
Citation: Li, Z.; Hou, L.; Tao, X.;

Wang, J.; Lai, J. HBCA: A Toolchain

for High-Accuracy Branch-Fused

CNN Accelerator on FPGA with

Dual-Decimal-Fused Technique.

Electronics 2023, 12, 192. https://

doi.org/10.3390/electronics12010192

Academic Editors: D. J. Lee and

Dong Zhang

Received: 31 October 2022

Revised: 13 December 2022

Accepted: 26 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

HBCA: A Toolchain for High-Accuracy Branch-Fused CNN
Accelerator on FPGA with Dual-Decimal-Fused Technique
Zhengjie Li 1, Lingli Hou 2, Xinxuan Tao 1, Jian Wang 1 and Jinmei Lai 1,*

1 School of Microelectronics, Fudan University, No. 825, Zhangheng Road, Pudong New Area,
Shanghai 201203, China

2 Chengdu Sino Microelectronic Technology Co., Ltd., Chengdu 610041, China
* Correspondence: jmlai@fudan.edu.cn

Abstract: The programmability of FPGA suits the constantly changing convolutional neural network
(CNN). However, several challenges arise when the previous FPGA-based accelerators update CNN.
Firstly, although the model of RepVGG can balance accuracy and speed, it solely supports two
types of kernels. Meanwhile, 8-bit integer-only quantization of PyTorch which can support various
CNNs is seldom successfully supported by the FPGA-based accelerators. In addition, Winograd
F(4 × 4, 3 × 3) uses less multiplication, but its transformation matrix contains irregular decimals,
which could lead to accuracy problems. To tackle these issues, this paper proposes High-accuracy
Branch-fused CNN Accelerator (HBCA): a toolchain and corresponding FPGA-based accelerator.
The toolchain proposes inception-based branch–fused technique, which can support more types of
kernels. Meanwhile, the accelerator proposes Winograd-quantization dual decimal–fuse techniques
to balance accuracy and speed. In addition, this accelerator supports multi-types of kernels and
proposes Winograd decomposed-part reuse, multi-mode BRAM & DSP and data reuse to increase
power efficiency. Experiments show that HBCA is capable of supporting seven CNNs with different
types of kernels and more branches. The accuracy loss is within 0.1% when compared to the quantized
model. Furthermore, the power efficiency (GOPS/W) of Inception, ResNet and VGG is up to 226.6,
188.1 and 197.7, which are better than other FPGA-based CNN accelerators.

Keywords: CNN; FPGA; branch-fused; Winograd-quantization-dual-decimal-fuse

1. Introduction

Convolutional neural networks (CNNs) excel in computer vision. ResNet [1] exceeds
human-level accuracy with a top-five error rate below 5%. In order to gain higher accuracy
performance, the architectures of CNNs are constantly evolving [2], such as AlexNet [3],
RestNet [1], SENet [4], and RepVGG [5]. The architecture of CNN can be obtained by
means of autonomous search [6] or manual design [7]. Complicated CNN architecture
can obtain higher accuracy, but compared to simple CNN architecture, it decreases speed.
RepVGG [5] has multi-branches architecture at the training stage which achieves greater
accuracy, and removes side branches at the inference stage, which increases speed.

In recent years, more applications have needed CNN acceleration, such as collision-
avoiding drones, autonomous vehicles, medical image diagnostics, and failure detection
in production lines [8,9]. For CNN acceleration, accuracy is important, especially in
autonomous vehicles. There are many training techniques [10] designed to increase training
accuracy, such as simulated situation [11] and federated learning [12]. When deriving
one CNN with greater accuracy, the original CNN deployed in the accelerator with an
unsatisfactory accuracy performance should be instantly replaced by this improved CNN
for building an excellent accelerator to potentially satisfy the strict requirements of real-
world applications.

Electronics 2023, 12, 192. https://doi.org/10.3390/electronics12010192 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12010192
https://doi.org/10.3390/electronics12010192
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12010192
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12010192?type=check_update&version=2

Electronics 2023, 12, 192 2 of 20

Compared with CPU, GPU and ASIC, FPGA has the overall advantage of high speed,
low power, and programmability [13]. In particular, the programmability of FPGA is suit-
able for CNN updating. Therefore, FPGA has become an appealing platform to accelerate
CNNs [14]. Unfortunately, designing with FPGAs is a complex task requiring hardware
expertise and it is difficult for CNN software engineers to use; therefore, a CNN-to-FPGA
toolchain is proposed to tackle this issue. However, in the existing FPGA-based accelerator
research, most toolchains need to regenerate HDL when updating CNN, which means
re-synthesis and re-implementation [15]. For different timing constraints, it takes several
hours or days to generate a bitstream. It always takes several rounds of iteration of place
and route to meet all timing constraints, thereby resulting in an extremely long search
and development time. In addition, if the timing constraints are not met, the frequency
must be decreased, which inevitably leads to performance deterioration. Especially if
the utilized logic resources are significantly increased, this may lead to routing failure.
Accordingly, when one accelerator updates CNN, reliability and a short development time
are vital for achieving outstanding performance. Numerous efforts have been devoted to
achieving this goal. Firstly, OPU [16] and Light-OPU [17] both read parameters from an
off-chip memory to update CNN, which results in additional consumed power, latency, and
hardware costs. This, as for resource-limited edge devices, compression techniques [18] and
TinyML models [19,20] makes it possible to store all CNN parameters in an on-chip memory.
UpdateMEM utility [21] generates bitstream without a re-synthesis and re-implementation
process, which decreases the development time and eliminates timing and routing issues.
The architecture of CNN may change when we are updating it, such as the kernel size,
which means the accelerator needs to support more types of kernels. Although the RepVGG
can strike a balance between accuracy and speed, it still suffers from merely supporting
two types of kernels.

Hardware-oriented optimization methods reduce the complexity of the computation
and consequently increase power efficiency [9]. In addition, CNN acceleration techniques
that improve power efficiency and throughput without sacrificing accuracy or inducing
additional hardware costs are critical [22].

Original CNNs are typically 32-bit float models. During inference, a quantization
technique is widely applied to decrease CNN parameters and computation resources. An
8-bit fix-point quantization scheme has been widely employed in FPGA-based CNN ac-
celerators, but there are two major challenges. Firstly, 8-bit static fix-point quantization
may lead to large accuracy degradations. The 16-bit static fix-point quantization used
in [23] makes VGG accuracy decrease from 88.00% to 87.94%. But the 8-bit static fix-point
quantization of the VGG of paper [23] fails because activation values of fully connected
layer are zeros. In addition, 8-bit dynamic fix-points may have different effects to different
CNNs. The 8-bit dynamic fix-point quantization of paper [24] makes GoogLeNet accuracy
decrease by 7.63%, from 93.33% to 85.70%; while SqueezeNet accuracy increases by 0.02%,
from 80.3% to 80.32%. Recently, PyTorch provided 8-bit integer only quantization, which
improved the tradeoff between accuracy and speed. It adopts per-channel and per-layer
quantization, and supports various CNN architectures, and the accuracy loss is within
1% [25,26]. But the quantized model of PyTorch does not directly support FPGA develop-
ment. Paper [27] uses similar quantization methods, but it does not create a toolchain, and
does not implement all functions of the low-precision general matrix multiplication library,
which decreases accuracy.

CNN is computation-intensive [28]. Fast algorithms can reduce arithmetic complexity
and enhance power efficiency [29]. Many FPGA-based CNN accelerators utilize Winograd
fast algorithms [30–32]. Winograd F(2× 2, 3× 3) is widely used, because its transformation
matrix is simple. Furthermore, Winograd F(4 × 4, 3 × 3) can further reduce the number of
multiplications, but its transformation matrix contains irregular decimals, such as 1/24,
1/12, and 1/6, which cannot be transformed into shift operations. Paper [33] finds that the
width of the fraction has distinct impacts on accuracy when using Winograd F(4 × 4, 3 × 3).
When the width of the fraction is 13, 12, 11, and 10, the accuracy of the VGG decreases by

Electronics 2023, 12, 192 3 of 20

4.02%, 21.41%, 97.43% and 100%, respectively. The original Winograd only supports one
type of kernel whose size and stride are 3 × 3 and 1. Hence, paper [31] solely supports this
type of kernel. Paper [34] proposes the decomposable Winograd method (DWM), which
expands the usage range of Winograd to other types of kernels. Paper [30] proposes a
similar method for the stride of 2 kernel, and validates two types of kernels on FPGA. In
addition, paper [30] considers how to save Look-Up Table (LUT) resources when supporting
two types of kernels. Paper [35] proposes a more efficient approach for the kernel size
of 3 × 3 and stride of 2 and eventually saves 49.7% of LUT resources compared with
paper [30]. But papers [30,35] neglect considering how to save LUT resources when types
of kernels are larger than 2.

If the FPGA-based CNN accelerator adopts Winograd, the DSP resources are not criti-
cal [31]. Paper [30,31,33] uses the (A× B) function of DSP to complete element-wise matrix
multiplication (EWMM). Paper [36] uses the ((A + D)× B) function of DSP to complete
EWMM and partial transformation computation. DSP additionally has cascade, multiply-
accumulate, pre-adder, and dynamic reconfiguration functions. Not fully exploring these
functions will lead to consuming more LUT resources. In order to increase the memory
bandwidth of the reading activation value, paper [31] uses registers to store intermediate
activation values. It uses abundant general programmable logic compared with BRAM,
which leads to high power.

A data reuse technique is used to decrease the access number of the off-chip/on-
chip memory in order to optimize power consumptions. There are two kinds of data
reuse techniques: temporal reuse and spatial reuse [37]. Spatial reuse is widely utilized
to generate a multiple output feature map (OFM). Paper [31] uses the overlap and save
technique, and adopts a temporal reuse of an input feature map (IFM) at the column
dimension. But it does not reuse the IFM at the row dimension. Paper [30] also adopts
temporal reuse of the IFM when the kernel size is 3 × 3 and the stride is 1. Padding is
important for convolution: paper [31] only supports padding when the kernel size is 3 × 3
and the stride is 1. Paper [30] does not support padding, which results in accuracy loss.
How to implement data spatial reuse, data temporal reuse and padding are not addressed
when the accelerator adopts Winograd and supports multi types of kernels.

To deal with the above problems of implementing and updating CNN on an accel-
erator, we propose High-Accuracy Branch-Fused CNN Accelerator (HBCA): a toolchain
and corresponding accelerator. For on-chip CNN model updating, the toolchain generates
bitstream without re-synthesis and re-implementation. The toolchain proposes inception-
based branch-fuse techniques to support more branches and more types of kernels, which
balances accuracy and speed. The accelerator supports PyTorch’s 8-bit integer-only quanti-
zation and proposes a dual-decimal-fuse technique to balance accuracy and speed. The
decimal of the Winograd transformation matrix and the decimal of the scale parameter of
the 8-bit integer-only quantization fuse into one; the fused decimal is then transformed
into a multiply-and-shift operation, all computation is integer-based, and there is no dec-
imal computation. The accelerator supports data spatial reuse, data temporal reuse and
padding when Winograd of multi-types of kernels is adopted. It also proposes the Wino-
grad decomposed-part reuse (WDPR) technique which saves LUT resources, and thus
decreases power consumption. The accelerator fully explores functions of BRAM and DSP
module of FPGA, which decreases the utilization of general programmable logic resources,
and increase power efficiency.

We implement seven CNNs with four types of kernels on a Xilinx XC7V690T FPGA.
The accuracy losses of seven CNNs are within 0.1% compared to the quantized models.
The power efficiency (GOPS/W) of Inception, ResNet and VGG are 226.6, 188.1 and 197.7,
which are better than other FPGA-based CNN accelerators.

The rest of the paper is organized as follows: Section 2 describes the toolchain. Section 3
describes the accelerator. Section 4 presents the experimental results. Section 5 concludes
the paper.

