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Abstract: This paper aims to detect early-stage lung tumors in deep-seated and superficial locations,
and to precisely measure the size of the detected tumor using non-invasive microwave reflectometry
over a super-wideband (SWB) frequency range. Human lung phantom and lung tumors are modeled
using a multi-layer concentric cylinder structure and spherical-shaped inclusions, respectively. Firstly,
a study on the dielectric properties of human torso tissues is carried out over an SWB frequency
range of 1–25 GHz based on the Cole–Cole dispersion model. Intensive full-wave simulations of the
modeled phantom under irradiation by a custom-designed SWB antenna array are then performed.
Results show that small tumor sizes from 5 mm radius in both deep-seated and superficial locations
of the lung tissue can be detected based on the contrast of reflection coefficients and reconstructed
images produced from backscattered signals between normal and anomalous tissues. The potential
of using SWB microwave reflectometry to successfully detect the lung tumors in their early stages
and at different depths of the lung tissue has been demonstrated.

Keywords: microwave reflectometry; super-wideband; lung tumor detection; dielectric properties;
antennas; reflection coefficients; imaging

1. Introduction

Lung cancer is one of the most prevalent cancers in the world. Different stages of
this disease are medically identified based on the tumor size and spread of abnormal cell
growth in the human body. In the first stage of lung cancer, the tumor size is small and
has not spread to any lymph nodes. Early-stage detection of lung cancer enables higher
success rates of treatment and prevents the cancerous tissues from further spreading [1,2].
Meanwhile, screening modalities, such as computed tomography (CT) scans and X-ray
devices, are one of the diagnostic methods used in revealing lung cancer and for periodic
monitoring during the treatment journey. However, the cumulative exposure of patients to
such ionizing radiation may result in cancer cell growth and spread. On the other hand,
CT image-guided lung biopsy surgery is an invasive detection method that may also pose
some risks of complications during or after the surgery [3]. Therefore, there is a critical
need to develop a safer, and yet affordable, diagnostic tool for lung cancer detection [4].

Recently, medical imaging based on microwave reflectometry has attracted significant
interest as a non-invasive technique for detection of different serious diseases such as breast
cancer [5–7], brain stroke and tumor [8–11], chest fluid accumulation [12–14], and skin
cancer [15,16], and for frequent post-surgery monitoring due to its being low-cost and
safe from harmful radiation [17]. Comparatively, fewer works have explored microwave
reflectometry for lung cancer detection [18–23], in particular for lung tumor in deep-
seated locations. In [18], the authors investigated the use of microwave reflectometry in
the frequency range of 1.5–3 GHz for lung cancer detection based on the distribution of
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scattered fields in the imaging domain. However, the detection was performed using a low-
gain slot-rotated antenna for detecting tumors in superficial locations with no capability to
determine their sizes. In [19], another similar study was conducted but using a small lung
phantom, which does not mimic the normal size of a human chest. The authors discussed
the effects of lung exhalation/inhalation and selected 10 GHz as the resonant frequency
for tumor detection. However, the images of the two superficially placed tumor inclusions
were barely distinguishable due to the low resolution of the reconstructed images caused
by weak signal penetration inside the phantom. On the other hand, a life-size phantom of
a human chest was introduced in [20] and tested using off-the-shelf antennas. However,
the phantom was utilized based on tissue equivalent liquids, which does not mimic the
anatomical structure and real dielectric properties of human torso tissues. The authors
in [21] studied lung tumor detection over 3–4 GHz frequency range using a spherical
tumor placed at a depth of 60 mm inside a small square-shaped lung phantom. The results
showed that tumors of radius 4 mm and 10 mm can be detected. However, simulations were
performed using a single antenna in front of a non-realistic rectangular lung phantom shape
with very small size (60 × 60 × 101 mm3) and at a superficial location. In Reference [22],
lung tumor detection is investigated using directional elliptical patch antenna operating in
a frequency range of 3–10.7 GHz. Simulations were performed using a rectangle-shaped
lung phantom with a dimension of 300 × 133 × 130 mm3 and a square-shape lung tumor
inclusion. However, this study included a lung phantom without a rib bone layer and the
reflection coefficient results were not clear in terms of detecting tumors at superficial depth.
Another study in [23] proposed a cupcake-shaped antenna operating in the frequency
range of 2.9–12 GHz for lung tumor detection. It was found that the antenna can detect
lung cancer from stage II onwards. However, the simulation was again performed using
a rectangular-shaped lung phantom without a rib bone layer. Moreover, the size of the
proposed lung phantom (60 × 40 × 26.66 mm3) did not mimic the life-sized human torso.

