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Abstract: The programmability of FPGA suits the constantly changing convolutional neural network
(CNN). However, several challenges arise when the previous FPGA-based accelerators update CNN.
Firstly, although the model of RepVGG can balance accuracy and speed, it solely supports two
types of kernels. Meanwhile, 8-bit integer-only quantization of PyTorch which can support various
CNNs is seldom successfully supported by the FPGA-based accelerators. In addition, Winograd
F(4 × 4, 3 × 3) uses less multiplication, but its transformation matrix contains irregular decimals,
which could lead to accuracy problems. To tackle these issues, this paper proposes High-accuracy
Branch-fused CNN Accelerator (HBCA): a toolchain and corresponding FPGA-based accelerator.
The toolchain proposes inception-based branch–fused technique, which can support more types of
kernels. Meanwhile, the accelerator proposes Winograd-quantization dual decimal–fuse techniques
to balance accuracy and speed. In addition, this accelerator supports multi-types of kernels and
proposes Winograd decomposed-part reuse, multi-mode BRAM & DSP and data reuse to increase
power efficiency. Experiments show that HBCA is capable of supporting seven CNNs with different
types of kernels and more branches. The accuracy loss is within 0.1% when compared to the quantized
model. Furthermore, the power efficiency (GOPS/W) of Inception, ResNet and VGG is up to 226.6,
188.1 and 197.7, which are better than other FPGA-based CNN accelerators.

Keywords: CNN; FPGA; branch-fused; Winograd-quantization-dual-decimal-fuse

1. Introduction

Convolutional neural networks (CNNs) excel in computer vision. ResNet [1] exceeds
human-level accuracy with a top-five error rate below 5%. In order to gain higher accuracy
performance, the architectures of CNNs are constantly evolving [2], such as AlexNet [3],
RestNet [1], SENet [4], and RepVGG [5]. The architecture of CNN can be obtained by
means of autonomous search [6] or manual design [7]. Complicated CNN architecture
can obtain higher accuracy, but compared to simple CNN architecture, it decreases speed.
RepVGG [5] has multi-branches architecture at the training stage which achieves greater
accuracy, and removes side branches at the inference stage, which increases speed.

In recent years, more applications have needed CNN acceleration, such as collision-
avoiding drones, autonomous vehicles, medical image diagnostics, and failure detection
in production lines [8,9]. For CNN acceleration, accuracy is important, especially in
autonomous vehicles. There are many training techniques [10] designed to increase training
accuracy, such as simulated situation [11] and federated learning [12]. When deriving
one CNN with greater accuracy, the original CNN deployed in the accelerator with an
unsatisfactory accuracy performance should be instantly replaced by this improved CNN
for building an excellent accelerator to potentially satisfy the strict requirements of real-
world applications.
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Compared with CPU, GPU and ASIC, FPGA has the overall advantage of high speed,
low power, and programmability [13]. In particular, the programmability of FPGA is suit-
able for CNN updating. Therefore, FPGA has become an appealing platform to accelerate
CNNs [14]. Unfortunately, designing with FPGAs is a complex task requiring hardware
expertise and it is difficult for CNN software engineers to use; therefore, a CNN-to-FPGA
toolchain is proposed to tackle this issue. However, in the existing FPGA-based accelerator
research, most toolchains need to regenerate HDL when updating CNN, which means
re-synthesis and re-implementation [15]. For different timing constraints, it takes several
hours or days to generate a bitstream. It always takes several rounds of iteration of place
and route to meet all timing constraints, thereby resulting in an extremely long search
and development time. In addition, if the timing constraints are not met, the frequency
must be decreased, which inevitably leads to performance deterioration. Especially if
the utilized logic resources are significantly increased, this may lead to routing failure.
Accordingly, when one accelerator updates CNN, reliability and a short development time
are vital for achieving outstanding performance. Numerous efforts have been devoted to
achieving this goal. Firstly, OPU [16] and Light-OPU [17] both read parameters from an
off-chip memory to update CNN, which results in additional consumed power, latency, and
hardware costs. This, as for resource-limited edge devices, compression techniques [18] and
TinyML models [19,20] makes it possible to store all CNN parameters in an on-chip memory.
UpdateMEM utility [21] generates bitstream without a re-synthesis and re-implementation
process, which decreases the development time and eliminates timing and routing issues.
The architecture of CNN may change when we are updating it, such as the kernel size,
which means the accelerator needs to support more types of kernels. Although the RepVGG
can strike a balance between accuracy and speed, it still suffers from merely supporting
two types of kernels.

Hardware-oriented optimization methods reduce the complexity of the computation
and consequently increase power efficiency [9]. In addition, CNN acceleration techniques
that improve power efficiency and throughput without sacrificing accuracy or inducing
additional hardware costs are critical [22].

Original CNNs are typically 32-bit float models. During inference, a quantization
technique is widely applied to decrease CNN parameters and computation resources. An
8-bit fix-point quantization scheme has been widely employed in FPGA-based CNN ac-
celerators, but there are two major challenges. Firstly, 8-bit static fix-point quantization
may lead to large accuracy degradations. The 16-bit static fix-point quantization used
in [23] makes VGG accuracy decrease from 88.00% to 87.94%. But the 8-bit static fix-point
quantization of the VGG of paper [23] fails because activation values of fully connected
layer are zeros. In addition, 8-bit dynamic fix-points may have different effects to different
CNNs. The 8-bit dynamic fix-point quantization of paper [24] makes GoogLeNet accuracy
decrease by 7.63%, from 93.33% to 85.70%; while SqueezeNet accuracy increases by 0.02%,
from 80.3% to 80.32%. Recently, PyTorch provided 8-bit integer only quantization, which
improved the tradeoff between accuracy and speed. It adopts per-channel and per-layer
quantization, and supports various CNN architectures, and the accuracy loss is within
1% [25,26]. But the quantized model of PyTorch does not directly support FPGA develop-
ment. Paper [27] uses similar quantization methods, but it does not create a toolchain, and
does not implement all functions of the low-precision general matrix multiplication library,
which decreases accuracy.

CNN is computation-intensive [28]. Fast algorithms can reduce arithmetic complexity
and enhance power efficiency [29]. Many FPGA-based CNN accelerators utilize Winograd
fast algorithms [30–32]. Winograd F(2× 2, 3× 3) is widely used, because its transformation
matrix is simple. Furthermore, Winograd F(4 × 4, 3 × 3) can further reduce the number of
multiplications, but its transformation matrix contains irregular decimals, such as 1/24,
1/12, and 1/6, which cannot be transformed into shift operations. Paper [33] finds that the
width of the fraction has distinct impacts on accuracy when using Winograd F(4 × 4, 3 × 3).
When the width of the fraction is 13, 12, 11, and 10, the accuracy of the VGG decreases by
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4.02%, 21.41%, 97.43% and 100%, respectively. The original Winograd only supports one
type of kernel whose size and stride are 3 × 3 and 1. Hence, paper [31] solely supports this
type of kernel. Paper [34] proposes the decomposable Winograd method (DWM), which
expands the usage range of Winograd to other types of kernels. Paper [30] proposes a
similar method for the stride of 2 kernel, and validates two types of kernels on FPGA. In
addition, paper [30] considers how to save Look-Up Table (LUT) resources when supporting
two types of kernels. Paper [35] proposes a more efficient approach for the kernel size
of 3 × 3 and stride of 2 and eventually saves 49.7% of LUT resources compared with
paper [30]. But papers [30,35] neglect considering how to save LUT resources when types
of kernels are larger than 2.