Electronics 2023, 12, 192 4 of 20

2. Toolchain

The architecture of our toolchain is shown in Figure 1. Its inputs are several CNN
architectures. The outputs of the toolchain are several corresponding bitstreams. We use
PyTorch to train the CNN models.

Electronics 2023, 12, 192 4 of 21

2. Toolchain
The architecture of our toolchain is shown in Figure 1. Its inputs are several CNN

architectures. The outputs of the toolchain are several corresponding bitstreams. We use
PyTorch to train the CNN models.

Figure 1. Architecture of toolchain.

• Inception-based branch-fuse
Inception-based branch-fuse technique supports more branches and more types of

kernels than RepVGG [5]. The details are discussed in Section 2.1.
• 8-bit integer quantization

We use PyTorch to quantize the inception-based branch-fuse model and obtain an 8-
bit integer quantized model. The details are discussed in Section 2.2.
• Hardware emulator

The hardware emulator extracts quantized parameters from the quantized model,
and emulates the hardware computation of the convolutional layer, pooling the layer and
fully connected layer, and generates software-simulation files. It also achieves accuracy
from the test dataset.
• Fast algorithm

FPGA development

CNN Updater

Training

8-bit Integer
Quantization

Parameters and
Instructions
Generator

HDL Code
Generator

 HDL files

1st group
files(.mem)

1st Bitstream(.bit) New Bitstream(.bit)

CNN arch N

One group file for one CNN
1st group

files(.mem) for 1st
CNN

……

Fast Algorithm

Software
Result

2nd group
files(.mem)

N th group
files(.mem)

CNN arch 1
CNN arch 2
……

Hardware Emulator

Function Simulation

Hardware
Architecture

Kernel size
and stride

Parallelism
Exploration

Hardware Result

Result is identical?

Successfully generate
bitstream?

No

Inception-based
Branch-fuse

Yes

No

Yes

Figure 1. Architecture of toolchain.

• Inception-based branch-fuse

Inception-based branch-fuse technique supports more branches and more types of
kernels than RepVGG [5]. The details are discussed in Section 2.1.

• 8-bit integer quantization

We use PyTorch to quantize the inception-based branch-fuse model and obtain an 8-bit
integer quantized model. The details are discussed in Section 2.2.

• Hardware emulator

The hardware emulator extracts quantized parameters from the quantized model, and
emulates the hardware computation of the convolutional layer, pooling the layer and fully
connected layer, and generates software-simulation files. It also achieves accuracy from the
test dataset.

Electronics 2023, 12, 192 5 of 20

• Fast algorithm

From N CNN architectures we can obtain the kernel size and stride. If the kernel size
is greater than three, or the kernel stride is larger than one, the decomposable Winograd
method [34] of a fast algorithm is adopted. The hardware architecture supports the fast
algorithm. For example, hardware architecture includes modules of IFM and CONV
weight transformation, as well as EWMM and OFM inversion, which are necessary for
Winograd computation.

• HDL code generator

According to hardware architecture in Figure 2, the HDL code generator generates
HDL files for all modules in Figure 2 except for the DSP IPs, which are generated by Vivado
LogiCore. In particular, all BRAMs are coded using the XPM memory template [21].

Electronics 2023, 12, 192 5 of 21

From N CNN architectures we can obtain the kernel size and stride. If the kernel size
is greater than three, or the kernel stride is larger than one, the decomposable Winograd
method [34] of a fast algorithm is adopted. The hardware architecture supports the fast
algorithm. For example, hardware architecture includes modules of IFM and CONV
weight transformation, as well as EWMM and OFM inversion, which are necessary for
Winograd computation.
• HDL code generator

According to hardware architecture in Figure 2, the HDL code generator generates
HDL files for all modules in Figure 2 except for the DSP IPs, which are generated by Vi-
vado LogiCore. In particular, all BRAMs are coded using the XPM memory template [21].

Figure 2. The architecture of the accelerator.

OFM Generator

Unified Computing PE Arrays

Instruction BRAM

Fc Weight
BRAM

+

+

FC Adder
32->16

OFM
Inverse

CONV Weight
BRAM

Ping-Pong BRAM

Ping BRAM

Pong BRAM

Acc.
&

Quan.

+

Bias and
quantization BRAM

FC
Adder
 16->1

Pool

Control Logic

State
Machine

Instructions

Dual
clock

Parameters and Instructions Memory

FC Weight
Buffer

6×6
(32)6×6

(32)6×6
(32)6×6

(32)

6×6
(32)6×6

(32)6×6
(32)6×6

(32)

CONV Weight
Transformation

6×66×66×66×6

6×66×66×66×6

CONV Weight
Buffer

3×33×33×33×3

3×33×33×33×3

IC0
(P1~P4)

IC1
(P1~P4)

IFM
Transformation

6×66×66×66×6

6×66×66×66×6

IC0
(P1~P4)

IC1
(P1~P4)

IFM Buffer

6×66×66×66×6

6×66×66×66×6

IC0
(P1~P4)

IC1
(P1~P4)

FC IN Buffer

6×6
(32)6×6

(32)6×6
(32)6×6

(32)

6×6
(32)6×6

(32)6×6
(32)6×6

(32)

+

EWMM
Adder6×6

6×6

6×6

EWMM
Adder

+

6×6

6×6

6×6 4×4

6×6

OFM
Inverse

4×4

4×4

4×4 4×4

4×4 4×4

Line

Odd
6×6
Even
6×6
Odd
6×6

Even
6×6

Line

Odd
6×6

Even
6×6
Odd
6×6
Even
6×6

EWMM
Module

Figure 2. The architecture of the accelerator.

Electronics 2023, 12, 192 6 of 20

• Function simulation

We simulate HDL files and obtain hardware simulation results. The activation value
of each layer is stored in the Ping-Pong BRAM depicted in Figure 2. The content of the
Ping-Pong BRAM is written into a hardware-simulation file. The activation value of each
layer of hardware emulator is also written into a software-simulation file. We then compare
the hardware-simulation file with the software-simulation file. If the two files are different,
we modify the HDL code generator. Otherwise, we perform exploration.

• Parallelism exploration

Parallelism exploration identifies the value of ToChan in Figure 2 which represents the
number of output channels of the OFM which can be computed at the same time. The
larger value of ToChan means more logic resources utility of FPGA. The maximum value of
ToChan is bounded by the number of DSPs of FPGA. We gradually decrease ToChan from
the maximum value, and the “HDL Code Generator” generates new HDL files according
to ToChan. If Vivado can successfully generate bitstream for a certain ToChan value, we
can identify the parallelism of the output channels of the OFM. Therefore, we obtain the
first bitstream.

• CNN updater

The parameters and instructions generator of the CNN updater generates the initial-
ization file (.mem) of BRAM in the FPGA-based accelerator. The differences of CNNs in
our accelerator are parameters and instructions which are stored in BRAMs. If we want to
update CNN on FPGA, we use the first bitstream and a group initialization files (.mem)
of new CNNs to generate a new bitstream by the update_mem command [21] which is
listed below.

update_mem -meminfo accelerator.mmi -data ins.mem -proc ins_buffer/xpm_memory
_sprom_inst/xpm_memory_base_inst -bit first.bit -out new.bit.

The above commands update the content of the Instruction BRAM (-proc ins_buffer)
with new instructions (-data ins.mem). Together with more -data and -proc pairs and the first
bitstream file (first.bit), it updates the content of all BRAMs and generates a new bitstream
file (new.bit). The update_mem command avoids the re-synthesis and re-implementation
flow, which reduces the development time. By downloading the new bitstream file, the
new CNN is updated on the FPGA accelerator.

2.1. Inception-Base Branch-Fuse

We propose the inception-base branch-fuse CNN based on RepVGG and the original
inception module. It has two versions: the first one is that the largest kernel size is 3 × 3
(see Figure 3a,b); the second one is that the largest kernel is 5 × 5 (see Figure 3c,d).

The means of fusing the branch of the convolution into the backbone of the convolution
is similar to RepVGG [5]. However, RepVGG is not capable of supporting the pooling
layer. In contrast, we can transfer the average pooling into the equivalent convolution (see
Figure 4).

For the 3 × 3 average pooling described in Figure 4a, I1-1~I3-3 are IFMs, and O1-1 is
OFM. The computation details are shown in Equation (1).

OFM = (∑ IFM)/9 = (I1−1 + I1−2 + I1−3 + I2−1 + I2−2 + I2−3 + I3−1 + I3−2 + I3−3)/9 (1)

The 3× 3 average pooling can be transformed into equivalent convolution in Figure 4b.
The computation details are shown in Equation (2).

OFM = IFM ∗ Kernel =
I1−1 × 1/9 + I1−2 × 1/9 + I1−3 × 1/9+
I2−1 × 1/9 + I2−2 × 1/9 + I2−3 × 1/9+
I3−1 × 1/9 + I3−2 × 1/9 + I3−3 × 1/9

(2)

Electronics 2023, 12, 192 7 of 20Electronics 2023, 12, 192 7 of 21

(a) (b) (c) (d)

Figure 3. Inception-based branch-fuse. (a) Training (3 × 3); (b) Inference (3 × 3); (c) Training (5 × 5);
(d) Inference (5 × 5).

Figure 4. Average pooling is transformed into equivalent convolution.

For the 3 × 3 average pooling described in Figure 4a, I1-1~I3-3 are IFMs, and O1-1 is OFM.
The computation details are shown in Equation (1).
𝑂𝑂𝑂𝑂𝑂𝑂 = ��𝐼𝐼𝑂𝑂𝑂𝑂� 9� = (𝐼𝐼1−1 + 𝐼𝐼1−2 + 𝐼𝐼1−3 + 𝐼𝐼2−1 + 𝐼𝐼2−2 + 𝐼𝐼2−3 + 𝐼𝐼3−1 + 𝐼𝐼3−2 + 𝐼𝐼3−3) 9⁄ (1)

The 3 × 3 average pooling can be transformed into equivalent convolution in Figure
4b. The computation details are shown in Equation (2).

𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐼𝐼𝑂𝑂𝑂𝑂 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =
𝐼𝐼1−1 × 1 9⁄ + 𝐼𝐼1−2 × 1 9⁄ + 𝐼𝐼1−3 × 1 9⁄ +
𝐼𝐼2−1 × 1 9⁄ + 𝐼𝐼2−2 × 1 9⁄ + 𝐼𝐼2−3 × 1 9⁄ +
𝐼𝐼3−1 × 1 9⁄ + 𝐼𝐼3−2 × 1 9⁄ + 𝐼𝐼3−3 × 1 9⁄

 (2)

2.2. The 8-Bit Integer Quantization
PyTorch adopts 8-bit integer-only quantization, which uses the per-channel and per-

layer quantization strategy, and supports various CNN architectures with an accuracy
loss of below 1% [27,28]. We adopt the same quantization method, and extract quantized
parameters and deploy the quantized model on FPGA. First, we calculate MULT and
SHIFT from thescale parameter. In Equation (3), 𝑅𝑅, 𝑆𝑆, 𝑍𝑍, and 𝑄𝑄 respectively denote the
real number, scale parameter, zero-point, and quantized integer. In Equation (4), 𝑅𝑅3 is
the real number of an OFM, 𝑅𝑅1[𝑖𝑖] and 𝑅𝑅2[𝑖𝑖] are individually real numbers of IFM and
the kernel. Based on Equations (3) and (4), we derive Equation (5). 𝑆𝑆3, 𝑍𝑍3, 𝑄𝑄3 are the scale,
aero-point and quantized integer of OFM. 𝑆𝑆1 , 𝑍𝑍1 , 𝑄𝑄1 are the scale, zero-point and

3×3
(S=2)

ReLU

ReLU

+

1×13×3
AvgP

3×3
(S=1)

+

1×13×3
AvgP

ReLU

3×3
(S=2)

ReLU

ReLU

3×3
(S=1)

ReLU

Identity

5×5
(S=2)

ReLU

ReLU

+

1×13×3
AvgP

5×5
(S=1)

+

1×13×3
AvgP

Identity

ReLU

5×5
(S=2)

ReLU

ReLU

5×5
(S=1)

ReLU

3×3
(S=2)

3×3
(S=1)

K1-1
=1/9

K2-1
=1/9

K3-1
=1/9

K1-2
=1/9

K1-3
=1/9

K2-2
=1/9

K2-3
=1/9

K3-2
=1/9

K3-3
=1/9

I1-2 I1-3

I2-3

I3-3

O1-1

A
vgPool

* = O1-1

(a) Average Pooling (b) Equivalent Convolution

I1-1

I2-1

I3-1

I1-2 I1-3

I2-2 I2-3

I3-2 I3-3

I2-1

I3-1

I1-1

I2-2

I3-2

Figure 3. Inception-based branch-fuse. (a) Training (3 × 3); (b) Inference (3 × 3); (c) Training (5 × 5);
(d) Inference (5 × 5).