To overcome the above issues in lung cancer detection, this paper proposes the use
of the SWB microwave reflectometry technique for improved detection of lung tumors,
particularly in their early stages, to increase the chance of a successful treatment. To the
best of our knowledge, no previous study has investigated the detection of lung tumors
in both deep and superficial positions based on the variance of their backscattered signals
from all antenna elements as demonstrated in this work. The key contributions of this
paper are:

• Studying the dielectric properties of human torso tissues over a super-wideband (SWB)
frequency range.

• Custom designing antennas for SWB microwave reflectometry to detect early-stage
lung tumors in deep-seated and superficial locations.

• Enhancing the resolution of reconstructed tumor images using backscattering datasets
acquired over a super-wide frequency range.

• Demonstrating for the first time, the potential of SWB microwave reflectometry in
precisely determining the size of early-stage tumors, even in deep locations.

The rest of this paper is organized as follows. Section 2 reviews the related works.
Section 3 investigates the human torso dielectric properties over the SWB frequency range.
Section 4 models the human lung phantom and determines the optimal separation distance
between antenna elements and the lung phantom. Section 5 simulates the lung phantom
embedded with tumors at various locations and discusses the reflection coefficient results.
The corresponding imaging results for deep-seated lung tumor are presented in Section 6.
Finally, Section 7 concludes the paper.

2. Related Works

Generally, microwave reflectometry techniques are based on the dielectric contrast
between healthy and unhealthy tissues due to the biological difference between normal
and anomalous cells. Their performance depends highly on the employed antenna, which
is considered the key element in transmitting and receiving the backscattered signals
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from the target object. The antenna’s parameters, such as operating frequency range
(bandwidth), peak gain, radiation efficiency, and radiation pattern, are the leading factors
that determine the capability and efficiency of microwave reflectometry systems. A large,
covered bandwidth with low S11 level (<−20 dB), high peak gain, and stable radiation
pattern are the utmost desired characteristics when designing the system’s antenna [24].
Several cancer types can be detected using microwave reflectometry, with a proper selection
of the operating frequency required for signal penetration into human tissues. Previous
studies found that the best operating frequency range for detecting deep cancer types such
as breast, brain, and lung cancers is between 1 and 5 GHz to achieve good penetration and
accurate detection. In [25], the authors proposed two arrays with rectangular and spiral
antennas with operating frequencies between 2 and 4 GHz for breast cancer detection.
In [26], a reconfigurable metamaterial antenna was proposed and tested over the frequency
range 2.5–3.2 GHz, similar for breast cancer detection. An ultra-wideband (UWB) antenna
was further proposed in [27] to detect breast tumor over 2.3–11 GHz.

