
trained models were mounted on the NVIDIA Jetson Nano board with a Maxwell GPU and
ARM Cortex A57 CPU. All data collected on the board were delivered to the server using
the MQTT protocol. Then, to visualize the data received on the server, we used Telegraf,
InfluxDB, and Grafana.

3.2. Unified System

We manufactured a multi-environment sensor module running in an edge computing
environment and built an integrated monitoring system that checked the collected data and
predicted the results. As shown in Figure 5, various environmental data were measured
through the sensors and transmitted to the board. In addition, images received by the
C930 camera calculated the number of real-time people through the MobileNet V2 SSDLite
Human detection algorithm mounted on the board. Information on the time and day of
the week when the data were collected was stored in the database. The collected data
performed a z-score preprocessing process, and then the results were derived through a
trained prediction model based on bi-directional LSTM. All data were delivered to the
server using the MQTT protocol [51].

We created a real-time visualization tool for users to monitor the data delivered to the
server via MQTT. We used a Telegraf agent, InfluxDB, and Grafana for visualization [52–54].
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The Telegraf agent, which was used to collect and process the desired indicators, stored the
collected data on the server as a metric in InfluxDB and Time-series DB, which provided
the ability to store and view the data in chronological order. This database works with
Grafana, the most optimized tool for visualizing time series data, to create a real-time
multi-environment data monitoring system.

Figure 5. Structure of indoor multi-environment sensor system based on intelligent edge computing.

4. Results

To learn the indoor air quality (IAQ) prediction model, we collected environmental
data in an indoor office space (280 m2) with much foot traffic through the data collection
system introduced above. The collected dataset was the time series dataset introduced in
Section 3.1. The dataset used for learning and evaluation had training (145,920), validation
(21,888), and test sets (11,240). Because the range of input features varied, the data were
preprocessed using the z-score normalization technique, which is defined as

Z =
x − µ

σ
, (1)

where x is the score, µ is the mean, and σ denotes the standard deviation.
We used an R2 score, an indicator of how well independent variables explain de-

pendent variables in regression models, for performance evaluation of the predictive
models [55]. The R2 score ranges from 0 to 1, and the closer it is to 1, the more relevant the
linear regression model is to the actual value, which is defined as follows:

R2 score =
SSE
SST

= 1 − SSR
SST

, (2)
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where the total sum of squares (SST) is ∑n
i=1(yi − ȳ)2, the sum of squared estimate of error

(SSE) is ∑n
i=1(ŷi − ȳ)2, the sum of squares due to regression (SSR) is ∑n

i=1(yi − ŷi)
2, ȳ is the

average of the observed data, and ŷ is the approximated value based on regression.
In this study, we constructed a model that predicted the IAQ using the bi-directional

structure mentioned in Section 3.2. We preprocessed and composed the data to predict the
10th datum using the past 600 historical entries. Assuming that T was the current data,
the data from T − 600 to T, which consisted of the input features shown in Table 3, were
labeled as the input data, and the T + 10 target data were labeled as the ground truth; that
is, the proposed model was able to predict future environment data after 10 min..

We further implemented a predictive model based on LSTM, GRU, and bi-directional
GRU, which are widely used in regression tasks, and compared the performance with
the proposed bi-directional LSTM. Table 4 shows the R-squared (R2) and mean absolute
error (MAE) benchmarks of the models predicting PM2.5, TVOC, and CO2 values, and as a
result, we found that the bi-directional LSTM showed the best performance. Figures 6–8
show the prediction results for PM2.5 (indoor), TVOC, and CO2. In the figures, the red
line signifies predicted data, and the green line indicates the actual data. The CO2 model
showed the highest similarity (R2 = 0.996, MAE = 0.053), followed by TVOC (R2 = 0.990,
MAE = 0.088) and PM2.5 (indoor) (R2 = 0.836, MAE = 0.329). This model worked on the
data processing unit that was an edge computing environment. Therefore, our system
yielded IAQ prediction data simultaneously with multi-environment data collection.