Electronics 2023, 12, 192 7 of 21

(a) (b) (c) (d)

Figure 3. Inception-based branch-fuse. (a) Training (3 × 3); (b) Inference (3 × 3); (c) Training (5 × 5);
(d) Inference (5 × 5).

Figure 4. Average pooling is transformed into equivalent convolution.

For the 3 × 3 average pooling described in Figure 4a, I1-1~I3-3 are IFMs, and O1-1 is OFM.
The computation details are shown in Equation (1).
𝑂𝑂𝑂𝑂𝑂𝑂 = ��𝐼𝐼𝑂𝑂𝑂𝑂� 9� = (𝐼𝐼1−1 + 𝐼𝐼1−2 + 𝐼𝐼1−3 + 𝐼𝐼2−1 + 𝐼𝐼2−2 + 𝐼𝐼2−3 + 𝐼𝐼3−1 + 𝐼𝐼3−2 + 𝐼𝐼3−3) 9⁄ (1)

The 3 × 3 average pooling can be transformed into equivalent convolution in Figure
4b. The computation details are shown in Equation (2).

𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐼𝐼𝑂𝑂𝑂𝑂 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =
𝐼𝐼1−1 × 1 9⁄ + 𝐼𝐼1−2 × 1 9⁄ + 𝐼𝐼1−3 × 1 9⁄ +
𝐼𝐼2−1 × 1 9⁄ + 𝐼𝐼2−2 × 1 9⁄ + 𝐼𝐼2−3 × 1 9⁄ +
𝐼𝐼3−1 × 1 9⁄ + 𝐼𝐼3−2 × 1 9⁄ + 𝐼𝐼3−3 × 1 9⁄

 (2)

2.2. The 8-Bit Integer Quantization
PyTorch adopts 8-bit integer-only quantization, which uses the per-channel and per-

layer quantization strategy, and supports various CNN architectures with an accuracy
loss of below 1% [27,28]. We adopt the same quantization method, and extract quantized
parameters and deploy the quantized model on FPGA. First, we calculate MULT and
SHIFT from thescale parameter. In Equation (3), 𝑅𝑅, 𝑆𝑆, 𝑍𝑍, and 𝑄𝑄 respectively denote the
real number, scale parameter, zero-point, and quantized integer. In Equation (4), 𝑅𝑅3 is
the real number of an OFM, 𝑅𝑅1[𝑖𝑖] and 𝑅𝑅2[𝑖𝑖] are individually real numbers of IFM and
the kernel. Based on Equations (3) and (4), we derive Equation (5). 𝑆𝑆3, 𝑍𝑍3, 𝑄𝑄3 are the scale,
aero-point and quantized integer of OFM. 𝑆𝑆1 , 𝑍𝑍1 , 𝑄𝑄1 are the scale, zero-point and

3×3
(S=2)

ReLU

ReLU

+

1×13×3
AvgP

3×3
(S=1)

+

1×13×3
AvgP

ReLU

3×3
(S=2)

ReLU

ReLU

3×3
(S=1)

ReLU

Identity

5×5
(S=2)

ReLU

ReLU

+

1×13×3
AvgP

5×5
(S=1)

+

1×13×3
AvgP

Identity

ReLU

5×5
(S=2)

ReLU

ReLU

5×5
(S=1)

ReLU

3×3
(S=2)

3×3
(S=1)

K1-1
=1/9

K2-1
=1/9

K3-1
=1/9

K1-2
=1/9

K1-3
=1/9

K2-2
=1/9

K2-3
=1/9

K3-2
=1/9

K3-3
=1/9

I1-2 I1-3

I2-3

I3-3

O1-1

A
vgPool

* = O1-1

(a) Average Pooling (b) Equivalent Convolution

I1-1

I2-1

I3-1

I1-2 I1-3

I2-2 I2-3

I3-2 I3-3

I2-1

I3-1

I1-1

I2-2

I3-2

Figure 4. Average pooling is transformed into equivalent convolution.

2.2. The 8-Bit Integer Quantization

PyTorch adopts 8-bit integer-only quantization, which uses the per-channel and per-
layer quantization strategy, and supports various CNN architectures with an accuracy
loss of below 1% [27,28]. We adopt the same quantization method, and extract quantized
parameters and deploy the quantized model on FPGA. First, we calculate MULT and
SHIFT from thescale parameter. In Equation (3), R, S, Z, and Q respectively denote the real
number, scale parameter, zero-point, and quantized integer. In Equation (4), R3 is the real
number of an OFM, R1[i] and R2[i] are individually real numbers of IFM and the kernel.
Based on Equations (3) and (4), we derive Equation (5). S3, Z3, Q3 are the scale, aero-point
and quantized integer of OFM. S1, Z1, Q1 are the scale, zero-point and quantized integer of
IFM. S2, Z2, Q2 are the scale, zero-point and quantized integer of the kernel.

In Equation (6), S1, S2 and S3 are real numbers, M is the only float-point and in the
interval (0, 1). By doubling M until the product is in the interval [0.5 , 1), the product
is then converted to an approximated fixed-point equivalent value MULT. The time of
doubling is SHIFT. Therefore, M can be represented by a truncated integer multiplier
MULT with a right SHIFT. MULT and SHIFT are both integers. Equation (5) can be
transformed into Equation (7). The computation details are shown in paper [25,26].

R = S(Q− Z) (3)

R3 = ∑ R1[i]R2[i] (4)

Electronics 2023, 12, 192 8 of 20

Q3 = Z3 +
S1S2

S3

[
∑(Q1[i]− Z1)(Q2[i]− Z2)

]
(5)

M =
S1S2

S3
≈ 2−SHIFT MULT (6)

Q3 = Z3 + MULT
[
∑(Q1[i]− Z1)(Q2[i]− Z2)

]
� SHIFT (7)

3. Accelerator

A fast algorithm reduces the arithmetic complexity of the convolution, which increases
speed. Winograd is one of the fast algorithms, which is more suitable for small kernels.
Additionally, the most popular kernel size is 3× 3 and 5× 5. Therefore, we adopt Winograd
to compute the convolution. Meanwhile, we are able to keep the accuracy loss negligible
and save LUT resources when supporting multi-types of kernels.

3.1. Dual-Decimal-Fuse Technique

The Winograd convolution includes four modules (see Figure 5a): the IFM transfor-
mation, kernel transformation, element-wise matrix multiplication (EWMM) and OFM
inversion. Equation (8) is Winograd F (2 × 2, 3 × 3), which is widely used, as its transfor-
mation matrices are simple (see Equation (9)).

OFM2×2 = AT
2×4

[(
BT

4×4 IFM4×4B4×4

)
�
(

G4×3Kernel3×3GT
3×4

)]
A4×2 (8)

BT
4×4 =

1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

,G4×3 =

1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

, A4×2 =

1 0
1 1
1 −1
0 −1

4×2

(9)

Electronics 2023, 12, 192 8 of 21

quantized integer of IFM. 𝑆𝑆2, 𝑍𝑍2, 𝑄𝑄2 are the scale, zero-point and quantized integer of the
kernel.

In Equation (6), 𝑆𝑆1, 𝑆𝑆2 and 𝑆𝑆3 are real numbers, 𝑂𝑂 is the only float-point and in
the interval (0, 1). By doubling 𝑂𝑂 until the product is in the interval [0.5, 1), the product
is then converted to an approximated fixed-point equivalent value 𝑂𝑂𝑀𝑀𝑀𝑀𝑇𝑇. The time of
doubling is 𝑆𝑆𝑆𝑆𝐼𝐼𝑂𝑂𝑇𝑇. Therefore, 𝑂𝑂 can be represented by a truncated integer multiplier
𝑂𝑂𝑀𝑀𝑀𝑀𝑇𝑇 with a right 𝑆𝑆𝑆𝑆𝐼𝐼𝑂𝑂𝑇𝑇 . 𝑂𝑂𝑀𝑀𝑀𝑀𝑇𝑇 and 𝑆𝑆𝑆𝑆𝐼𝐼𝑂𝑂𝑇𝑇 are both integers. Equation (5) can be
transformed into Equation (7). The computation details are shown in paper [25,26].

𝑅𝑅 = 𝑆𝑆(𝑄𝑄 − 𝑍𝑍) (3)

𝑅𝑅3 = �𝑅𝑅1[𝑖𝑖]𝑅𝑅2[𝑖𝑖] (4)

𝑄𝑄3 = 𝑍𝑍3 +
𝑆𝑆1𝑆𝑆2
𝑆𝑆3

��(𝑄𝑄1[𝑖𝑖] − 𝑍𝑍1)(𝑄𝑄2[𝑖𝑖] − 𝑍𝑍2)� (5)

𝑂𝑂 =
𝑆𝑆1𝑆𝑆2
𝑆𝑆3

≈ 2−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑀𝑀𝑀𝑀𝑇𝑇 (6)

𝑄𝑄3 = 𝑍𝑍3 + 𝑂𝑂𝑀𝑀𝑀𝑀𝑇𝑇 ��(𝑄𝑄1[𝑖𝑖] − 𝑍𝑍1)(𝑄𝑄2[𝑖𝑖] − 𝑍𝑍2)� ≫ 𝑆𝑆𝑆𝑆𝐼𝐼𝑂𝑂𝑇𝑇 (7)

3. Accelerator
A fast algorithm reduces the arithmetic complexity of the convolution, which in-

creases speed. Winograd is one of the fast algorithms, which is more suitable for small
kernels. Additionally, the most popular kernel size is 3 × 3 and 5 × 5. Therefore, we adopt
Winograd to compute the convolution. Meanwhile, we are able to keep the accuracy loss
negligible and save LUT resources when supporting multi-types of kernels.

3.1. Dual-Decimal-Fuse Technique
The Winograd convolution includes four modules (see Figure 5a): the IFM transfor-

mation, kernel transformation, element-wise matrix multiplication (EWMM) and OFM in-
version. Equation (8) is Winograd F (2 × 2, 3 × 3), which is widely used, as its transfor-
mation matrices are simple (see Equation (9)).

Figure 5. Fast Algorithm (a) Winograd (b) Dual-decimal-fuse.

Kernel
Trans.

1/24,
1/12,
1/6...

8-bit integer
quantization

S1, S2, S3

Mfuse=(S1×S2)/
(S3×24×24)

MULT, SHIFT

OFM×MULT (OFM×MULT)
>> SHIFT

IFM
Trans.

EWMM OFM
Inversion

(a) Winograd

(b) Dual-decimal-fuse

Figure 5. Fast Algorithm (a) Winograd (b) Dual-decimal-fuse.

In Equation (9), there is 1/2 in the kernel transformation matrix (G4×3). Although it is
not an integer, it can be converted to the right shift operation.

Equation (10) is Winograd F (4 × 4, 3 × 3), which is seldom used because its transfor-
mation matrices are complex (see Equation (11)).