On the other hand, several researchers have studied the antenna types and frequency
ranges for detecting brain injuries (stroke, hemorrhages, and tumors). In Reference [28],
the authors proposed a portable three-dimensional (3D) metamaterial antenna structure
operating in the frequency range of 1.12–2.5 GHz to detect brain hemorrhage. A wear-
able head imaging system based on microwave reflectometry was presented in [29] with
12 antenna elements operating between 1 and 4 GHz. The resolution of the imaging sys-
tem is highly related to the employment of large bandwidths and high frequencies. With
high frequencies, a reduced penetration will be obtained, which is preferable for shallow
cancer types such as skin cancer, where the required penetration inside human tissues
is only a few millimeters (mm) [30]. Several enhancements to the antenna design in mi-
crowave reflectometry have also been introduced to improve system proficiency. Recent
studies have incorporated UWB and SWB technologies in microwave reflectometry systems,
leveraging on their high data rate, interference immunity, low profile, and cost-effective
properties [31–33]. Tumor detection based on the contrast of reflection coefficients was
introduced in [34,35] for quick detection of head strokes with promising results.

3. Investigation of Human Torso Dielectric Properties

This research study has been accomplished in three work stages (WSs), as depicted in
Figure 1. The first stage (WS1) conducted a study into the Cole–Cole dispersion model [36]
to obtain the dielectric properties of human torso tissues over the SWB frequency range
between 1 and 25 GHz. In WS2, two cylindrical structures were designed using a High-
Frequency Structural Simulator (HFSS) to model healthy and unhealthy (cancerous) in-
stances of human lung based on the obtained dielectric properties from WS1. Finally, in
WS3, we studied the effects of different tumor locations (deep-seated and superficial) on
the tumor detection performance by the SWB microwave reflectometry system.

Because radio frequency (RF) signals can penetrate various human body layers with
different dielectric characteristics, it is crucial to design a precise human tissue model to
assess the backscattered signals from different tissue layers reliably. In this study, a human
lung phantom has been modeled using five cylindrical layers: skin, fat, muscle, rib bone
(cancellous), and lung (inflated). Each layer has specific thickness and frequency-dependent
dielectric properties that can be found over our frequency range of interest (1–25 GHz)
for the proposed SWB microwave reflectometry system using the well-known Cole–Cole
model [37] based on the experimental data of human tissues. The Cole–Cole model has four
dispersion regions with different relaxation parameters that could depict the superposition
of different relaxation processes of biological structure. So far, very few studies have been
conducted on the dielectric properties of torso tissues over the SWB frequency range.
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Figure 1. Workflow stages for this study.

The dielectric properties of human tissues vary with signal frequency due to the
frequency-dependent polarization of atoms, electrons, and ions caused by the E-fields in
tissues. The following Cole–Cole equation can describe the frequency dispersion of the
dielectric properties of human tissues:

ε(ω) = ε0

(
εr − j

σ

ωε0

)
= εs (n) + ∑n

∆εn

1 + (jωτn)1(1−αn)
+

σi
jωε0

(1)

where ε, εr, and ε0 are the relative complex permittivity, relative permittivity, and free
space permittivity, respectively; σi is the static ionic conductivity; εs (n), τn, and αn are the
static permittivity, relaxation time, and distribution parameter (a measure of dispersion
broadening), respectively, where n = {1 . . . 4} is the index representing each of the four
dispersion types in human tissues; and ∆εn = εs (n+1) − εs (n) denotes the dispersion
magnitude. Using the parameter values in Table 1 for each tissue of the human torso [38,39],
their corresponding dielectric properties can be found using the Cole–Cole equation.

Table 1. Parameter values for each tissue of the human torso.

Tissue ε∞ ∆ε1
τ1

(ps) α1
∆ε2

(102)
τ2

(ns) α2
∆ε3

(104)
τ3

(µs) α3
∆ε4

(106)
τ4

(ms) α4
σ

(10−3)

Skin 4 39 7.96 0.1 2.8 79.58 0 3 1.59 0.16 0.03 1.592 0.2 0.4
Fat 2.5 3 7.96 0.2 0.15 15.92 0.1 3.3 159.15 0.05 10 7.958 0.01 10