Figure 6. PM2.5 (indoor) prediction model.

Figure 7. TVOC prediction model.
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Figure 8. CO2 Prediction Model.

Table 4. Environment prediction model benchmark based on LSTM and GRU.

Architecture Bi-Directional LSTM LSTM Bi-Directional GRU GRU

Metric R2 MAE R2 MAE R2 MAE R2 MAE

PM2.5 0.836 0.329 0.830 0.333 0.810 0.344 0.815 0.340

TVOC 0.990 0.088 0.986 0.105 0.987 0.102 0.972 0.147

CO2 0.996 0.053 0.991 0.078 0.990 0.070 0.990 0.070

Finally, the data collected in the indoor multi-environment sensor system and the IAQ
prediction results were transmitted to the server using the MQTT protocol and output to the
real-time composite environmental sensor monitoring system produced in Section 3.2. The
system can visualize data from multiple intelligent embedded boards as well as configure a
visual dashboard by selecting the data the user wants. Figure 9 shows the monitoring UI of
the collected total data through Grafana, and Figure 10 shows the IAQ (CO2, PM2.5, and
TVOC) predicted by three different modules.

Figure 9. Total environmental data monitoring system.
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Figure 10. Indoor air quality monitoring system (CO2, PM2.5, and TVOC). Green line: predicted data;
yellow line: actual data.

5. Discussion

This work proposed an indoor multi-environment sensor system based on intelligent
edge computing with a data collection unit and a data processor unit. The proposed system
simultaneously performs environmental data collection, human detection modeling, envi-
ronmental data prediction modeling, and data transmission on the NVIDIA Jetson Nano
board. In order to collect multiple environmental data, 14 types of general-purpose sensors
were linked with our system and human detection models, which were implemented as
MobileNet, and mounted to measure the number of people. We built our own dataset
to improve the accuracy of the human detection models indoors and demonstrated high
performance compared with other datasets. Our own dataset showed a higher mAP than
the Aihub and PennFudan dataset because it included the upper body and the whole
body. The Aihub and PennFudan datasets showed low accuracy due to being obscured
indoors because they built datasets with only the whole human body. The prediction
model mounted in the system may predict environmental data with a bi-directional LSTM
structure using data collected in real time. Our model demonstrated the hypothesis with
the highest performance compared with the traditional LSTM, GRU, and bi-directional
GRU approaches. Our system has three learned prediction models and can predict one
thing—PM2.5, TVOC, and CO2—depending on the user’s settings. The monitoring results
shown in Figure 2 show the results of predicting different data from each of the three mod-
ules simultaneously. After data collection, calculation of the number of people, and data
prediction were completed, all data were transferred to the server using communication
through MQTT. Finally, the data delivered appeared in the integrated monitoring system
via Telegraf, InfluxDB, and Grafana.

6. Conclusions

Indoor environment monitoring research focuses on measuring data in real time to
provide information to users or control adaptive systems such as air conditioners and
heaters. Environment monitoring can provide efficient energy saving and safety in indoor
spaces. In this study, we implemented an integrated system that predicted specific envi-
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ronmental data as well as performing real-time environmental measurement by applying
edge computing that could be equipped with an artificial intelligence model to expand the
function of indoor environment monitoring.

This paper proposed an indoor multi-environment sensor system based on intelligent
edge computing for predicting PM2.5, TVOC, and CO2, which are representative data of
IAQ. This system not only stores various kinds of environmental data but also digitizes the
number of people around the module by implementing a human object detection model
based on the indoor human dataset. In addition, our system can detect environmental
change with an AI model that predicts indoor air quality based on the collected data. There-
fore, applying edge computing to indoor environment monitoring is of great significance to
the practical use and future development of indoor environment monitoring and prediction
systems. In the future, we will conduct research to predict and verify air quality in various
indoor industrial spaces based on multi-environmental sensor systems.
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