OFM4×4 = AT
4×6

[(
BT

6×6 IFM6×6B6×6

)
�
(

G6×3Kernel3×3GT
3×6

)]
A6×4 (10)

Electronics 2023, 12, 192 9 of 20

BT
6×6 =

4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1

,G6×3 =

1
4 0 0
− 1

6 − 1
6 − 1

6
− 1

6
1
6 − 1

6
1

24
1

12
1
6

1
24 − 1

12
1
6

0 0 1

, A6×4 =

1 0 0 0
1 1 1 1
1 −1 1 −1
1 2 4 8
1 −2 4 −8
0 0 0 1

6×4

(11)

Based on Equation (11), the largest absolute value is equal to 8, and the smallest one is
1/24. In particular, its kernel transformation matrix contains 1/6, 1/12, and 1/24, which
cannot be converted into shift operations. If we do not properly deal with these decimals,
the accuracy will decrease.

We propose the dual-decimal-fuse technique to deal with these decimals. The decimals
(1/6, 1/12, 1/24) of the kernel transform matrix are fused into decimals of scale (S1, S2, S3)
of the 8-bit integer quantization (see Figure 5b). The fused decimal M f use is transformed
into multiply and shift operations.

The detail of the dual-decimal-fuse technique are shown in Equations (12)–(14). At the
base of Equation (4), we add bias (Bias) into the equation, because for each output channel
of OFM of a convolutional layer, there is a corresponding bias. Consequently, we arrive at
Equation (12).

S3(Q3 − Z3) = {∑ S1(Q1[i]− Z1)S2(Q2[i]− Z2) + Bias}
= S1S2

{
∑(Q1[i]− Z1)(Q2[i]− Z2) +

Bias
S1S2

} (12)

We can then obtain Equation (13).

(Q3 − Z3) =
S1S2

S3

{
∑(Q1[i]− Z1)(Q2[i]− Z2) +

Bias
S1S2

}
(13)

Because the convolution is 2-D, we add two 1/24 of the Winograd kernel transforma-
tion matrix into S1S2/S3 of Equation (13); we then derive M f use and Equation (14).

(Q3 − Z3) =
S1S2

S3 × 24× 24

{
∑(Q1 − Z1)(Q2 − Z2)× 24× 24 +

Bias
S1S2

× 24× 24
}

(14)

In Equation (14), ∑(Q1 − Z1)(Q2 − Z2)× 24× 24 denotes that the Winograd kernel
transformation matrix (G6×3) is multiplied by 24, and the new G6×3 is shown in Equation (15).

G6×3 =

6 0 0
−4 −4 −4
−4 4 −4
1 2 4
1 −2 4
0 0 24

 (15)

Based on the fact that 24× 24 = 8× 3× 8× 3 = 64× 9 = 26 × 9, Equation (15) can be
further transformed into Equation (16).

(Q3 − Z3) =
S1S2

S3 × 9

{[
∑(Q1[i]− Z1)(Q2[i]− Z2)× 24× 24

]
� 6 +

Bias
S1S2

× 9
}

(16)

In PyTorch, S1S2/S3 can be transformed into multiply and shift operations (see
Equation (6)). By using the same method, S1S2/(S3 × 9) can also be transformed into
multiply and shift operations. Therefore, Equation (16) can be optimized into Equation (17).

(Q3 − Z3) = MULT
{[

∑(Q1[i]− Z1)(Q2[i]− Z2)× 24× 24
]
� 6 +

Bias
S1S2

× 9
}
� SHIFT (17)

Electronics 2023, 12, 192 10 of 20

The dual-decimal-fuse technique makes the Winograd kernel transformation matrix
24 times larger, and decimals such as 1/6, 1/12, and 1/24 are all transformed into integers,
which maintains accuracy with negligible loss.

3.2. Winograd Decomposed-Part Reuse Technique

The original Winograd only supports the kernel whose size is 3 × 3 and whose stride
is 1. Paper [34] proposes DWM, which makes Winograd support all types of kernels, and
validates on GPU. When we implement DWM on FPGA, we must consider how to save LUT
resources across different types of kernels. For example, Table 1 shows the transformation
function of the original DWM and Winograd decomposed-part reuse (WDPR) under four
types of kernels.

Table 1. Transformation function of DWM and WDPR under four types of kernels.

Kernel Size (K × K) Stride
(S)

Original DWM WDPR

Part Transformation Part Transformation

3 × 3 1 1 F(4 × 4, 3 × 3) 1 F(4 × 4, 3 × 3)

3 × 3 2 1 F(4 × 4, 2 × 2) 1 F(4 × 4, 3 × 3)
2 F(4 × 4, 2 × 1) 2 F(4 × 4, 3 × 3)
3 F(4 × 4, 1 × 2) 3 F(4 × 4, 3 × 3)
4 F(4 × 4, 1 × 1) 4 F(4 × 4, 3 × 3)

5 × 5 1 1 F(4 × 4, 3 × 3) 1 F(4 × 4, 3 × 3)
2 F(4 × 4, 3 × 2) 2 F(4 × 4, 3 × 3)
3 F(4 × 4, 2 × 3) 3 F(4 × 4, 3 × 3)
4 F(4 × 4, 2 × 2) 4 F(4 × 4, 3 × 3)

5 × 5 2 1 F(4 × 4, 3 × 3) 1 F(4 × 4, 3 × 3)
2 F(4 × 4, 3 × 2) 2 F(4 × 4, 3 × 3)
3 F(4 × 4, 2 × 3) 3 F(4 × 4, 3 × 3)
4 F(4 × 4, 2 × 2) 4 F(4 × 4, 3 × 3)

Total 7 1

From Table 1, we find that the original DWM uses different transformation functions
for different decomposed parts. Therefore, for four types of kernels, there is a total of seven
transformation functions. If we implement seven transformation modules, they will use
extensive logic resources. Furthermore, for different layers, the utilization rate is low. For
example, if a convolution layer’s kernel size is 3 × 3 and stride is 2, the accelerator uses
F(4 × 4, 2 × 2), F(4 × 4, 2 × 1), F(4 × 4, 1 × 2) and F(4 × 4, 1 × 1) transformation modules.
The accelerator does not use F(4 × 4, 3 × 3), F(4 × 4, 3 × 2) and F(4 × 4, 2 × 3). Therefore,
we propose the Winograd decomposed-part reuse technique; for different types of kernels,
each decomposed part is padded into the same shape. Therefore, four decomposed parts of
IFM are all 6 × 6; four decomposed parts of Kernel are all 3 × 3. In this way, the output of
the EWMM of each decomposed part has the same shape of 6 × 6. Hence, we can add the
output of the EWMM of each decomposed part, then do one OFM inverse computation.
There are two OFM inverse modules in Figure 2, because the accelerator at most generates
2 × 4 × 4 OFMs at one clock for the pooling layer. For the original DWM, there are four
OFM inverse modules for four decomposed parts, as the four outputs of the EWMM have
a different shape. Therefore, the Winograd decomposed-part reuse technique can increase
the utilization rate of transformation modules and decrease logic resources for different
types of kernels, which decreases power.

3.3. The Architecture of the Accelerator

The architecture of the accelerator is shown in Figure 2. There are four main modules:
Unified computing PE arrays, the OFM Generator, parameters and instructions memory
and control logic.

Electronics 2023, 12, 192 11 of 20

The control logic reads and decodes instructions from Instruction BRAM, and controls
the other three main modules. Instructions contain CNN architecture information, such as
kernel size, stride, input channels, output channels and IFM size, etc.

The unified computing PE arrays the complete Winograd convolution and fully con-
nect computation. The EWMM module consists of two lines; each line includes 144 PEs
(6 × 6 × 4 = 144). For K = 3, S = 2; K = 5, S = 1; K = 5, S = 2, the line computes four
decomposed parts of the EWMM. Two lines can compute two input channels of the EWMM
or two 4 × 4 OFMs. For K = 3, S = 1, one line computes four input channels of the EWMM.
In particular, the PE is implemented by DSP, and we use cascade the function of DSP to
support the Winograd decomposed-part reuse technique. There are odd PEs and even
PEs which are shown in Figure 6a. The functions of odd PEs and even PEs are defined by
Equations (18) and (19), respectively.

PCOUT = A× B (18)

P = D× B + PCIN (19)

Electronics 2023, 12, 192 11 of 21

For example, if a convolution layer’s kernel size is 3 × 3 and stride is 2, the accelerator uses
F(4 × 4, 2 × 2), F(4 × 4, 2 × 1), F(4 × 4, 1 × 2) and F(4 × 4, 1 × 1) transformation modules. The
accelerator does not use F(4 × 4, 3 × 3), F(4 × 4, 3 × 2) and F(4 × 4, 2 × 3). Therefore, we
propose the Winograd decomposed-part reuse technique; for different types of kernels,
each decomposed part is padded into the same shape. Therefore, four decomposed parts
of IFM are all 6 × 6; four decomposed parts of Kernel are all 3 × 3. In this way, the output
of the EWMM of each decomposed part has the same shape of 6 × 6. Hence, we can add
the output of the EWMM of each decomposed part, then do one OFM inverse computa-
tion. There are two OFM inverse modules in Figure 2, because the accelerator at most
generates 2 × 4 × 4 OFMs at one clock for the pooling layer. For the original DWM, there
are four OFM inverse modules for four decomposed parts, as the four outputs of the
EWMM have a different shape. Therefore, the Winograd decomposed-part reuse tech-
nique can increase the utilization rate of transformation modules and decrease logic re-
sources for different types of kernels, which decreases power.

3.3. The Architecture of the Accelerator
The architecture of the accelerator is shown in Figure 2. There are four main modules:

Unified computing PE arrays, the OFM Generator, parameters and instructions memory
and control logic.

The control logic reads and decodes instructions from Instruction BRAM, and con-
trols the other three main modules. Instructions contain CNN architecture information,
such as kernel size, stride, input channels, output channels and IFM size, etc.

The unified computing PE arrays the complete Winograd convolution and fully con-
nect computation. The EWMM module consists of two lines; each line includes 144 PEs (6
× 6 × 4 = 144). For K = 3, S = 2; K = 5, S = 1; K = 5, S = 2, the line computes four decomposed
parts of the EWMM. Two lines can compute two input channels of the EWMM or two 4 ×
4 OFMs. For K = 3, S = 1, one line computes four input channels of the EWMM. In partic-
ular, the PE is implemented by DSP, and we use cascade the function of DSP to support
the Winograd decomposed-part reuse technique. There are odd PEs and even PEs which
are shown in Figure 6a. The functions of odd PEs and even PEs are defined by Equations
(18) and (19), respectively.

Figure 6. Multi-Mode DSP (a) DSP of PE. (b) DSP of Acc. & Quant. Multiply module.

𝑃𝑃𝑃𝑃𝑂𝑂𝑀𝑀𝑇𝑇 = 𝐴𝐴 × 𝐵𝐵 (18)

𝑃𝑃 = 𝐷𝐷 × 𝐵𝐵 + 𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃 (19)

The cascade function of the DSP computes the addition of the EWMM of the decom-
posed part, which avoids using LUT resources to implement Adder.

3.3.1. Ping-Pong BRAM with Multi-Mode BRAM

Odd PE
DSP P

Clk

A

PCOUTB

Even PE
DSP P

Clk
A

PCIN

B

Partial sum
of EWMM

product

Transformed
IFM

Transformed
Kernel

DSP P

Clk
A

B

OFMtemp

Mult

D
Bias

OFMquant-mult

Transformed
IFM

Transformed
Kernel

(a)

(b)

Figure 6. Multi-Mode DSP (a) DSP of PE. (b) DSP of Acc. & Quant. Multiply module.

The cascade function of the DSP computes the addition of the EWMM of the decom-
posed part, which avoids using LUT resources to implement Adder.