Muscle 4 50 7.23 0.1 70 353.6 0.1 120 318.31 0.1 25 2.274 0 200
Rib

bone 2.5 18 13.3 0.22 3 79.58 0.25 2 159.15 0.2 20 15.91 0 700

Lung 4.44 14.6 16.1 0.0001 6.46 3.22 0.181 2.2 159.15 0.18 10 7.958 0 84.2

The complex relative permittivity, ε(ω), of each layer can be represented as εr − jε′r,
where εr and ε′r are the real part and the imaginary part, respectively, and their ratio (ε′r/εr)
is defined as the loss tangent, tanδ, of each layer. Based on the above model, increasing
the frequency decreases the relative permittivity but increases the conductivity and loss
tangent. From the above relations, the dielectric properties of unhealthy tissue (tumor) will
be higher than healthy tissue due to their higher fluid content. The relative permittivity
(εr), conductivity σ (S/m), loss factor (ε′r), and loss tangent, tanδ, in the frequency range of
interest (1−25 GHz) can be predicted as shown in Figure 2. The numerically obtained results
for dielectric properties of human torso tissues are then compared with those measured
in [37] at different frequency points, and a very good consistency is observed between them.
Consequently, our results have addressed a knowledge gap in the investigation of human
torso dielectric properties over the SWB frequency range.
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4. Modeling of Human Lung Phantom

In the literature, few works on lung cancer detection using microwave reflectometry
can be found due to several limitations. One of them is the lack of studies on lung tissue
dielectric properties. Another is the complexity of the torso tissue layers, which makes
detection based on RF backscattered signals challenging. In this study, we chose 3.8 GHz as
the signal frequency for lung cancer detection based on the contrast of reflection coefficients,
as it provides good signal penetration into human tissues. The lung phantom was modeled
as a concentric cylinder structure, each layer representing a single human torso tissue with
properties given in Table 2. The lung phantom has dimensions of 82.31 cm circumference
and 9 cm height, which mimic that of an adult human lung. In addition, a spherical
inclusion of radius 5–15 mm was inserted into the phantom to represent an early-stage
lung tumor, as shown in Figure 3.
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Table 2. Physical and dielectric properties of lung phantom with tumor inclusion.

Tissue Thickness (mm) Relative Dielectric Constant εr Conductivity σ (S/m) tan δ

Skin 3 36.8 2.15 0.283
Fat 2 10.4 0.453 0.211

Muscle 20 51.2 2.74 0.259
Rib Bone 6 17.2 1.28 0.361

Lung 100 19.7 1.21 0.298
Tumor 5–15 (radius) 61.8 5.454 0.428
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In this section, the optimal separation distance between array antenna elements and
the lung phantom boundary is also investigated. Several simulations have been conducted
using different separation distances (5, 10, 15 mm) between array elements and lung
phantom, along with simulation of array elements placed in free space. The results in
Figure 4 show that the first resonant frequency of the array in free space occurs at 3.8 GHz,
with a return loss of −32.31 dB. They also show that varying the distance between array
elements and lung phantom will mainly affect the first resonant frequency and return loss
level. For example, at 5 mm distance, the resonant frequency is shifted to a lower value
of 3.6 GHz, and return loss worsens to −30.5 dB due to the higher reflections from the
high-permittivity skin layer. These strong reflections represent a clutter that can easily
mask the tumor, particularly when it is deep-seated and still small during the early stage of
disease. Increasing the distance to 15 mm resulted in shifting the resonant frequency to
3.5 GHz, with a return loss of−48 dB. Here, skin reflections are mitigated, but the increased
frequency shift mainly arises from the impedance mismatch between the antenna array and
the lung phantom. On the other hand, at 10 mm distance, good impedance matching occurs
at the boundary between lung phantom and array, with the first resonant frequency at
3.8 GHz (same as in free space) and return loss level of −36.14 dB. This represents the
optimal separation distance that minimizes skin reflection effect while achieving good
impedance matching with the lung phantom layer. All subsequent results were thus based
on 10 mm separation distance in the simulation setup.
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5. Lung Anomaly Detection Based on SWB Microwave Reflectometry