If the FPGA-based CNN accelerator adopts Winograd, the DSP resources are not criti-
cal [31]. Paper [30,31,33] uses the (A× B) function of DSP to complete element-wise matrix
multiplication (EWMM). Paper [36] uses the ((A + D)× B) function of DSP to complete
EWMM and partial transformation computation. DSP additionally has cascade, multiply-
accumulate, pre-adder, and dynamic reconfiguration functions. Not fully exploring these
functions will lead to consuming more LUT resources. In order to increase the memory
bandwidth of the reading activation value, paper [31] uses registers to store intermediate
activation values. It uses abundant general programmable logic compared with BRAM,
which leads to high power.

A data reuse technique is used to decrease the access number of the off-chip/on-
chip memory in order to optimize power consumptions. There are two kinds of data
reuse techniques: temporal reuse and spatial reuse [37]. Spatial reuse is widely utilized
to generate a multiple output feature map (OFM). Paper [31] uses the overlap and save
technique, and adopts a temporal reuse of an input feature map (IFM) at the column
dimension. But it does not reuse the IFM at the row dimension. Paper [30] also adopts
temporal reuse of the IFM when the kernel size is 3 × 3 and the stride is 1. Padding is
important for convolution: paper [31] only supports padding when the kernel size is 3 × 3
and the stride is 1. Paper [30] does not support padding, which results in accuracy loss.
How to implement data spatial reuse, data temporal reuse and padding are not addressed
when the accelerator adopts Winograd and supports multi types of kernels.

To deal with the above problems of implementing and updating CNN on an accel-
erator, we propose High-Accuracy Branch-Fused CNN Accelerator (HBCA): a toolchain
and corresponding accelerator. For on-chip CNN model updating, the toolchain generates
bitstream without re-synthesis and re-implementation. The toolchain proposes inception-
based branch-fuse techniques to support more branches and more types of kernels, which
balances accuracy and speed. The accelerator supports PyTorch’s 8-bit integer-only quanti-
zation and proposes a dual-decimal-fuse technique to balance accuracy and speed. The
decimal of the Winograd transformation matrix and the decimal of the scale parameter of
the 8-bit integer-only quantization fuse into one; the fused decimal is then transformed
into a multiply-and-shift operation, all computation is integer-based, and there is no dec-
imal computation. The accelerator supports data spatial reuse, data temporal reuse and
padding when Winograd of multi-types of kernels is adopted. It also proposes the Wino-
grad decomposed-part reuse (WDPR) technique which saves LUT resources, and thus
decreases power consumption. The accelerator fully explores functions of BRAM and DSP
module of FPGA, which decreases the utilization of general programmable logic resources,
and increase power efficiency.

We implement seven CNNs with four types of kernels on a Xilinx XC7V690T FPGA.
The accuracy losses of seven CNNs are within 0.1% compared to the quantized models.
The power efficiency (GOPS/W) of Inception, ResNet and VGG are 226.6, 188.1 and 197.7,
which are better than other FPGA-based CNN accelerators.

The rest of the paper is organized as follows: Section 2 describes the toolchain. Section 3
describes the accelerator. Section 4 presents the experimental results. Section 5 concludes
the paper.
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2. Toolchain

The architecture of our toolchain is shown in Figure 1. Its inputs are several CNN
architectures. The outputs of the toolchain are several corresponding bitstreams. We use
PyTorch to train the CNN models.
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Figure 1. Architecture of toolchain.

• Inception-based branch-fuse

Inception-based branch-fuse technique supports more branches and more types of
kernels than RepVGG [5]. The details are discussed in Section 2.1.

• 8-bit integer quantization

We use PyTorch to quantize the inception-based branch-fuse model and obtain an 8-bit
integer quantized model. The details are discussed in Section 2.2.

• Hardware emulator

The hardware emulator extracts quantized parameters from the quantized model, and
emulates the hardware computation of the convolutional layer, pooling the layer and fully
connected layer, and generates software-simulation files. It also achieves accuracy from the
test dataset.
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• Fast algorithm

From N CNN architectures we can obtain the kernel size and stride. If the kernel size
is greater than three, or the kernel stride is larger than one, the decomposable Winograd
method [34] of a fast algorithm is adopted. The hardware architecture supports the fast
algorithm. For example, hardware architecture includes modules of IFM and CONV
weight transformation, as well as EWMM and OFM inversion, which are necessary for
Winograd computation.

• HDL code generator

According to hardware architecture in Figure 2, the HDL code generator generates
HDL files for all modules in Figure 2 except for the DSP IPs, which are generated by Vivado
LogiCore. In particular, all BRAMs are coded using the XPM memory template [21].
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• Function simulation

We simulate HDL files and obtain hardware simulation results. The activation value
of each layer is stored in the Ping-Pong BRAM depicted in Figure 2. The content of the
Ping-Pong BRAM is written into a hardware-simulation file. The activation value of each
layer of hardware emulator is also written into a software-simulation file. We then compare
the hardware-simulation file with the software-simulation file. If the two files are different,
we modify the HDL code generator. Otherwise, we perform exploration.

• Parallelism exploration

Parallelism exploration identifies the value of ToChan in Figure 2 which represents the
number of output channels of the OFM which can be computed at the same time. The
larger value of ToChan means more logic resources utility of FPGA. The maximum value of
ToChan is bounded by the number of DSPs of FPGA. We gradually decrease ToChan from
the maximum value, and the “HDL Code Generator” generates new HDL files according
to ToChan. If Vivado can successfully generate bitstream for a certain ToChan value, we
can identify the parallelism of the output channels of the OFM. Therefore, we obtain the
first bitstream.

• CNN updater

The parameters and instructions generator of the CNN updater generates the initial-
ization file (.mem) of BRAM in the FPGA-based accelerator. The differences of CNNs in
our accelerator are parameters and instructions which are stored in BRAMs. If we want to
update CNN on FPGA, we use the first bitstream and a group initialization files (.mem)
of new CNNs to generate a new bitstream by the update_mem command [21] which is
listed below.

update_mem -meminfo accelerator.mmi -data ins.mem -proc ins_buffer/xpm_memory
_sprom_inst/xpm_memory_base_inst -bit first.bit -out new.bit.

The above commands update the content of the Instruction BRAM (-proc ins_buffer)
with new instructions (-data ins.mem). Together with more -data and -proc pairs and the first
bitstream file (first.bit), it updates the content of all BRAMs and generates a new bitstream
file (new.bit). The update_mem command avoids the re-synthesis and re-implementation
flow, which reduces the development time. By downloading the new bitstream file, the
new CNN is updated on the FPGA accelerator.

2.1. Inception-Base Branch-Fuse

We propose the inception-base branch-fuse CNN based on RepVGG and the original
inception module. It has two versions: the first one is that the largest kernel size is 3 × 3
(see Figure 3a,b); the second one is that the largest kernel is 5 × 5 (see Figure 3c,d).