3.3.1. Ping-Pong BRAM with Multi-Mode BRAM

FPGA has many on-chip memory resources—BRAMs. We use multi-mode BRAM to
store the activation value, which saves DFF resources of Configurable Logic Block (CLB)
and decreases power. At first, the OFM is divided into several 4 × 4 parts (see Figure 7a),
because the output size of Winograd F(4 × 4, 3 × 3) is 4 × 4. In the row dimension,
there are odd R4s and even R4s. In the column dimension, there are odd C4s and even
C4s. Therefore, there are four different colors, that is “Odd R4&Odd C4”, “Even R4&Odd
C4”, “Odd R4&Even C4” and “Even R4&Even C4”. In Figure 7b, each 4 × 4 part has a
coordinator. In Figure 7c, there are four BRAMs to store four different colors of 4 × 4 parts.
Four BRAMs works in a dual-port mode. By using four BRAMs to store the OFM, and
using dual-port, Ping-pong BRAM can read 4 × 4 × 8 IFMs at one clock, which meets the
demand of large volumes of reading of IFM in the Winograd computation. By this method,
we decrease the usage of DFF resources, which saves power, and increases reading speed.

Electronics 2023, 12, 192 12 of 20

Electronics 2023, 12, 192 12 of 21

FPGA has many on-chip memory resources—BRAMs. We use multi-mode BRAM to
store the activation value, which saves DFF resources of Configurable Logic Block (CLB)
and decreases power. At first, the OFM is divided into several 4 × 4 parts (see Figure 7a),
because the output size of Winograd F(4 × 4, 3 × 3) is 4 × 4. In the row dimension, there
are odd R4s and even R4s. In the column dimension, there are odd C4s and even C4s.
Therefore, there are four different colors, that is “Odd R4&Odd C4”, “Even R4&Odd C4”,
“Odd R4&Even C4” and “Even R4&Even C4”. In Figure 7b, each 4 × 4 part has a coordi-
nator. In Figure 7c, there are four BRAMs to store four different colors of 4 × 4 parts. Four
BRAMs works in a dual-port mode. By using four BRAMs to store the OFM, and using
dual-port, Ping-pong BRAM can read 4 × 4 × 8 IFMs at one clock, which meets the demand
of large volumes of reading of IFM in the Winograd computation. By this method, we
decrease the usage of DFF resources, which saves power, and increases reading speed.

Figure 7. Ping-pong BRAM implemented by multi-mode BRAM: (a) OFM is divided into several 4
× 4 parts; (b) each 4 × 4 part has a coordinator; (c) Four BRAMs store all 4×4 parts of OFM.

3.3.2. Data Reuse and Padding of IFM Buffer
The accelerator supports four types of kernels, the IFM buffer reads the activation

value from Ping-pong BRAM, which reuses data temporally at the column dimension,
and reuses data spatially at the row dimension. It also supports padding, which preserves
accuracy with negligible loss.

Figure 8a shows how the IFM buffer works when the kernel size is 5 × 5 and the stride
is 1. Other types of kernels work similarly. The IFM buffer has eight ports to read activa-
tion values; that is, “Even R4 & Even C4 PortB”, “Even R4 & Even C4 PortA”, “Even R4 &
Odd C4 PortB”, “Even R4 & Odd C4 PortA”, “Odd R4 & Even C4 PortB”, “Odd R4 & Even
C4 PortA”, “Odd R4 & Odd C4 PortB” and “Odd R4 & Odd C4 PortA”. When the kernel
size is 5 × 5 and the stride is 1, “R1-R8 & C3-C10” is one output and “R5-R12 & C3-C10”
is another output. Data of “R5-R8 & C3-C10” are reused spatially.

In Figure 8b, at clock 0, “R3-R12 & C13-C16” reads “1,1”, “2,1” and “3,1” in Figure
7b. In Figure 8c, at clock 1, “R3-R12 & C13-C16” reads “1,3”, “2,3” and “3,3” in Figure 7b;

4×4

C
4

#1

O
d

d
C

4

R4 #1
Odd R4

R4 #4
Even R4

R4 #2
Even R4
R4 #3
Odd R4

R4 #n-1
Odd R4
R4 #n-2
Even R4

C
4

#2

Ev
en

 C
4

C
4

#3

O
d

d
C

4
C

4
#4

Ev
en

 C
4

C
4

#n
-1

O
d

d
C

4
C

4
#n

Ev

en
 C

4

(a)

4×4 4×4 4×4

4×4 4×4 4×4 4×4

... ...

... ...

4×4 4×4

4×4 4×4

4×4 4×4 4×4 4×4

4×4 4×4 4×4 4×4

... ...

... ...

4×4 4×4

4×4 4×4

... ...

...

...
...

4×4 4×4 4×4 4×4

4×4 4×4 4×4 4×4

... ...

... ...

4×4 4×4

4×4 4×4

1,1

C
4

#1

O
d

d
C

4

R4 #1
Odd R4

R4 #4
Even R4

R4 #2
Even R4
R4 #3
Odd R4

R4 #n-1
Odd R4
R4 #n-2
Even R4

C
4

#2

Ev
en

 C
4

C
4

#3

O
d

d
C

4
C

4
#4

Ev
en

 C
4

C
4

#n
-1

O
d

d
C

4
C

4
#n

Ev

en
 C

4

(b)

1,2 1,3 1,4

2,1 2,2 2,3 2,4

... ...

... ...

1,
n-1 1,n
2,

n-1 2,n

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

... ...

... ...

3,
n-1 3,n
4,

n-1 4,n

... ...

...

...
...

n-1,
1

n-1,
2

n-1,
3

n-1,
4

n,1 n,2 n,3 n,4

... ...

... ...

n-1,
n-1

n-1,
n

n,
n-1 n,n

Odd-Odd
TDP BRAM
Odd-Even

TDP BRAM
Even-Odd

TDP BRAM
Even-Even
TDP BRAM

One Output Channel

O
ne

 E
W

M
M

 M
od

ul
e 1,1 1,3 ... 1,

n-1 3,1 3,3 ... 3,
n-1 n-1,

1
n-1,

3 ... n-1,
n-1

1,2 1,4 ... 1,n 3,2 3,4 ... 3,n n-1,
2

n-1,
4 ... n-1,

n...

2,1 2,3 ... 2,
n-1 4,1 4,3 ... 4,

n-1 n,1 n,3 ... n,
n-1...

2,2 2,4 ... 2,n 4,2 4,4 ... 4,n n,2 n,4 ... n,n...

(c)

Figure 7. Ping-pong BRAM implemented by multi-mode BRAM: (a) OFM is divided into several
4 × 4 parts; (b) each 4 × 4 part has a coordinator; (c) Four BRAMs store all 4 × 4 parts of OFM.

3.3.2. Data Reuse and Padding of IFM Buffer

The accelerator supports four types of kernels, the IFM buffer reads the activation
value from Ping-pong BRAM, which reuses data temporally at the column dimension, and
reuses data spatially at the row dimension. It also supports padding, which preserves
accuracy with negligible loss.

Figure 8a shows how the IFM buffer works when the kernel size is 5 × 5 and the stride
is 1. Other types of kernels work similarly. The IFM buffer has eight ports to read activation
values; that is, “Even R4 & Even C4 PortB”, “Even R4 & Even C4 PortA”, “Even R4 & Odd
C4 PortB”, “Even R4 & Odd C4 PortA”, “Odd R4 & Even C4 PortB”, “Odd R4 & Even C4
PortA”, “Odd R4 & Odd C4 PortB” and “Odd R4 & Odd C4 PortA”. When the kernel size
is 5 × 5 and the stride is 1, “R1-R8 & C3-C10” is one output and “R5-R12 & C3-C10” is
another output. Data of “R5-R8 & C3-C10” are reused spatially.

In Figure 8b, at clock 0, “R3-R12 & C13-C16” reads “1,1”, “2,1” and “3,1” in Figure 7b.
In Figure 8c, at clock 1, “R3-R12 & C13-C16” reads “1,3”, “2,3” and “3,3” in Figure 7b;
“R3-R12 & C9-C12” reads “1,2”, “2,2” and “3,2” in Figure 7b. And “R3-R12 & C5-C8” reuses
“1,1”, “2,1” and “3,1”. In Figure 8d, at clock 2, “R3-R12 & C1-C4” reuses “1,1”, “2,1” and
“3,1”; “R3-R12 & C5-C8” reuses “1,2”, “2,2” and “3,2”; “R3-R12 & C9-C12” reuses “1,3”,
“2,3” and “3,3”. Therefore, the IFM buffer reuses data temporally at the column dimension.
In Figure 8c,d, at clock 1–2, the IFM buffer outputs 2 × 8 × 8, and supports “0” padding.

Electronics 2023, 12, 192 13 of 20

Electronics 2023, 12, 192 13 of 21

“R3-R12 & C9-C12” reads “1,2”, “2,2” and “3,2” in Figure 7b. And “R3-R12 & C5-C8” re-
uses “1,1”, “2,1” and “3,1”. In Figure 8d, at clock 2, “R3-R12 & C1-C4” reuses “1,1”, “2,1”
and “3,1”; “R3-R12 & C5-C8” reuses “1,2”, “2,2” and “3,2”; “R3-R12 & C9-C12” reuses
“1,3”, “2,3” and “3,3”. Therefore, the IFM buffer reuses data temporally at the column
dimension. In Figure 8c,d, at clock 1–2, the IFM buffer outputs 2 × 8 × 8, and supports “0”
padding.

(a) (b)

(c) (d)

Figure 8. Data temporal & spatial reuse and padding of IFM buffer: (a) How IFM buffer works when
kernel size is 5 × 5, stride is 1; (b) clock 0; (c) clock 1; (d) clock 2.

3.3.3. OFM Generator with Multi-Mode DSP
The details of the OFM generator are illustrated in Figure 9. The OFM generator uses

multiply-accumulate, pre-adder and dynamic reconfiguration of the DSP.

Odd R4
Odd C4
PortA

Odd R4
Even C4

PortA

Even R4
Odd C4
PortA

Even R4
Even C4

PortA

Even R4
Odd C4

PortB

Even R4
Even C4

PortB

Odd R4
Odd C4

PortB

Odd R4
Even C4

PortB

161 2 3 4 5 6 7 8 9 10 11 12 13

12

1
2
3
4
5
6
7
8
9

10
11

14 15

12

1
2
3
4
5
6
7
8
9
10
11

161 2 3 4 5 6 7 8 9 10 11 12 13
0 0 0 0

0 0 0 0

4-2 4-44-3

1-1

2-1

3-1

4-1

1-2 1-41-3

2-2 2-42-3

3-2 3-43-3

5-2 5-45-35-1

6-2 6-46-36-1

7-2 7-47-37-1

8-2 8-48-38-1

10-2 10-410-310-1

9-2 9-49-39-1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

14 15

1,1

2,1

3,1

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0
0 0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0 0
0 0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

4-2 4-44-3

1-1

2-1

3-1

4-1

1-2 1-41-3

2-2 2-42-3

3-2 3-43-3

5-2 5-45-35-1

6-2 6-46-36-1

7-2 7-47-37-1

8-2 8-48-38-1

10-2 10-410-310-1

9-2 9-49-39-1

10-5 10-6 10-7 10-8

4-6 4-84-7

1-5

2-5

3-5

4-5

1-6 1-81-7

2-6 2-82-7

3-6 3-83-7

5-6 5-85-75-5

6-6 6-86-76-5

7-6 7-87-77-5

8-6 8-88-78-5

9-6 9-89-79-5

4-10 4-124-11

1-9

2-9

3-9

4-9

1-10 1-121-11

2-10 2-122-11

3-10 3-123-11

5-10 5-125-115-9

6-10 6-126-116-9

7-10 7-127-117-9

8-10 8-128-118-9

10-
10

10-
12

10-
1110-9

9-10 9-129-119-9

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3
12

1
2
3
4
5
6
7
8
9
10
11

161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10-1 10-2 10-3 10-4 10-9 10-
10

10-
11

10-
12

4-2 4-44-3

1-1

2-1

3-1

4-1

1-2 1-41-3

2-2 2-42-3

3-2 3-43-3

5-2 5-45-35-1

6-2 6-46-36-1

9-2 9-49-39-1

8-2 8-48-38-1

7-2 7-47-37-1

0 0

0 0 0

0 0 0 0

0 0 0 00 0 0 00

4-10 4-124-11

1-9

2-9

3-9

4-9

1-10 1-121-11

2-10 2-122-11

3-10 3-123-11

5-10 5-125-115-9

6-10 6-126-116-9

7-10 7-127-117-9

8-10 8-128-118-9

9-10 9-129-119-9

0 0

0 0

10-5 10-6 10-7 10-8

4-6 4-84-7

1-5

2-5

3-5

4-5

1-6 1-81-7

2-6 2-82-7

3-6 3-83-7

5-6 5-85-75-5

6-6 6-86-76-5

7-6 7-87-77-5

8-6 8-88-78-5

9-6 9-89-79-5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0 0 0 00 0

0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,312

1
2
3
4
5
6
7
8
9
10
11

161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 8. Data temporal & spatial reuse and padding of IFM buffer: (a) How IFM buffer works when
kernel size is 5 × 5, stride is 1; (b) clock 0; (c) clock 1; (d) clock 2.