In this section, we will discuss the capability of the SWB microwave reflectometry
system in detecting lung anomalies, which can be caused by cancer or other conditions.
In this work, we consider the anomaly to be caused by an early-stage tumor of 15 mm
radius at different locations of the lung. The detection setup consists of a custom-designed
eight-element SWB antenna array [40] operating in the frequency range of 1–25 GHz,
12 dBi peak gain at boresight, and stable radiation pattern over the covered bandwidth.
The proposed antenna resonates at 3.8 GHz, with a −36.2 dB return loss (|S11|). Figure 5
shows the setup configuration around the lung phantom at a 10 mm distance from the
outermost skin layer. In pursuance of achieving low mutual coupling (<−20 dB) with
enhanced isolation between adjacent array elements, the array elements are spaced 45°apart
with 75.7 mm edge-to-edge separation between adjacent elements. Considering that the
signal wavelength, λ, at 3.8 GHz is 78.9 mm, the spacing ratio between array elements is
75.7/78.9 = 0.959, which is approximately equal to λ.

Figure 6 shows the mutual coupling between the eight array elements in terms of
their forward transmission coefficients. For improved readability, we plotted only the
forward transmission coefficients from antenna 1 to all other array elements (2–8), as
representative of the array’s transmission performance, because we found each of the
other array elements exhibited a similar performance trend. The results confirm the low
mutual coupling between adjacent array elements, resulting in high isolation. In fact, all
transmission coefficients, Sij (where i and j = {1 . . . 8}; i 6= j), between eight array elements
are less than −30 dB over the covered bandwidth. Furthermore, the presence or absence of
the tumor inclusion does not seem to impact the isolation performance.
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5.1. Detection of Deep-Seated Lung Tumor

Intense simulations were conducted to verify the capability of the above system in
detecting early-stage lung tumors of different sizes and in different locations of the lung
tissue. Firstly, a 15 mm radius tumor is placed in the deep-seated center location of the
phantom, where the tumor center is 131 mm away in depth from each antenna element.
Then, a 5 mm radius tumor is placed in the same center location to further verify the
capability of the system in detecting smaller-sized tumors. A comparison of the reflection
coefficients behavior of eight array elements has been made between those obtained from
a healthy and unhealthy phantom for both 15 mm and 5 mm radius tumors, as shown in
Figures 7 and 8, respectively.
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The results revealed that the unhealthy phantom with different sizes of deep-seated
tumor placed at 131 mm depth introduced higher reflection than those from the healthy
one, which can be attributed to the higher dielectric properties of the tumor mass compared
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with healthy tissues. This illustrates that the proposed system can detect tumors as small
as 5 mm radius simply based on the contrast of reflection coefficients. Table 3 shows the
obtained reflection coefficient values from both phantoms (healthy and unhealthy) and
their absolute difference, |∆|, at 3.8 GHz. It can be observed that the minimum and
maximum absolute differences in reflection coefficient are 1.86 dB and 7.03 dB, respectively,
which enables good differentiation between healthy and unhealthy tissues.

Table 3. Difference in reflection coefficient values (in dB) for phantoms with and without tumor in
the phantom’s center at 3.8 GHz.

Reflection Coefficient Healthy Phantom With 15 mm Tumor (|∆|) With 5 mm Tumor (|∆|)

|S11| −33.37 −31.20 (2.17) −30.26 (3.11)
|S22| −34.23 −25.70 (8.53) −32.37 (1.86)
|S33| −34.30 −31.30 (3.00) −27.27 (7.03)
|S44| −34.63 −31.32 (3.31) −32.49 (2.14)
|S55| −35.37 −32.05 (3.32) −33.05 (2.32)
|S66| −35.62 −31.19 (4.43) −33.48 (2.14)
|S77| −36.10 −31.18 (4.92) −32.68 (3.42)
|S88| −35.60 −31.76 (3.84) −33.68 (1.92)

5.2. Detection of Superficially-Located Lung Tumor

Having verified the capability of the proposed system to detect different-sized tumors
in the deepest depth of the lung, i.e., in the phantom’s center, we next verify the capability
of the system to detect a 15 mm radius tumor at different superficial locations in the lung.
We use a frequency from 1 to 5 GHz, which contains the signal frequency of interest at
3.8 GHz. Figure 9 depicts eight superficial locations of the tumor inside the phantom,
each corresponding to its proximity to one array element. In each location, the separation
between array element and tumor was 61 mm from tumor’s center, i.e., the distance between
the tumor edge and the outer surface of the lung layer is 5 mm.