The means of fusing the branch of the convolution into the backbone of the convolution
is similar to RepVGG [5]. However, RepVGG is not capable of supporting the pooling
layer. In contrast, we can transfer the average pooling into the equivalent convolution (see
Figure 4).

For the 3 × 3 average pooling described in Figure 4a, I1-1~I3-3 are IFMs, and O1-1 is
OFM. The computation details are shown in Equation (1).

OFM = (∑ IFM)/9 = (I1−1 + I1−2 + I1−3 + I2−1 + I2−2 + I2−3 + I3−1 + I3−2 + I3−3)/9 (1)

The 3× 3 average pooling can be transformed into equivalent convolution in Figure 4b.
The computation details are shown in Equation (2).

OFM = IFM ∗ Kernel =
I1−1 × 1/9 + I1−2 × 1/9 + I1−3 × 1/9+
I2−1 × 1/9 + I2−2 × 1/9 + I2−3 × 1/9+
I3−1 × 1/9 + I3−2 × 1/9 + I3−3 × 1/9

(2)



Electronics 2023, 12, 192 7 of 20Electronics 2023, 12, 192 7 of 21 
 

 

 
(a) (b) (c) (d) 

Figure 3. Inception-based branch-fuse. (a) Training (3 × 3); (b) Inference (3 × 3); (c) Training (5 × 5); 
(d) Inference (5 × 5). 

 
Figure 4. Average pooling is transformed into equivalent convolution. 

For the 3 × 3 average pooling described in Figure 4a, I1-1~I3-3 are IFMs, and O1-1 is OFM. 
The computation details are shown in Equation (1). 
𝑂𝑂𝑂𝑂𝑂𝑂 = ��𝐼𝐼𝑂𝑂𝑂𝑂� 9� = (𝐼𝐼1−1 + 𝐼𝐼1−2 + 𝐼𝐼1−3 + 𝐼𝐼2−1 + 𝐼𝐼2−2 + 𝐼𝐼2−3 + 𝐼𝐼3−1 + 𝐼𝐼3−2 + 𝐼𝐼3−3) 9⁄  (1) 

The 3 × 3 average pooling can be transformed into equivalent convolution in Figure 
4b. The computation details are shown in Equation (2). 

𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐼𝐼𝑂𝑂𝑂𝑂 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =
𝐼𝐼1−1 × 1 9⁄ + 𝐼𝐼1−2 × 1 9⁄ + 𝐼𝐼1−3 × 1 9⁄ +
𝐼𝐼2−1 × 1 9⁄ + 𝐼𝐼2−2 × 1 9⁄ + 𝐼𝐼2−3 × 1 9⁄ +
𝐼𝐼3−1 × 1 9⁄ + 𝐼𝐼3−2 × 1 9⁄ + 𝐼𝐼3−3 × 1 9⁄

 (2) 

2.2. The 8-Bit Integer Quantization 
PyTorch adopts 8-bit integer-only quantization, which uses the per-channel and per-

layer quantization strategy, and supports various CNN architectures with an accuracy 
loss of below 1% [27,28]. We adopt the same quantization method, and extract quantized 
parameters and deploy the quantized model on FPGA. First, we calculate MULT and 
SHIFT from thescale parameter. In Equation (3), 𝑅𝑅, 𝑆𝑆, 𝑍𝑍, and 𝑄𝑄 respectively denote the 
real number, scale parameter, zero-point, and quantized integer. In Equation (4), 𝑅𝑅3 is 
the real number of an OFM, 𝑅𝑅1[𝑖𝑖] and 𝑅𝑅2[𝑖𝑖] are individually real numbers of IFM and 
the kernel. Based on Equations (3) and (4), we derive Equation (5). 𝑆𝑆3, 𝑍𝑍3, 𝑄𝑄3 are the scale, 
aero-point and quantized integer of OFM. 𝑆𝑆1 , 𝑍𝑍1 ,  𝑄𝑄1  are the scale, zero-point and 

3×3
(S=2)

ReLU

ReLU

 

+

1×13×3
AvgP

3×3
(S=1)

+

1×13×3
AvgP

ReLU

3×3
(S=2)

ReLU

ReLU

3×3
(S=1)

ReLU

 

Identity

5×5
(S=2)

ReLU

ReLU

+

1×13×3
AvgP

5×5
(S=1)

+

1×13×3
AvgP

Identity

ReLU

5×5
(S=2)

ReLU

ReLU

5×5
(S=1)

ReLU

 

3×3
(S=2)

3×3
(S=1)

K1-1
=1/9

K2-1
=1/9

K3-1
=1/9

K1-2
=1/9

K1-3
=1/9

K2-2
=1/9

K2-3
=1/9

K3-2
=1/9

K3-3
=1/9

I1-2 I1-3

I2-3

I3-3

O1-1

A
vgPool

* = O1-1

(a) Average Pooling (b) Equivalent Convolution 

I1-1

I2-1

I3-1

I1-2 I1-3

I2-2 I2-3

I3-2 I3-3

I2-1

I3-1

I1-1

I2-2

I3-2

Figure 3. Inception-based branch-fuse. (a) Training (3 × 3); (b) Inference (3 × 3); (c) Training (5 × 5);
(d) Inference (5 × 5).

Electronics 2023, 12, 192 7 of 21 
 

 

 
(a) (b) (c) (d) 

Figure 3. Inception-based branch-fuse. (a) Training (3 × 3); (b) Inference (3 × 3); (c) Training (5 × 5); 
(d) Inference (5 × 5). 

 
Figure 4. Average pooling is transformed into equivalent convolution. 

For the 3 × 3 average pooling described in Figure 4a, I1-1~I3-3 are IFMs, and O1-1 is OFM. 
The computation details are shown in Equation (1). 
𝑂𝑂𝑂𝑂𝑂𝑂 = ��𝐼𝐼𝑂𝑂𝑂𝑂� 9� = (𝐼𝐼1−1 + 𝐼𝐼1−2 + 𝐼𝐼1−3 + 𝐼𝐼2−1 + 𝐼𝐼2−2 + 𝐼𝐼2−3 + 𝐼𝐼3−1 + 𝐼𝐼3−2 + 𝐼𝐼3−3) 9⁄  (1) 

The 3 × 3 average pooling can be transformed into equivalent convolution in Figure 
4b. The computation details are shown in Equation (2). 

𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐼𝐼𝑂𝑂𝑂𝑂 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =
𝐼𝐼1−1 × 1 9⁄ + 𝐼𝐼1−2 × 1 9⁄ + 𝐼𝐼1−3 × 1 9⁄ +
𝐼𝐼2−1 × 1 9⁄ + 𝐼𝐼2−2 × 1 9⁄ + 𝐼𝐼2−3 × 1 9⁄ +
𝐼𝐼3−1 × 1 9⁄ + 𝐼𝐼3−2 × 1 9⁄ + 𝐼𝐼3−3 × 1 9⁄

 (2) 

2.2. The 8-Bit Integer Quantization 
PyTorch adopts 8-bit integer-only quantization, which uses the per-channel and per-

layer quantization strategy, and supports various CNN architectures with an accuracy 
loss of below 1% [27,28]. We adopt the same quantization method, and extract quantized 
parameters and deploy the quantized model on FPGA. First, we calculate MULT and 
SHIFT from thescale parameter. In Equation (3), 𝑅𝑅, 𝑆𝑆, 𝑍𝑍, and 𝑄𝑄 respectively denote the 
real number, scale parameter, zero-point, and quantized integer. In Equation (4), 𝑅𝑅3 is 
the real number of an OFM, 𝑅𝑅1[𝑖𝑖] and 𝑅𝑅2[𝑖𝑖] are individually real numbers of IFM and 
the kernel. Based on Equations (3) and (4), we derive Equation (5). 𝑆𝑆3, 𝑍𝑍3, 𝑄𝑄3 are the scale, 
aero-point and quantized integer of OFM. 𝑆𝑆1 , 𝑍𝑍1 ,  𝑄𝑄1  are the scale, zero-point and 

3×3
(S=2)

ReLU

ReLU

 

+

1×13×3
AvgP

3×3
(S=1)

+

1×13×3
AvgP

ReLU

3×3
(S=2)

ReLU

ReLU

3×3
(S=1)

ReLU

 

Identity

5×5
(S=2)

ReLU

ReLU

+

1×13×3
AvgP

5×5
(S=1)

+

1×13×3
AvgP

Identity

ReLU

5×5
(S=2)

ReLU

ReLU

5×5
(S=1)

ReLU

 

3×3
(S=2)

3×3
(S=1)

K1-1
=1/9

K2-1
=1/9

K3-1
=1/9

K1-2
=1/9

K1-3
=1/9

K2-2
=1/9

K2-3
=1/9

K3-2
=1/9

K3-3
=1/9

I1-2 I1-3

I2-3

I3-3

O1-1

A
vgPool

* = O1-1

(a) Average Pooling (b) Equivalent Convolution 

I1-1

I2-1

I3-1

I1-2 I1-3

I2-2 I2-3

I3-2 I3-3

I2-1

I3-1

I1-1

I2-2

I3-2

Figure 4. Average pooling is transformed into equivalent convolution.

2.2. The 8-Bit Integer Quantization

PyTorch adopts 8-bit integer-only quantization, which uses the per-channel and per-
layer quantization strategy, and supports various CNN architectures with an accuracy
loss of below 1% [27,28]. We adopt the same quantization method, and extract quantized
parameters and deploy the quantized model on FPGA. First, we calculate MULT and
SHIFT from thescale parameter. In Equation (3), R, S, Z, and Q respectively denote the real
number, scale parameter, zero-point, and quantized integer. In Equation (4), R3 is the real
number of an OFM, R1[i] and R2[i] are individually real numbers of IFM and the kernel.
Based on Equations (3) and (4), we derive Equation (5). S3, Z3, Q3 are the scale, aero-point
and quantized integer of OFM. S1, Z1, Q1 are the scale, zero-point and quantized integer of
IFM. S2, Z2, Q2 are the scale, zero-point and quantized integer of the kernel.

In Equation (6), S1, S2 and S3 are real numbers, M is the only float-point and in the
interval (0, 1). By doubling M until the product is in the interval [0.5 , 1), the product
is then converted to an approximated fixed-point equivalent value MULT. The time of
doubling is SHIFT. Therefore, M can be represented by a truncated integer multiplier
MULT with a right SHIFT. MULT and SHIFT are both integers. Equation (5) can be
transformed into Equation (7). The computation details are shown in paper [25,26].

R = S(Q− Z) (3)

R3 = ∑ R1[i]R2[i] (4)
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Q3 = Z3 +
S1S2

S3

[
∑(Q1[i]− Z1)(Q2[i]− Z2)

]
(5)

M =
S1S2

S3
≈ 2−SHIFT MULT (6)

Q3 = Z3 + MULT
[
∑(Q1[i]− Z1)(Q2[i]− Z2)

]
� SHIFT (7)

3. Accelerator

A fast algorithm reduces the arithmetic complexity of the convolution, which increases
speed. Winograd is one of the fast algorithms, which is more suitable for small kernels.
Additionally, the most popular kernel size is 3× 3 and 5× 5. Therefore, we adopt Winograd
to compute the convolution. Meanwhile, we are able to keep the accuracy loss negligible
and save LUT resources when supporting multi-types of kernels.

3.1. Dual-Decimal-Fuse Technique

The Winograd convolution includes four modules (see Figure 5a): the IFM transfor-
mation, kernel transformation, element-wise matrix multiplication (EWMM) and OFM
inversion. Equation (8) is Winograd F (2 × 2, 3 × 3), which is widely used, as its transfor-
mation matrices are simple (see Equation (9)).

OFM2×2 = AT
2×4

[(
BT

4×4 IFM4×4B4×4

)
�
(

G4×3Kernel3×3GT
3×4

)]
A4×2 (8)

BT
4×4 =


1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

,G4×3 =


1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

, A4×2 =


1 0
1 1
1 −1
0 −1


4×2

(9)
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In Equation (9), there is 1/2 in the kernel transformation matrix (G4×3). Although it is
not an integer, it can be converted to the right shift operation.

Equation (10) is Winograd F (4 × 4, 3 × 3), which is seldom used because its transfor-
mation matrices are complex (see Equation (11)).

OFM4×4 = AT
4×6

[(
BT

6×6 IFM6×6B6×6

)
�
(

G6×3Kernel3×3GT
3×6

)]
A6×4 (10)
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BT
6×6 =



4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1

,G6×3 =



1
4 0 0
− 1

6 − 1
6 − 1

6
− 1

6
1
6 − 1

6
1

24
1

12
1
6

1
24 − 1

12
1
6

0 0 1


, A6×4 =



1 0 0 0
1 1 1 1
1 −1 1 −1
1 2 4 8
1 −2 4 −8
0 0 0 1


6×4

(11)

Based on Equation (11), the largest absolute value is equal to 8, and the smallest one is
1/24. In particular, its kernel transformation matrix contains 1/6, 1/12, and 1/24, which
cannot be converted into shift operations. If we do not properly deal with these decimals,
the accuracy will decrease.

We propose the dual-decimal-fuse technique to deal with these decimals. The decimals
(1/6, 1/12, 1/24) of the kernel transform matrix are fused into decimals of scale (S1, S2, S3)
of the 8-bit integer quantization (see Figure 5b). The fused decimal M f use is transformed
into multiply and shift operations.

The detail of the dual-decimal-fuse technique are shown in Equations (12)–(14). At the
base of Equation (4), we add bias (Bias) into the equation, because for each output channel
of OFM of a convolutional layer, there is a corresponding bias. Consequently, we arrive at
Equation (12).

S3(Q3 − Z3) = {∑ S1(Q1[i]− Z1)S2(Q2[i]− Z2) + Bias}
= S1S2

{
∑(Q1[i]− Z1)(Q2[i]− Z2) +

Bias
S1S2

} (12)

We can then obtain Equation (13).

(Q3 − Z3) =
S1S2

S3

{
∑(Q1[i]− Z1)(Q2[i]− Z2) +

Bias
S1S2

}
(13)

Because the convolution is 2-D, we add two 1/24 of the Winograd kernel transforma-
tion matrix into S1S2/S3 of Equation (13); we then derive M f use and Equation (14).