3.3.3. OFM Generator with Multi-Mode DSP

The details of the OFM generator are illustrated in Figure 9. The OFM generator uses
multiply-accumulate, pre-adder and dynamic reconfiguration of the DSP.

Electronics 2023, 12, 192 14 of 21

Figure 9. The details of OFM generator.

The partial input channel of IFMs generates temporary OFMs which are represented
as 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡, the OFM of all input channel of IFM is denoted as OFM𝑎𝑎𝑎𝑎𝑎𝑎, and the bias is
represented as 𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵. Therefore, OFM𝑎𝑎𝑎𝑎𝑎𝑎 can be calculated by Equation (20). Equation (20)
can be implemented by the accumulation function of the DSP.

𝑂𝑂𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 = � 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡

𝐶𝐶𝐶𝐶𝑎𝑎

1
+ 𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵 (20)

From Equation (7), the first step to quantize the OFM is multiplication by 𝑂𝑂𝑀𝑀𝑀𝑀𝑇𝑇. We
then get 𝑂𝑂𝑂𝑂𝑂𝑂𝑞𝑞𝑓𝑓𝑎𝑎𝑎𝑎𝑡𝑡−𝑡𝑡𝑓𝑓𝑚𝑚𝑡𝑡 in Equation (21).

𝑂𝑂𝑂𝑂𝑂𝑂𝑞𝑞𝑓𝑓𝑎𝑎𝑎𝑎𝑡𝑡−𝑡𝑡𝑓𝑓𝑚𝑚𝑡𝑡 = � 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡

𝐶𝐶𝐶𝐶𝑎𝑎

1
× 𝑂𝑂𝑀𝑀𝑀𝑀𝑇𝑇 + 𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵 × 𝑂𝑂𝑀𝑀𝑀𝑀𝑇𝑇 (21)

The Acc. & Quant. multiply of Figure 9 completes the OFM accumulation and multi-
plication of quantization. It includes 4 × 4 × 4 DSPs. The mode of the DSP is shown in
Figure 6b. The DSP of Figure 6b implements two functions, which are defined by Equa-
tions (22) and (23).

𝑃𝑃 = 𝐴𝐴 × 𝐵𝐵 + 𝑃𝑃 (22)

𝑃𝑃 = 𝐷𝐷 × 𝐵𝐵 + 𝑃𝑃 (23)

Port A is 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡, Port B is 𝑂𝑂𝑀𝑀𝑀𝑀𝑇𝑇, Port D is 𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵, and Port P is 𝑂𝑂𝑂𝑂𝑂𝑂𝑞𝑞𝑓𝑓𝑎𝑎𝑎𝑎𝑡𝑡−𝑡𝑡𝑓𝑓𝑚𝑚𝑡𝑡.
The OFM generator uses multiply-accumulate, pre-adder and dynamic reconfigura-

tion of the DSP, which decreases usage of general programmable logic and saves power.

4. Experimental Results
We use our toolchain and accelerator to implement seven CNNs which support four

types of kernels and more branches. When updating CNN, utilization of logic resources
remains the same.

Experimental platform: Computer CPU: AMD Ryzen 7 5800H; DDR Frequency 3200
MHz; Xilinx VC709(XC7V690T, 28 nm), see Figure 10; Software: Vivado, PyTorch.

Acc.
&

Quant.
Multiply

PoolQuant.
Shift

Quant.
Zero-Point

&
Activation
Function

clk0
clk1

clk0
(clk2)

clk1
(clk3)

R4 #1

R4 #2

C4 #1 C4 #2
clk0 clk1

clk0
(clk2)

clk1
(clk3)

4×4
4×4

4×4
4×4

4×4 4×4

4×4 4×4
4×4 4×4

(1,1)
4×4
(1,2)

4×4
(2,1)

4×4
(2,2)

Figure 9. The details of OFM generator.

Electronics 2023, 12, 192 14 of 20

The partial input channel of IFMs generates temporary OFMs which are represented
as OFMtemp, the OFM of all input channel of IFM is denoted as OFMacc, and the bias is
represented as Bias. Therefore, OFMacc can be calculated by Equation (20). Equation (20)
can be implemented by the accumulation function of the DSP.

OFMacc =
Cin

∑
1

OFMtemp + Bias (20)

From Equation (7), the first step to quantize the OFM is multiplication by MULT. We
then get OFMquant−mult in Equation (21).

OFMquant−mult =
Cin

∑
1

OFMtemp ×MULT + Bias×MULT (21)

The Acc. & Quant. multiply of Figure 9 completes the OFM accumulation and
multiplication of quantization. It includes 4 × 4 × 4 DSPs. The mode of the DSP is shown
in Figure 6b. The DSP of Figure 6b implements two functions, which are defined by
Equations (22) and (23).

P = A× B + P (22)

P = D× B + P (23)

Port A is OFMtemp, Port B is MULT, Port D is Bias, and Port P is OFMquant−mult.
The OFM generator uses multiply-accumulate, pre-adder and dynamic reconfiguration

of the DSP, which decreases usage of general programmable logic and saves power.

4. Experimental Results

We use our toolchain and accelerator to implement seven CNNs which support four
types of kernels and more branches. When updating CNN, utilization of logic resources
remains the same.

Experimental platform: Computer CPU: AMD Ryzen 7 5800H; DDR Frequency 3200
MHz; Xilinx VC709(XC7V690T, 28 nm), see Figure 10; Software: Vivado, PyTorch.

Electronics 2023, 12, 192 15 of 21

Figure 10. Xilinx VC709.

Experimental Process: On CIFAR-10 dataset, we use toolchain in Figure 1. The input
of toolchain is the architecture of seven CNNs with four types of kernels. Four CNNs in-
clude branch, three CNNs do not include branch. We use PyTorch to train seven CNNs.
For four CNNs with branch, we use inception-based branch-fuse technique to remove
branch and keep main backbone, then use PyTorch to quantize the fused model. For three
CNNs without branch, we directly use PyTorch to quantize the trained model.

The CNN updater of the toolchain generates seven groups of initialization file (.mem)
of CNN parameters and instructions. CNN is defined by the content of BRAM. The con-
tent of BRAM is initialized by .mem files. We use one group of .mem files to generate the
first bitstream by traditional design flow. We download the bitstream and check the image
recognition result from LED of VC709. When updating CNN, we use a CNN updater to
generate six other bitstreams, which eliminates the re-synthesis and re-implementation
process. By this method we avoid a timing failure, unsuccessful routing and long devel-
opment time. The differences between seven bitstreams are the content of BRAM which
are CNN parameters and instructions. We download the bitstreams one by one and check
the image recognition result from LED of VC709.

Table 2 shows seven CNNs be implemented on VC709. Papers [15,31] also use the
toolchain to update CNN. Papers [15,31] both support three CNNs. The logic resources of
paper [15,31] are changed when updating the CNN. Our accelerator keeps the logic re-
sources unchanged.

Table 2. Seven CNNs are implemented.

NO. Name Kernel (Size, Stride) & Branch TCAD 2020 [15] TCAD 2020 [31]
1 VGG K=3, S=1; No branches; VGG VGG

2 VGG-S2 K=3, S=1& K=3, S=2;
No branches;

- -

3 AlexNet
K=5, S=1 & K=3, S=1;

No branches;
- AlexNet

4 RepResNet K=3, S=1; With branches; ResNet ResNet

5 RepVGG
K=3, S=1& K=3, S=2;

With branches; - -

6
RepIncep-

tion
K=5, S=1& K=3, S=1;

With branches;
Inception -

7 RepK5S2
K=5, S=1& K=5, S=2 &K=3, S=1&

K=3, S=2;
With branches

-1 -

Figure 10. Xilinx VC709.

Experimental Process: On CIFAR-10 dataset, we use toolchain in Figure 1. The input of
toolchain is the architecture of seven CNNs with four types of kernels. Four CNNs include
branch, three CNNs do not include branch. We use PyTorch to train seven CNNs. For
four CNNs with branch, we use inception-based branch-fuse technique to remove branch
and keep main backbone, then use PyTorch to quantize the fused model. For three CNNs
without branch, we directly use PyTorch to quantize the trained model.

Electronics 2023, 12, 192 15 of 20

The CNN updater of the toolchain generates seven groups of initialization file (.mem)
of CNN parameters and instructions. CNN is defined by the content of BRAM. The content
of BRAM is initialized by .mem files. We use one group of .mem files to generate the first
bitstream by traditional design flow. We download the bitstream and check the image
recognition result from LED of VC709. When updating CNN, we use a CNN updater to
generate six other bitstreams, which eliminates the re-synthesis and re-implementation pro-
cess. By this method we avoid a timing failure, unsuccessful routing and long development
time. The differences between seven bitstreams are the content of BRAM which are CNN
parameters and instructions. We download the bitstreams one by one and check the image
recognition result from LED of VC709.

Table 2 shows seven CNNs be implemented on VC709. Papers [15,31] also use the
toolchain to update CNN. Papers [15,31] both support three CNNs. The logic resources
of paper [15,31] are changed when updating the CNN. Our accelerator keeps the logic
resources unchanged.

Table 2. Seven CNNs are implemented.

NO. Name Kernel (Size, Stride) & Branch TCAD 2020 [15] TCAD 2020 [31]

1 VGG K = 3, S = 1; No branches; VGG VGG

2 VGG-S2 K = 3, S = 1 & K = 3, S = 2;
No branches; - -

3 AlexNet K = 5, S = 1 & K = 3, S = 1;
No branches; - AlexNet

4 RepResNet K = 3, S = 1; With branches; ResNet ResNet

5 RepVGG K = 3, S = 1 & K = 3, S = 2;
With branches; - -

6 RepInception K = 5, S = 1 & K = 3, S = 1;
With branches; Inception -

7 RepK5S2
K = 5, S = 1 & K = 5, S = 2

& K = 3, S = 1 & K = 3, S = 2;
With branches

- -

Table 3 shows the accuracy of seven CNNs after training, quantization, and hardware
accelerator. In Table 3, the largest accuracy loss between training and quantizing is −0.72%
and all losses are within 1%. The largest accuracy loss between the accelerator and quantiz-
ing is −0.08% and all losses are within 0.1%, which indicates that our dual-decimal-fuse
technique maintains accuracy with negligible loss.

Table 3. Accuracy of seven CNNs after training, quantization, and hardware accelerator.

CNN After
Training

After
Quantizing

Loss between Training
and Quantizing

Hardware
Accelerator

Loss between Accelerator
and Quantizing Total Loss

VGG 93.82 93.75 −0.07 93.73 −0.02 −0.09
VGG-S2 92.6 92.59 −0.01 92.6 +0.01 0
AlexNet 90.72 90 −0.72 89.98 −0.02 −0.74

RepResNet 93.06 92.88 −0.18 92.93 +0.05 −0.13
RepVGG 92.99 92.93 −0.06 92.87 −0.06 −0.12

RepInception 93.56 93.36 −0.2 93.45 +0.09 −0.11
RepK5S2 93.29 93.14 −0.15 93.06 −0.08 −0.23

Table 4 shows comparison between FPGA-based CNN accelerator with toolchain. In
Table 4, papers [14–16] include toolchain, and support CNN updating.