The results show that each array element is capable of lung tumor detection when
the tumor is placed close to other array elements. Table 4 lists the difference in reflection
coefficient values obtained at 3.8 GHz between phantoms with and without tumor for
each location. The minimum and maximum absolute differences in reflection coefficient
are found to be 1.44 dB and 9.03 dB, respectively, ensuring good differentiation between
healthy and unhealthy tissues. Figure 10 shows the same results but in graphical form to
illustrate the concluded data pattern.

Table 4. Difference in reflection coefficient values between phantoms with and without tumor for
each superficial location.

∆

Reflection
Coefficient

Case 1 (dB) Case 2 (dB) Case 3 (dB) Case 4 (dB) Case 5 (dB) Case 6 (dB) Case 7 (dB) Case 8 (dB)

|∆S11| 2.65 2.40 1.44 1.5 2.33 3.2 3.22 2.78
|∆S22| 3.54 3.65 7.4 2.55 3.43 3.92 4.26 8.72
|∆S33| 8.36 7.81 7.67 2.37 3.88 4.05 4.28 7.94
|∆S44| 3.74 3.07 2.87 6.49 3.23 4.36 4.29 3.45
|∆S55| 3.71 8.65 3.49 7.45 2.89 8.34 8.79 8.55
|∆S66| 4.04 6.15 4.39 1.84 4.77 2.68 3.79 5.10
|∆S77| 4.9 5.20 4.31 2.38 4.56 5.01 4.25 4.47
|∆S88| 5.12 8.47 4.1 2.27 4.31 9.03 4.8 3.35
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It shows the potential of not only detecting the presence of a tumor, but also predicting
its location based solely on the reflection coefficient results. This pattern is only valid
for the array configuration shown in Figure 5a. It predicts the tumor’s location in terms
of its proximity to certain array element that correlates with a high contrast of reflection
coefficients (>7 dB). For instance, an obtained high|∆S22|value predicts the tumor could
be located near antennas 3 and 8, while a high |∆S88|value predicts the tumor could be in
the proximity of antennas 2 and 6, and so on.

6. Reconstructed Imaging Results

In this section, tumor images were produced using a radar-based imaging technique,
which relies on reconstructing an energy map of backscattered signals within the lung
phantom. Tumor tissues often exhibit higher water content that corresponds to higher
dielectric properties than healthy tissues. Hence, greater signal reflections will occur
at the tumor boundaries, and these scatterers will result in high image energy. Image
resolution is one of the key factors that potentially controls the efficiency of the microwave
imaging system, which in turn is highly dependent on the operating bandwidth of the
system antenna. Employing an SWB antenna will result in high-resolution images of the
lung phantom, and consequently more accurate detection of lung cancer. Two confocal
beamforming algorithms: Delay and Sum (DAS) and Delay Multiply and Sum (DMAS),
with subtraction clutter removal based on MERIT open-source software [41,42], were used
to reconstruct the images of two deep-seated lung tumors of 5 mm and 15 mm radius
located at 131 mm depth of a lung phantom using backscattering datasets (reflection
coefficient data) acquired over a super-wide frequency range, as discussed in Section 5. The
performance of the above algorithms in locating the tumors and predicting their sizes are
shown in Figures 11 and 12. The tumor size is measured from the reconstructed images
based on the areas that represent the higher signal scattering, which are indicated in red in
both DAS and DMAS images.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 18 
 

 

  
(a) (b) 

Figure 11. Imaging results of lung phantom with deep-seated 15 mm radius tumor using two beam-
formers: (a) DAS and (b) DMAS. 