(Q3 − Z3) =
S1S2

S3 × 24× 24

{
∑(Q1 − Z1)(Q2 − Z2)× 24× 24 +

Bias
S1S2

× 24× 24
}

(14)

In Equation (14), ∑(Q1 − Z1)(Q2 − Z2)× 24× 24 denotes that the Winograd kernel
transformation matrix (G6×3) is multiplied by 24, and the new G6×3 is shown in Equation (15).

G6×3 =



6 0 0
−4 −4 −4
−4 4 −4
1 2 4
1 −2 4
0 0 24

 (15)

Based on the fact that 24× 24 = 8× 3× 8× 3 = 64× 9 = 26 × 9, Equation (15) can be
further transformed into Equation (16).

(Q3 − Z3) =
S1S2

S3 × 9

{[
∑(Q1[i]− Z1)(Q2[i]− Z2)× 24× 24

]
� 6 +

Bias
S1S2

× 9
}

(16)

In PyTorch, S1S2/S3 can be transformed into multiply and shift operations (see
Equation (6)). By using the same method, S1S2/(S3 × 9) can also be transformed into
multiply and shift operations. Therefore, Equation (16) can be optimized into Equation (17).

(Q3 − Z3) = MULT
{[

∑(Q1[i]− Z1)(Q2[i]− Z2)× 24× 24
]
� 6 +

Bias
S1S2

× 9
}
� SHIFT (17)
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The dual-decimal-fuse technique makes the Winograd kernel transformation matrix
24 times larger, and decimals such as 1/6, 1/12, and 1/24 are all transformed into integers,
which maintains accuracy with negligible loss.

3.2. Winograd Decomposed-Part Reuse Technique

The original Winograd only supports the kernel whose size is 3 × 3 and whose stride
is 1. Paper [34] proposes DWM, which makes Winograd support all types of kernels, and
validates on GPU. When we implement DWM on FPGA, we must consider how to save LUT
resources across different types of kernels. For example, Table 1 shows the transformation
function of the original DWM and Winograd decomposed-part reuse (WDPR) under four
types of kernels.

Table 1. Transformation function of DWM and WDPR under four types of kernels.

Kernel Size (K × K) Stride
(S)

Original DWM WDPR

Part Transformation Part Transformation

3 × 3 1 1 F(4 × 4, 3 × 3) 1 F(4 × 4, 3 × 3)

3 × 3 2 1 F(4 × 4, 2 × 2) 1 F(4 × 4, 3 × 3)
2 F(4 × 4, 2 × 1) 2 F(4 × 4, 3 × 3)
3 F(4 × 4, 1 × 2) 3 F(4 × 4, 3 × 3)
4 F(4 × 4, 1 × 1) 4 F(4 × 4, 3 × 3)

5 × 5 1 1 F(4 × 4, 3 × 3) 1 F(4 × 4, 3 × 3)
2 F(4 × 4, 3 × 2) 2 F(4 × 4, 3 × 3)
3 F(4 × 4, 2 × 3) 3 F(4 × 4, 3 × 3)
4 F(4 × 4, 2 × 2) 4 F(4 × 4, 3 × 3)

5 × 5 2 1 F(4 × 4, 3 × 3) 1 F(4 × 4, 3 × 3)
2 F(4 × 4, 3 × 2) 2 F(4 × 4, 3 × 3)
3 F(4 × 4, 2 × 3) 3 F(4 × 4, 3 × 3)
4 F(4 × 4, 2 × 2) 4 F(4 × 4, 3 × 3)

Total 7 1

From Table 1, we find that the original DWM uses different transformation functions
for different decomposed parts. Therefore, for four types of kernels, there is a total of seven
transformation functions. If we implement seven transformation modules, they will use
extensive logic resources. Furthermore, for different layers, the utilization rate is low. For
example, if a convolution layer’s kernel size is 3 × 3 and stride is 2, the accelerator uses
F(4 × 4, 2 × 2), F(4 × 4, 2 × 1), F(4 × 4, 1 × 2) and F(4 × 4, 1 × 1) transformation modules.
The accelerator does not use F(4 × 4, 3 × 3), F(4 × 4, 3 × 2) and F(4 × 4, 2 × 3). Therefore,
we propose the Winograd decomposed-part reuse technique; for different types of kernels,
each decomposed part is padded into the same shape. Therefore, four decomposed parts of
IFM are all 6 × 6; four decomposed parts of Kernel are all 3 × 3. In this way, the output of
the EWMM of each decomposed part has the same shape of 6 × 6. Hence, we can add the
output of the EWMM of each decomposed part, then do one OFM inverse computation.
There are two OFM inverse modules in Figure 2, because the accelerator at most generates
2 × 4 × 4 OFMs at one clock for the pooling layer. For the original DWM, there are four
OFM inverse modules for four decomposed parts, as the four outputs of the EWMM have
a different shape. Therefore, the Winograd decomposed-part reuse technique can increase
the utilization rate of transformation modules and decrease logic resources for different
types of kernels, which decreases power.

3.3. The Architecture of the Accelerator

The architecture of the accelerator is shown in Figure 2. There are four main modules:
Unified computing PE arrays, the OFM Generator, parameters and instructions memory
and control logic.
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The control logic reads and decodes instructions from Instruction BRAM, and controls
the other three main modules. Instructions contain CNN architecture information, such as
kernel size, stride, input channels, output channels and IFM size, etc.

The unified computing PE arrays the complete Winograd convolution and fully con-
nect computation. The EWMM module consists of two lines; each line includes 144 PEs
(6 × 6 × 4 = 144). For K = 3, S = 2; K = 5, S = 1; K = 5, S = 2, the line computes four
decomposed parts of the EWMM. Two lines can compute two input channels of the EWMM
or two 4 × 4 OFMs. For K = 3, S = 1, one line computes four input channels of the EWMM.
In particular, the PE is implemented by DSP, and we use cascade the function of DSP to
support the Winograd decomposed-part reuse technique. There are odd PEs and even
PEs which are shown in Figure 6a. The functions of odd PEs and even PEs are defined by
Equations (18) and (19), respectively.

PCOUT = A× B (18)

P = D× B + PCIN (19)
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The cascade function of the DSP computes the addition of the EWMM of the decom-
posed part, which avoids using LUT resources to implement Adder.

3.3.1. Ping-Pong BRAM with Multi-Mode BRAM

FPGA has many on-chip memory resources—BRAMs. We use multi-mode BRAM to
store the activation value, which saves DFF resources of Configurable Logic Block (CLB)
and decreases power. At first, the OFM is divided into several 4 × 4 parts (see Figure 7a),
because the output size of Winograd F(4 × 4, 3 × 3) is 4 × 4. In the row dimension,
there are odd R4s and even R4s. In the column dimension, there are odd C4s and even
C4s. Therefore, there are four different colors, that is “Odd R4&Odd C4”, “Even R4&Odd
C4”, “Odd R4&Even C4” and “Even R4&Even C4”. In Figure 7b, each 4 × 4 part has a
coordinator. In Figure 7c, there are four BRAMs to store four different colors of 4 × 4 parts.
Four BRAMs works in a dual-port mode. By using four BRAMs to store the OFM, and
using dual-port, Ping-pong BRAM can read 4 × 4 × 8 IFMs at one clock, which meets the
demand of large volumes of reading of IFM in the Winograd computation. By this method,
we decrease the usage of DFF resources, which saves power, and increases reading speed.
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Figure 7. Ping-pong BRAM implemented by multi-mode BRAM: (a) OFM is divided into several
4 × 4 parts; (b) each 4 × 4 part has a coordinator; (c) Four BRAMs store all 4 × 4 parts of OFM.