Electronics 2023, 12, 192 16 of 20

Table 4. Comparison between FPGA-based CNN accelerator with toolchain.

Items TCAD
2019 [14]

VLSI
2020 [16]

TCAD
2020 [15] This Paper

>Platform >VC709
(28 nm) >XC7K325T >Arria-10

(20 nm)
>VC709
(28 nm)

>Toolchain >Yes >Yes >Yes >Yes

Frequency
(MHz) 150 200 240 100

Precision 16-bit
Fix-point

8-bit
Fix-point

8/16 bit
Fix-point

16-bit
Fix-point

16-bit
Fix-point 8/14/18 Integer

Winograd No No No F(4 × 4, 3 × 3)

Power 26 16.5 - 4.4

Supported
Kernels K = 3, S = 1 K = 5, S = 1; K = 3, S = 1;

K = 1, S = 1
K = 5, S = 1; K = 3, S = 1; K = 3, S = 2;

K = 1, S = 1
K = 1, S = 1; K = 1, S = 2; K = 3, S = 1;
K = 3, S = 2; K = 5, S = 1; K = 5, S = 2

CNN VGG VGG16 InceptionV1 ResNet-50 VGG Inception RepResNet VGG RepInception

Logic Cell 300 K
(81%)

94,763
(46.5%)

94,763
(46.5%)

286 K
(67%)

228 K
(49%)

277 K
(65%)

255.6 K
(59%)

255.6 K
(59%)

255.6 K
(59%)

BRAM(Kb) 1248
(42%)

165
(37.08%)

165
(37.08%)

2356 × 20
(87%)

2319 × 20
(85%)

1849 × 20
(68%)

1036 × 36
(70%)

1036 × 36
(70%)

1036 × 36
(70%)

DSP 2833
(78%)

516
(61.43%)

516
(61.43%)

3036
(100%)

3036
(100%)

3036
(100%)

2816
(78%)

2816
(78%)

2816
(78%)

Throughput
(GOPS) 354 354 54.4 758 968.03 524.98 827.8 869.9 997.2

Power
Efficiency

(GOPS/W)
13.6 21.5 3.3 - - - 188.1 197.7 226.6

In Table 4, for inception, the throughput of paper [15] is 524.98, ours is 997.2 and is
1.9 times larger than paper [15]; the throughput of paper [16] is 54.4, ours is 997.2 and is
18.3 times larger than paper [16]. For ResNet, the throughput of paper [15] is 758, ours
is 827.8 and is 1.1 times larger than paper [15]. The main reason is that our toolchain
supports the inception-based branch–fuse technique. At the inference stage, it removes
branches and keeps the main backbone, which increases throughput, while inception and
ResNet of paper [15,16] don’t have branch–fuse technique. At the inference stage, they
have multi-branches, which consume more logic resources. The second reason is that our
accelerator supports Winograd fast algorithm.

In Table 4, for the VGG, the throughput of paper [15] is 968.03, our is 869.9 and is
smaller than paper [15]. Because the platform of paper [15] is Arria-10 (20 nm), which is
more advanced than VC709 (28 nm), the frequency is 240 MHz while ours is 100 MHz. If
our accelerator can work at 240 MHz, the throughput will larger than paper [15].

In Table 4, for the VGG, the throughput of paper [14] is 354, our is 869.9 and is
2.45 times larger than the paper [14]. The platform of paper [14] is VC709 (28 nm), which is
the same as with our platform. DSP utilizations are both 78%. The frequency of paper [14]
is 150 MHz, which is higher than ours (100 MHz). But our throughput is better because our
accelerator uses Winograd fast algorithm, which uses fewer DSPs to compute convolution.

In Table 4, for the VGG, the throughput of paper [16] is 354, our is 869.9 and is
2.45 times larger than the paper [16], because our accelerator uses Winograd fast algorithm,
and uses more logic resources.

Table 5 shows a comparison between the FPGA-based CNN accelerator with Winograd.
In Table 5, for the VGG, paper [32] and our accelerator all use VC709. The frequency of

paper [32] is 150 MHz, which is higher than ours (100 MHz). The throughput of paper [32]
is 570, our is 869.9 and is 1.5 times larger than the paper [32]. Because our accelerator uses
Winograd F(4 × 4, 3 × 3), compared with Winograd F(2 × 2, 3 × 3) of paper [32], it uses
fewer number DSPs to compute convolution.

Electronics 2023, 12, 192 17 of 20

Table 5. Comparison between FPGA-based CNN accelerator with Winograd.

Items FPGA
2018 [32]

VLSI 2020
[30]

TCAD 2020
[31] This Paper

Platform VC709
(28 nm) Arria-10 (20 nm) ZCU102

(16 nm)
ZC706

(28 nm)
VC709
(28 nm)

Toolchain No No Yes Yes Yes

Frequency
(MHz) 150 250 200 166 100

Precision 16-bit
Fix-point

16-bit
Fix-point

16-bit
Fix-point

16-bit
Fix-point 8/14/18 Integer

Winograd F(2 × 2,
3 × 3) F(2 × 2, 3 × 3) DWM F(4 × 4, 3 × 3) F(4 × 4, 3 × 3) DWM

Power 25 18 - 4.4

Supported
Kernels K = 3, S = 1 K = 3, S = 1; K = 3, S = 2 K = 5, S = 1; K = 3, S = 1; K = 3, S = 2;

K = 1, S = 1
K = 1, S = 1; K = 1, S = 2; K = 3, S = 1; K = 3, S = 2;

K = 5, S = 1; K = 5, S = 2

CNN VGG VGG VGG-S2 VGG AlexNet ResNet VGG VGG-S2 AlexNet RepResNet

Logic Cell 175 K
(40%)

181 K
(15.7%)

180 K
(15.7%) 95% 67% 67% 255.6 K

(59%)
255.6 K
(59%)

255.6 K
(59%)

255.6 K
(59%)

BRAM(Kb) 1232
(42%)

1310
(61.5%)

1310
(61.5%) 95% 67% 67% 1036 × 36

(70%)
1036 × 36

(70%)

1036 ×
36

(70%)

1036 × 36
(70%)

DSP 1376
(38%)

1344
(88.5%)

1344
(88.5%) 95% 67% 67% 2816

(78%)
2816

(78%)
2816

(78%)
2816

(78%)

Throughput
(GOPS) 570 1642 1788 2479.6 854.6 201.6 869.9 432.4 727.4 827.8

Power
Efficiency
(GOPS/W)

22.80 91.2 99.3 105.4 36.2 13.8 197.7 98.3 165.3 188.1

For VGG and VGG-S2, the reasons for the high GOPS in paper [30] are as follows:
first, Arria-10 adopts 20 nm technology, which is more advanced than 28 nm technology
of VC709; therefore, Arria-10 frequency can reach 250 MHz. Secondly, a DSP of Arria-10
contains two 19 × 18 multipliers in standard precision mode, which can achieve two
16 × 16 multiplication operations. Although 1344 DSPS are used, 1344 DSPS are equivalent
to 2688 16 × 16 multipliers. A DSP of XC7V690T contains a 25 × 18 multiplier, which can
only achieve a 14 × 18 multiplication operation. In our accelerator, 2304 DSPs complete
the Winograd EWMM operation, and 512 DSPs complete the quantization operation.
Therefore, the 2688 multipliers used in paper [30] exceed the 2304 multipliers used in our
accelerator. In our accelerator, XC7V690T uses 28 nm and the clock frequency is 100 MHz.
If the frequency of our accelerator can also reach 250 MHz, the GOPS of VGG can reach
2174.75 (=869.9 × 2.5), which is greater than 1642. The GOPS of the VGG-S2 can reach
1081 (=432.4 × 2.5), which is still lower than 1788, because our accelerator supports four
types of kernels (K = 3, S = 1; K = 3, S = 2; K = 5, S = 1 and K = 5, S = 2). Paper [30]
only supports two types of kernels (K = 3, S = 1 and K = 3, S = 2). The energy efficiency
of VGG and VGG-S2 are 197.7 and 98.3, respectively. The energy efficiency of VGG is
2.17 times of that in paper [30], and the energy efficiency of VGG-S2 is 0.99 times of that in
paper [30] because our accelerator uses the data reuse, makes full use of FPGA dedicated
programmable resources, and reduces the use of FPGA general programmable resources
and on-chip model to reduce power consumption.

For VGG, the reason for the high GOPS in paper [31] is that the accelerator only
optimizes one network at a time and accelerates VGG with 95% of on-chip resources as the
constraint of design space exploration. Moreover, ZCU102 adopts the 16 nm process, which
is more advanced than the 28 nm process of VC709; therefore, the frequency of ZCU102
can reach 200 MHz. In addition, the logic cell used in paper [31] is 600 K × 0.95, which
is 2.2 times that of 255.6 K in our accelerator. The clock frequency in our accelerator is

Electronics 2023, 12, 192 18 of 20

100 MHz, which is half of that in paper [31]. If the frequency of our accelerator can also
reach 200 MHz, the GOPS for VGG can reach 1739.8 (=869.9 × 2), which is still lower than
2479.6. In paper [31], the weight conversion is converted in advance, and the converted
weight is directly stored on FPGA. The weight transformation module of our accelerator
is implemented on a chip, which requires real-time weight transformation. That leads
to low GOPS. Finally, our accelerator supports four types of kernels (K = 3, S = 1; K = 3,
S = 2; K = 5, S = 1 and K = 5, S = 2), while paper [31] supports one type of kernel (K = 3,
S = 1). The energy efficiency of VGG is 1.87 times higher than that in paper [31] because our
accelerator uses the data reuse, make full use of FPGA dedicated programmable resources,
and reduces the use of FPGA general programmable resources and on-chip models to
reduce power consumption.

For the AlexNet network, the accelerator in paper [31] optimizes only one network
at a time. If the frequency of our accelerator can also reach 200 MHz, the GOPS can reach
1454.8 = (727.4 × 2), which is higher than 854.6, because the first layer of paper [31] uses
standard convolution and does not use Winograd’s algorithm, while our accelerator uses
Winograd’s algorithm with K = 5 and S = 1. Finally, our accelerator supports four types of
kernels (K = 3, S = 1; K = 3, S = 2; K = 5, S = 1 and K = 5, S = 2), while paper [31] supports
one type of kernel (K = 3, S = 1). Moreover, the energy efficiency of our accelerator is
greater, and the energy efficiency of AlexNet is 4.57 times that of paper [31] because our
accelerator uses the data reuse, makes full use of FPGA dedicated programmable resources,
and reduces the use of FPGA general programmable resources and the on-chip model to
reduce power consumption.

For the ResNet, the accelerator in paper [31] optimizes only one network at a time.
The GOPS of ResNet in paper [31] is 201.6, and the GOPS of our accelerator is 827.8, which
is 4.1 times better than that in paper [31]. The reasons for the low GOPS in paper [31] are
as follows: first, the number of used DSPs is small, and even if all DSPs are used, there
are only 900 DSPs. The second is that the 1 × 1 branch of ResNet consumes 40% of the
resources. In our accelerator, we can use branch fusion technology to fuse the parameters
of SKIP and 1 × 1 branches into the parameters of the 3 × 3 main backbone, and finally
remove the SKIP and 1 × 1 branches, and keep only the 3 × 3 main backbone. The energy
efficiency of our accelerator is 4.57 times higher than that of ResNet in paper [31].