3.3.2. Data Reuse and Padding of IFM Buffer

The accelerator supports four types of kernels, the IFM buffer reads the activation
value from Ping-pong BRAM, which reuses data temporally at the column dimension, and
reuses data spatially at the row dimension. It also supports padding, which preserves
accuracy with negligible loss.

Figure 8a shows how the IFM buffer works when the kernel size is 5 × 5 and the stride
is 1. Other types of kernels work similarly. The IFM buffer has eight ports to read activation
values; that is, “Even R4 & Even C4 PortB”, “Even R4 & Even C4 PortA”, “Even R4 & Odd
C4 PortB”, “Even R4 & Odd C4 PortA”, “Odd R4 & Even C4 PortB”, “Odd R4 & Even C4
PortA”, “Odd R4 & Odd C4 PortB” and “Odd R4 & Odd C4 PortA”. When the kernel size
is 5 × 5 and the stride is 1, “R1-R8 & C3-C10” is one output and “R5-R12 & C3-C10” is
another output. Data of “R5-R8 & C3-C10” are reused spatially.

In Figure 8b, at clock 0, “R3-R12 & C13-C16” reads “1,1”, “2,1” and “3,1” in Figure 7b.
In Figure 8c, at clock 1, “R3-R12 & C13-C16” reads “1,3”, “2,3” and “3,3” in Figure 7b;
“R3-R12 & C9-C12” reads “1,2”, “2,2” and “3,2” in Figure 7b. And “R3-R12 & C5-C8” reuses
“1,1”, “2,1” and “3,1”. In Figure 8d, at clock 2, “R3-R12 & C1-C4” reuses “1,1”, “2,1” and
“3,1”; “R3-R12 & C5-C8” reuses “1,2”, “2,2” and “3,2”; “R3-R12 & C9-C12” reuses “1,3”,
“2,3” and “3,3”. Therefore, the IFM buffer reuses data temporally at the column dimension.
In Figure 8c,d, at clock 1–2, the IFM buffer outputs 2 × 8 × 8, and supports “0” padding.
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Figure 8. Data temporal & spatial reuse and padding of IFM buffer: (a) How IFM buffer works when
kernel size is 5 × 5, stride is 1; (b) clock 0; (c) clock 1; (d) clock 2.

3.3.3. OFM Generator with Multi-Mode DSP

The details of the OFM generator are illustrated in Figure 9. The OFM generator uses
multiply-accumulate, pre-adder and dynamic reconfiguration of the DSP.
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The partial input channel of IFMs generates temporary OFMs which are represented
as OFMtemp, the OFM of all input channel of IFM is denoted as OFMacc, and the bias is
represented as Bias. Therefore, OFMacc can be calculated by Equation (20). Equation (20)
can be implemented by the accumulation function of the DSP.

OFMacc =
Cin

∑
1

OFMtemp + Bias (20)

From Equation (7), the first step to quantize the OFM is multiplication by MULT. We
then get OFMquant−mult in Equation (21).

OFMquant−mult =
Cin

∑
1

OFMtemp ×MULT + Bias×MULT (21)

The Acc. & Quant. multiply of Figure 9 completes the OFM accumulation and
multiplication of quantization. It includes 4 × 4 × 4 DSPs. The mode of the DSP is shown
in Figure 6b. The DSP of Figure 6b implements two functions, which are defined by
Equations (22) and (23).

P = A× B + P (22)

P = D× B + P (23)

Port A is OFMtemp, Port B is MULT, Port D is Bias, and Port P is OFMquant−mult.
The OFM generator uses multiply-accumulate, pre-adder and dynamic reconfiguration

of the DSP, which decreases usage of general programmable logic and saves power.

4. Experimental Results

We use our toolchain and accelerator to implement seven CNNs which support four
types of kernels and more branches. When updating CNN, utilization of logic resources
remains the same.

Experimental platform: Computer CPU: AMD Ryzen 7 5800H; DDR Frequency 3200
MHz; Xilinx VC709(XC7V690T, 28 nm), see Figure 10; Software: Vivado, PyTorch.
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Figure 10. Xilinx VC709.

Experimental Process: On CIFAR-10 dataset, we use toolchain in Figure 1. The input of
toolchain is the architecture of seven CNNs with four types of kernels. Four CNNs include
branch, three CNNs do not include branch. We use PyTorch to train seven CNNs. For
four CNNs with branch, we use inception-based branch-fuse technique to remove branch
and keep main backbone, then use PyTorch to quantize the fused model. For three CNNs
without branch, we directly use PyTorch to quantize the trained model.
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The CNN updater of the toolchain generates seven groups of initialization file (.mem)
of CNN parameters and instructions. CNN is defined by the content of BRAM. The content
of BRAM is initialized by .mem files. We use one group of .mem files to generate the first
bitstream by traditional design flow. We download the bitstream and check the image
recognition result from LED of VC709. When updating CNN, we use a CNN updater to
generate six other bitstreams, which eliminates the re-synthesis and re-implementation pro-
cess. By this method we avoid a timing failure, unsuccessful routing and long development
time. The differences between seven bitstreams are the content of BRAM which are CNN
parameters and instructions. We download the bitstreams one by one and check the image
recognition result from LED of VC709.

Table 2 shows seven CNNs be implemented on VC709. Papers [15,31] also use the
toolchain to update CNN. Papers [15,31] both support three CNNs. The logic resources
of paper [15,31] are changed when updating the CNN. Our accelerator keeps the logic
resources unchanged.

Table 2. Seven CNNs are implemented.

NO. Name Kernel (Size, Stride) & Branch TCAD 2020 [15] TCAD 2020 [31]

1 VGG K = 3, S = 1; No branches; VGG VGG

2 VGG-S2 K = 3, S = 1 & K = 3, S = 2;
No branches; - -

3 AlexNet K = 5, S = 1 & K = 3, S = 1;
No branches; - AlexNet

4 RepResNet K = 3, S = 1; With branches; ResNet ResNet

5 RepVGG K = 3, S = 1 & K = 3, S = 2;
With branches; - -

6 RepInception K = 5, S = 1 & K = 3, S = 1;
With branches; Inception -

7 RepK5S2
K = 5, S = 1 & K = 5, S = 2

& K = 3, S = 1 & K = 3, S = 2;
With branches

- -

Table 3 shows the accuracy of seven CNNs after training, quantization, and hardware
accelerator. In Table 3, the largest accuracy loss between training and quantizing is −0.72%
and all losses are within 1%. The largest accuracy loss between the accelerator and quantiz-
ing is −0.08% and all losses are within 0.1%, which indicates that our dual-decimal-fuse
technique maintains accuracy with negligible loss.

Table 3. Accuracy of seven CNNs after training, quantization, and hardware accelerator.

CNN After
Training

After
Quantizing

Loss between Training
and Quantizing

Hardware
Accelerator

Loss between Accelerator
and Quantizing Total Loss

VGG 93.82 93.75 −0.07 93.73 −0.02 −0.09
VGG-S2 92.6 92.59 −0.01 92.6 +0.01 0
AlexNet 90.72 90 −0.72 89.98 −0.02 −0.74

RepResNet 93.06 92.88 −0.18 92.93 +0.05 −0.13
RepVGG 92.99 92.93 −0.06 92.87 −0.06 −0.12

RepInception 93.56 93.36 −0.2 93.45 +0.09 −0.11
RepK5S2 93.29 93.14 −0.15 93.06 −0.08 −0.23

Table 4 shows comparison between FPGA-based CNN accelerator with toolchain. In
Table 4, papers [14–16] include toolchain, and support CNN updating.
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Table 4. Comparison between FPGA-based CNN accelerator with toolchain.

Items TCAD
2019 [14]

VLSI
2020 [16]

TCAD
2020 [15] This Paper

>Platform >VC709
(28 nm) >XC7K325T >Arria-10

(20 nm)
>VC709
(28 nm)

>Toolchain >Yes >Yes >Yes >Yes

Frequency
(MHz) 150 200 240 100

Precision 16-bit
Fix-point

8-bit
Fix-point

8/16 bit
Fix-point

16-bit
Fix-point

16-bit
Fix-point 8/14/18 Integer

Winograd No No No F(4 × 4, 3 × 3)

Power 26 16.5 - 4.4

Supported
Kernels K = 3, S = 1 K = 5, S = 1; K = 3, S = 1;

K = 1, S = 1
K = 5, S = 1; K = 3, S = 1; K = 3, S = 2;

K = 1, S = 1
K = 1, S = 1; K = 1, S = 2; K = 3, S = 1;
K = 3, S = 2; K = 5, S = 1; K = 5, S = 2

CNN VGG VGG16 InceptionV1 ResNet-50 VGG Inception RepResNet VGG RepInception

Logic Cell 300 K
(81%)

94,763
(46.5%)

94,763
(46.5%)

286 K
(67%)

228 K
(49%)

277 K
(65%)

255.6 K
(59%)

255.6 K
(59%)

255.6 K
(59%)

BRAM(Kb) 1248
(42%)

165
(37.08%)

165
(37.08%)

2356 × 20
(87%)

2319 × 20
(85%)

1849 × 20
(68%)

1036 × 36
(70%)

1036 × 36
(70%)

1036 × 36
(70%)

DSP 2833
(78%)

516
(61.43%)

516
(61.43%)

3036
(100%)

3036
(100%)

3036
(100%)

2816
(78%)

2816
(78%)

2816
(78%)

Throughput
(GOPS) 354 354 54.4 758 968.03 524.98 827.8 869.9 997.2

Power
Efficiency

(GOPS/W)
13.6 21.5 3.3 - - - 188.1 197.7 226.6

In Table 4, for inception, the throughput of paper [15] is 524.98, ours is 997.2 and is
1.9 times larger than paper [15]; the throughput of paper [16] is 54.4, ours is 997.2 and is
18.3 times larger than paper [16]. For ResNet, the throughput of paper [15] is 758, ours
is 827.8 and is 1.1 times larger than paper [15]. The main reason is that our toolchain
supports the inception-based branch–fuse technique. At the inference stage, it removes
branches and keeps the main backbone, which increases throughput, while inception and
ResNet of paper [15,16] don’t have branch–fuse technique. At the inference stage, they
have multi-branches, which consume more logic resources. The second reason is that our
accelerator supports Winograd fast algorithm.

In Table 4, for the VGG, the throughput of paper [15] is 968.03, our is 869.9 and is
smaller than paper [15]. Because the platform of paper [15] is Arria-10 (20 nm), which is
more advanced than VC709 (28 nm), the frequency is 240 MHz while ours is 100 MHz. If
our accelerator can work at 240 MHz, the throughput will larger than paper [15].

In Table 4, for the VGG, the throughput of paper [14] is 354, our is 869.9 and is
2.45 times larger than the paper [14]. The platform of paper [14] is VC709 (28 nm), which is
the same as with our platform. DSP utilizations are both 78%. The frequency of paper [14]
is 150 MHz, which is higher than ours (100 MHz). But our throughput is better because our
accelerator uses Winograd fast algorithm, which uses fewer DSPs to compute convolution.

In Table 4, for the VGG, the throughput of paper [16] is 354, our is 869.9 and is
2.45 times larger than the paper [16], because our accelerator uses Winograd fast algorithm,
and uses more logic resources.

Table 5 shows a comparison between the FPGA-based CNN accelerator with Winograd.
In Table 5, for the VGG, paper [32] and our accelerator all use VC709. The frequency of

paper [32] is 150 MHz, which is higher than ours (100 MHz). The throughput of paper [32]
is 570, our is 869.9 and is 1.5 times larger than the paper [32]. Because our accelerator uses
Winograd F(4 × 4, 3 × 3), compared with Winograd F(2 × 2, 3 × 3) of paper [32], it uses
fewer number DSPs to compute convolution.
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Table 5. Comparison between FPGA-based CNN accelerator with Winograd.

Items FPGA
2018 [32]

VLSI 2020
[30]

TCAD 2020
[31] This Paper

Platform VC709
(28 nm) Arria-10 (20 nm) ZCU102

(16 nm)
ZC706

(28 nm)
VC709
(28 nm)

Toolchain No No Yes Yes Yes

Frequency
(MHz) 150 250 200 166 100

Precision 16-bit
Fix-point

16-bit
Fix-point

16-bit
Fix-point

16-bit
Fix-point 8/14/18 Integer

Winograd F(2 × 2,
3 × 3) F( 2 × 2, 3 × 3) DWM F(4 × 4, 3 × 3) F(4 × 4, 3 × 3) DWM

Power 25 18 - 4.4

Supported
Kernels K = 3, S = 1 K = 3, S = 1; K = 3, S = 2 K = 5, S = 1; K = 3, S = 1; K = 3, S = 2;

K = 1, S = 1
K = 1, S = 1; K = 1, S = 2; K = 3, S = 1; K = 3, S = 2;

K = 5, S = 1; K = 5, S = 2

CNN VGG VGG VGG-S2 VGG AlexNet ResNet VGG VGG-S2 AlexNet RepResNet

Logic Cell 175 K
(40%)

181 K
(15.7%)

180 K
(15.7%) 95% 67% 67% 255.6 K

(59%)
255.6 K
(59%)

255.6 K
(59%)

255.6 K
(59%)

BRAM(Kb) 1232
(42%)

1310
(61.5%)

1310
(61.5%) 95% 67% 67% 1036 × 36

(70%)
1036 × 36

(70%)

1036 ×
36

(70%)

1036 × 36
(70%)

DSP 1376
(38%)

1344
(88.5%)

1344
(88.5%) 95% 67% 67% 2816

(78%)
2816

(78%)
2816

(78%)
2816

(78%)

Throughput
(GOPS) 570 1642 1788 2479.6 854.6 201.6 869.9 432.4 727.4 827.8

Power
Efficiency
(GOPS/W)