5. Conclusions

We propose HBCA: a toolchain and corresponding FPGA-based accelerator to balance
accuracy and speed when updating CNN. The toolchain proposes an inception-based
branch–fused technique to balance accuracy and speed, which supports more branches
and more types of kernels. The accelerator proposes a dual decimal–fused technique to
balance accuracy and speed; the decimal of the Winograd transformation matrix is fused
into the scale decimal of the 8-bit integer quantization, and all computation is transformed
into integer computation.

The accelerator uses multi-mode BRAM to store the activation value, which saves
DFF resources and decreases power. The accelerator uses multiply-cascade of the DSP to
compute the EWMM and add the product of the EWMM. It also uses multiply-accumulate,
pre-adder and dynamic reconfiguration of the DSP to generate and quantize the OFM. The
multi-mode DSP saves LUT resources and decreases power. The accelerator supports four
types of kernels, reuses IFM data temporally at the column dimension, and reuses data
spatially at the row dimension. It also supports IFM padding, which maintains accuracy
with negligible loss.

Experiments show that HBCA supports seven CNNs with four types of kernels and
more branches. The accuracy loss of seven CNNs is within 0.1% compared to corresponding
quantized models. For the inception, the throughput and power efficiency of our accelerator
are 997.2 GOPS and 226.6 GOPS/W, respectively, which are higher than other FPGA-based
CNN accelerators. For ResNet, the throughput and power efficiency of our accelerator
are 827.8 GOPS and 188.1 GOPS/W, respectively, which are better than other FPGA-based

Electronics 2023, 12, 192 19 of 20

CNN accelerators. The main reason for the better performance of our accelerator is that our
toolchain supports the inception-based branch–fuse technique. At the inference stage, it
removes branches and keeps the main backbone, thereby increasing the throughput.

Benefiting from employing the Winograd fast algorithm, we utilized several DSPs to
compute the convolution. In addition, our accelerator uses an on-chip model, multi-mode
BRAM and DSP, the Winograd decomposed-part reuse technique and data-reuse. Thus, the
power efficiency (GOPS/W) of VGG is up to 197.7, which is higher than other FPGA-based
CNN accelerators. Although the power efficiency (GOPS/W) of VGG-S2 is 98.3, which is
smaller than 99.3, our accelerator can support more types of kernels. Hence, our accelerator
is more flexible.

In summary, HBCA enables efficient processing of CNNs to improve power efficiency
and throughput without sacrificing accuracy or incurring additional hardware costs when
updating CNN.

Author Contributions: Conceptualization, Z.L. and J.L.; methodology, Z.L., L.H. and J.W.; software,
Z.L. and J.W.; validation, X.T. and J.L.; formal analysis, X.T., J.W. and J.L.; investigation, L.H. and J.L.;
resources, X.T., J.W. and J.L.; data curation, Z.L. and L.H.; writing—original draft preparation, Z.L.;
writing—review and editing, J.L.; visualization, Z.L. and L.H.; supervision, X.T., J.W. and J.L.; project
administration, X.T., J.W. and J.L.; funding acquisition, X.T. and J.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 62074101.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available upon request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kaiming, H.; Xiangyu, Z.; Shaoqing, R.; Jian, S. Deep residual learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
2. Elhassouny, A.; Smarandache, F. Trends in deep convolutional neural Networks architectures: A review. In Proceedings of the

2019 International Conference of Computer Science and Renewable Energies (ICCSRE), Agadir, Morocco, 22–24 July 2019; pp. 1–8.
[CrossRef]

3. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. NIPS 2017, 60, 84–90.
[CrossRef]

4. Jie, H.; Li, S.; Samuel, A.; Gang, S.; Enhua, W. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

5. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. RepVGG: Making VGG-style ConvNets Great Again. In Proceedings of the
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021.

6. Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.; Fei-Fei, L.; Yuille, A.; Huang, J.; Murphy, K. Progressive neural
architecture search. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 19–34.

7. Radosavovic, I.; Kosaraju, R.P.; Girshick, R.; He, K.; Dollar, P. Designing network design spaces. In Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10428–10436.

8. Freund, K. Machine Learning Application Landscape. 2017. Available online: https://www.xilinx.com/support/documentation/
backgrounders/Machine-Learning-Application-Landscape.pdf (accessed on 28 February 2020).

9. Véstias, M.P.; Duarte, R.P.; De Sousa, J.T.; Neto, H.C. Moving Deep Learning to the Edge. Algorithms 2020, 13, 125. [CrossRef]
10. Zhang, Y.; Wei, X.-S.; Zhou, B.; Wu, J. Bag of Tricks for Long-Tailed Visual Recognition with Deep Convolutional Neural Networks.

Proc. Conf. AAAI Artif. Intell. 2021, 35, 3447–3455. [CrossRef]
11. Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot.

2020, 37, 362–386. [CrossRef]
12. Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning:

A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [CrossRef]
13. Véstias, M. A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing. Algorithms 2019, 12, 154.

[CrossRef]

http://doi.org/10.1109/ICCSRE.2019.8807741
http://doi.org/10.1145/3065386
https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
http://doi.org/10.3390/a13050125
http://doi.org/10.1609/aaai.v35i4.16458
http://doi.org/10.1002/rob.21918
http://doi.org/10.1109/COMST.2020.2970550
http://doi.org/10.3390/a12080154

Electronics 2023, 12, 192 20 of 20

14. Zhang, C.; Sun, G.; Fang, Z.; Zhou, P.; Pan, P.; Cong, J. Caffeine: Towards Uniformed Representation and Acceleration for Deep
Convolutional Neural Networks. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2019, 38, 2072–2085. [CrossRef]

15. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.S. Automatic Compilation of Diverse CNNs Onto High-Performance FPGA Accelerators. IEEE
Trans. Comput. Des. Integr. Circuits Syst. 2020, 39, 424–437. [CrossRef]

16. Yu, Y.; Wu, C.; Zhao, T.; Wang, K.; He, L. OPU: An FPGA-Based overlay processor for convolutional neural networks. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 2019, 28, 35–47. [CrossRef]

17. Yu, Y.; Zhao, T.; Wang, K.; He, L. Light-OPU: An FPGA-based Overlay Processor for Lightweight Convolutional Neural Networks.
In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA,
23–25 February 2020; pp. 122–132. [CrossRef]

18. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and<0.5 MB model size. arXiv 2016, arXiv:1602.07360.

19. David, R.; Duke, J.; Jain, A.; Reddi, V.J.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Wang, T.; et al. TensorFlow Lite
Micro: Embedded Machine Learning on TinyML Systems. Proc. Mach. Learn. Syst. 2020, 3, 800–811.

20. Lin, J.; Chen, W.M.; Lin, Y.; Gan, C.; Han, S. MCUNet: Tiny Deep Learning on IoT Devices. Adv. Neural Inf. Process. Syst. 2020, 33,
11711–11722.

21. Li, Z.; Gao, J.; Lai, J. HBDCA: A Toolchain for High-Accuracy BRAM-Defined CNN Accelerator on FPGA with Flexible Structure.
IEICE Trans. Inf. Syst. 2021, E104.D, 1724–1733. [CrossRef]

22. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017,
105, 2295–2329. [CrossRef]

23. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going Deeper with Embedded
FPGA Platform for Convolutional Neural Network. In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016; pp. 26–35. [CrossRef]

24. Guo, K.; Sui, L.; Qiu, J.; Yu, J.; Wang, J.; Yao, S.; Han, S.; Wang, Y.; Yang, H. Angel-Eye: A Complete Design Flow for Mapping
CNN Onto Embedded FPGA. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2018, 37, 35–47. [CrossRef]

25. Krishnamoorthi, R. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv 2018, arXiv:1806.08342v1.
26. Wu, H.; Judd, P.; Zhang, X.; Isaev, M.; Micikevicius, P. Integer Quantization for Deep Learning Inference: Principles and Empirical

Evaluation. arXiv 2020, arXiv:2004.09602.
27. Shaydyuk, N.K.; John, E.B. Semi-Streaming Architecture: A New Design Paradigm for CNN Implementation on FPGAs. arXiv

2020, arXiv:2006.08759v1.
28. Suda, N.; Chandra, V.; Dasika, G.; Mohanty, A.; Ma, Y.; Vrudhula, S.; Seo, J.-s.; Cao, Y. Throughput-Optimized OpenCL-based

FPGA Accelerator for Large-Scale Convolutional Neural Networks. In Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016; pp. 16–25.

29. Lavin, A.; Gray, S. Fast algorithms for convolutional neural networks. In Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4013–4021.

30. Yepez, J.; Ko, S.-B. Stride 2 1-D, 2-D, and 3-D Winograd for Convolutional Neural Networks. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2020, 28, 853–863. [CrossRef]

31. Liang, Y.; Lu, L.; Xiao, Q.; Yan, S. Evaluating Fast Algorithms for Convolutional Neural Networks on FPGAs. IEEE Trans. Comput.
Des. Integr. Circuits Syst. 2020, 39, 857–870. [CrossRef]

32. Shen, J.; Huang, Y.; Wang, Z.; Qiao, Y.; Wen, M.; Zhang, C. Towards a Uniform Template-based Architecture for Accelerating 2D
and 3D CNNs on FPGA. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, 25–27 February 2018; pp. 97–106. [CrossRef]

33. Ahmad, A.; Pasha, M.A. FFConv: An FPGA-based Accelerator for Fast Convolution Layers in Convolutional Neural Networks.
ACM Trans. Embed. Comput. Syst. 2020, 19, 1–24. [CrossRef]

34. Huang, D.; Zhang, X.; Zhang, R.; Zhi, T.; He, D.; Guo, J.; Liu, C.; Guo, Q.; Du, Z.; Liu, S.; et al. DWM: A Decomposable Winograd
Method for Convolution Acceleration. Proc. Conf. AAAI Artif. Intell. 2020, 34, 4174–4181. [CrossRef]

35. Huang, C.; Dong, X.; Li, Z.; Song, T.; Liu, Z.; Dong, L. Efficient Stride 2 Winograd Convolution Method Using Unified
Transformation Matrices on FPGA. In Proceedings of the 2021 International Conference on Field-Programmable Technology
(ICFPT), Auckland, New Zealand, 6–10 December 2021; pp. 1–9. [CrossRef]

36. Yu, J.; Hu, Y.; Ning, X.; Qiu, J.; Guo, K.; Wang, Y.; Yang, H. Instruction driven cross-layer CNN accelerator with Winograd
transformation on FPGA. In Proceedings of the 2017 International Conference on Field Programmable Technology (ICFPT),
Melbourne, VIC, Australia, 11–13 December 2017; pp. 227–230.

37. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.-S. Optimizing Loop Operation and Dataflow in FPGA Acceleration of Deep Convolutional
Neural Networks. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, 25–27 February 2018; pp. 45–54. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TCAD.2017.2785257
http://doi.org/10.1109/TCAD.2018.2884972
http://doi.org/10.1109/TVLSI.2019.2939726
http://doi.org/10.1145/3373087.3375311
http://doi.org/10.1587/transinf.2021EDP7024
http://doi.org/10.1109/JPROC.2017.2761740
http://doi.org/10.1145/2847263.2847265
http://doi.org/10.1109/TCAD.2017.2705069
http://doi.org/10.1109/TVLSI.2019.2961602
http://doi.org/10.1109/TCAD.2019.2897701
http://doi.org/10.1145/3174243.3174257
http://doi.org/10.1145/3380548
http://doi.org/10.1609/aaai.v34i04.5838
http://doi.org/10.1109/ICFPT52863.2021.9609907
http://doi.org/10.1145/3020078.3021736

	Introduction
	Toolchain
	Inception-Base Branch-Fuse
	The 8-Bit Integer Quantization

	Accelerator
	Dual-Decimal-Fuse Technique
	Winograd Decomposed-Part Reuse Technique
	The Architecture of the Accelerator
	Ping-Pong BRAM with Multi-Mode BRAM
	Data Reuse and Padding of IFM Buffer
	OFM Generator with Multi-Mode DSP

	Experimental Results
	Conclusions
	References