22.80 91.2 99.3 105.4 36.2 13.8 197.7 98.3 165.3 188.1

For VGG and VGG-S2, the reasons for the high GOPS in paper [30] are as follows:
first, Arria-10 adopts 20 nm technology, which is more advanced than 28 nm technology
of VC709; therefore, Arria-10 frequency can reach 250 MHz. Secondly, a DSP of Arria-10
contains two 19 × 18 multipliers in standard precision mode, which can achieve two
16 × 16 multiplication operations. Although 1344 DSPS are used, 1344 DSPS are equivalent
to 2688 16 × 16 multipliers. A DSP of XC7V690T contains a 25 × 18 multiplier, which can
only achieve a 14 × 18 multiplication operation. In our accelerator, 2304 DSPs complete
the Winograd EWMM operation, and 512 DSPs complete the quantization operation.
Therefore, the 2688 multipliers used in paper [30] exceed the 2304 multipliers used in our
accelerator. In our accelerator, XC7V690T uses 28 nm and the clock frequency is 100 MHz.
If the frequency of our accelerator can also reach 250 MHz, the GOPS of VGG can reach
2174.75 (=869.9 × 2.5), which is greater than 1642. The GOPS of the VGG-S2 can reach
1081 (=432.4 × 2.5), which is still lower than 1788, because our accelerator supports four
types of kernels (K = 3, S = 1; K = 3, S = 2; K = 5, S = 1 and K = 5, S = 2). Paper [30]
only supports two types of kernels (K = 3, S = 1 and K = 3, S = 2). The energy efficiency
of VGG and VGG-S2 are 197.7 and 98.3, respectively. The energy efficiency of VGG is
2.17 times of that in paper [30], and the energy efficiency of VGG-S2 is 0.99 times of that in
paper [30] because our accelerator uses the data reuse, makes full use of FPGA dedicated
programmable resources, and reduces the use of FPGA general programmable resources
and on-chip model to reduce power consumption.

For VGG, the reason for the high GOPS in paper [31] is that the accelerator only
optimizes one network at a time and accelerates VGG with 95% of on-chip resources as the
constraint of design space exploration. Moreover, ZCU102 adopts the 16 nm process, which
is more advanced than the 28 nm process of VC709; therefore, the frequency of ZCU102
can reach 200 MHz. In addition, the logic cell used in paper [31] is 600 K × 0.95, which
is 2.2 times that of 255.6 K in our accelerator. The clock frequency in our accelerator is
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100 MHz, which is half of that in paper [31]. If the frequency of our accelerator can also
reach 200 MHz, the GOPS for VGG can reach 1739.8 (=869.9 × 2), which is still lower than
2479.6. In paper [31], the weight conversion is converted in advance, and the converted
weight is directly stored on FPGA. The weight transformation module of our accelerator
is implemented on a chip, which requires real-time weight transformation. That leads
to low GOPS. Finally, our accelerator supports four types of kernels (K = 3, S = 1; K = 3,
S = 2; K = 5, S = 1 and K = 5, S = 2), while paper [31] supports one type of kernel (K = 3,
S = 1). The energy efficiency of VGG is 1.87 times higher than that in paper [31] because our
accelerator uses the data reuse, make full use of FPGA dedicated programmable resources,
and reduces the use of FPGA general programmable resources and on-chip models to
reduce power consumption.

For the AlexNet network, the accelerator in paper [31] optimizes only one network
at a time. If the frequency of our accelerator can also reach 200 MHz, the GOPS can reach
1454.8 = (727.4 × 2), which is higher than 854.6, because the first layer of paper [31] uses
standard convolution and does not use Winograd’s algorithm, while our accelerator uses
Winograd’s algorithm with K = 5 and S = 1. Finally, our accelerator supports four types of
kernels (K = 3, S = 1; K = 3, S = 2; K = 5, S = 1 and K = 5, S = 2), while paper [31] supports
one type of kernel (K = 3, S = 1). Moreover, the energy efficiency of our accelerator is
greater, and the energy efficiency of AlexNet is 4.57 times that of paper [31] because our
accelerator uses the data reuse, makes full use of FPGA dedicated programmable resources,
and reduces the use of FPGA general programmable resources and the on-chip model to
reduce power consumption.

For the ResNet, the accelerator in paper [31] optimizes only one network at a time.
The GOPS of ResNet in paper [31] is 201.6, and the GOPS of our accelerator is 827.8, which
is 4.1 times better than that in paper [31]. The reasons for the low GOPS in paper [31] are
as follows: first, the number of used DSPs is small, and even if all DSPs are used, there
are only 900 DSPs. The second is that the 1 × 1 branch of ResNet consumes 40% of the
resources. In our accelerator, we can use branch fusion technology to fuse the parameters
of SKIP and 1 × 1 branches into the parameters of the 3 × 3 main backbone, and finally
remove the SKIP and 1 × 1 branches, and keep only the 3 × 3 main backbone. The energy
efficiency of our accelerator is 4.57 times higher than that of ResNet in paper [31].

5. Conclusions

We propose HBCA: a toolchain and corresponding FPGA-based accelerator to balance
accuracy and speed when updating CNN. The toolchain proposes an inception-based
branch–fused technique to balance accuracy and speed, which supports more branches
and more types of kernels. The accelerator proposes a dual decimal–fused technique to
balance accuracy and speed; the decimal of the Winograd transformation matrix is fused
into the scale decimal of the 8-bit integer quantization, and all computation is transformed
into integer computation.

The accelerator uses multi-mode BRAM to store the activation value, which saves
DFF resources and decreases power. The accelerator uses multiply-cascade of the DSP to
compute the EWMM and add the product of the EWMM. It also uses multiply-accumulate,
pre-adder and dynamic reconfiguration of the DSP to generate and quantize the OFM. The
multi-mode DSP saves LUT resources and decreases power. The accelerator supports four
types of kernels, reuses IFM data temporally at the column dimension, and reuses data
spatially at the row dimension. It also supports IFM padding, which maintains accuracy
with negligible loss.

Experiments show that HBCA supports seven CNNs with four types of kernels and
more branches. The accuracy loss of seven CNNs is within 0.1% compared to corresponding
quantized models. For the inception, the throughput and power efficiency of our accelerator
are 997.2 GOPS and 226.6 GOPS/W, respectively, which are higher than other FPGA-based
CNN accelerators. For ResNet, the throughput and power efficiency of our accelerator
are 827.8 GOPS and 188.1 GOPS/W, respectively, which are better than other FPGA-based
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CNN accelerators. The main reason for the better performance of our accelerator is that our
toolchain supports the inception-based branch–fuse technique. At the inference stage, it
removes branches and keeps the main backbone, thereby increasing the throughput.

Benefiting from employing the Winograd fast algorithm, we utilized several DSPs to
compute the convolution. In addition, our accelerator uses an on-chip model, multi-mode
BRAM and DSP, the Winograd decomposed-part reuse technique and data-reuse. Thus, the
power efficiency (GOPS/W) of VGG is up to 197.7, which is higher than other FPGA-based
CNN accelerators. Although the power efficiency (GOPS/W) of VGG-S2 is 98.3, which is
smaller than 99.3, our accelerator can support more types of kernels. Hence, our accelerator
is more flexible.

In summary, HBCA enables efficient processing of CNNs to improve power efficiency
and throughput without sacrificing accuracy or incurring additional hardware costs when
updating CNN.
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