  
(a) (b) 

Figure 12. Imaging results of lung phantom with deep-seated 5 mm tumor using two beamformers: 
(a) DAS and (b) DMAS. 

Table 5. MAPE of predicted tumor sizes from reconstructed images by DAS and DMAS. 

Real Tumor 
Radius 

Predicted Radius 
(DAS)  

Predicted Ra-
dius (DMAS) 

MAPE (DAS) MAPE (DMAS) 

5 mm 9 mm 8 mm 80% 60% 
15 mm 16 mm 14 mm 6.66% 6.66% 

  

Figure 11. Imaging results of lung phantom with deep-seated 15 mm radius tumor using two
beamformers: (a) DAS and (b) DMAS.



Electronics 2023, 12, 36 15 of 18

Electronics 2023, 12, x FOR PEER REVIEW 15 of 18 
 

 

  
(a) (b) 

Figure 11. Imaging results of lung phantom with deep-seated 15 mm radius tumor using two beam-
formers: (a) DAS and (b) DMAS. 

  
(a) (b) 

Figure 12. Imaging results of lung phantom with deep-seated 5 mm tumor using two beamformers: 
(a) DAS and (b) DMAS. 

Table 5. MAPE of predicted tumor sizes from reconstructed images by DAS and DMAS. 

Real Tumor 
Radius 

Predicted Radius 
(DAS)  

Predicted Ra-
dius (DMAS) 

MAPE (DAS) MAPE (DMAS) 

5 mm 9 mm 8 mm 80% 60% 
15 mm 16 mm 14 mm 6.66% 6.66% 
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(a) DAS and (b) DMAS.

In Figure 11a, the location of the 15 mm radius tumor is accurately identified with a
slightly higher predicted size of 16 mm radius using the DAS algorithm. A higher resolution
of detection can be observed in Figure 11b, and the predicted tumor size is slightly lower at
14 mm radius using the DMAS algorithm. In Figure 12a, the smaller tumor of 5 mm radius
is correctly located, but with a much larger predicted size of 9 mm radius using DAS. The
same is true for DMAS with a predicted size of 8 mm radius, as shown in Figure 12b.

By analyzing the mean absolute percentage error (MAPE) of the predicted sizes, as
shown in Table 5, it can be seen that the system can predict with good accuracy using
DAS or DMAS for the larger tumor of 15 mm radius as MAPE is relatively low. However,
prediction is still challenging for the smaller tumor of 5 mm radius, although the MAPE
results suggest that DMAS could be the better of the two algorithms.

Table 5. MAPE of predicted tumor sizes from reconstructed images by DAS and DMAS.

Real Tumor
Radius

Predicted
Radius (DAS)

Predicted
Radius (DMAS) MAPE (DAS) MAPE (DMAS)

5 mm 9 mm 8 mm 80% 60%
15 mm 16 mm 14 mm 6.66% 6.66%

After analyzing the performance of the proposed system for lung tumor detection, a
comparison between this work and previous works is given in Table 6. It can be concluded
that this work is the first to introduce the concept of SWB microwave reflectometry for lung
tumor detection. It is also the first to investigate in depth the lung anomaly detection based
on the contrast of reflection coefficients from different array elements, which provided quick
detection without the need for complex processing of backscattered data. Furthermore, the
capability to measure different tumor sizes in both deep-seated and superficial locations is
demonstrated for the first time, which enables the assessment of the disease stage and the
corresponding treatment options for lung cancer patients.
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Table 6. Comparison between this work and previous works on microwave reflectometry-based lung
tumor detection.

Ref. Freq. (GHz) Tumor
Size

Type of Antenna(s)
Deployed

Tumor Detection
Depth

Tumor Detection
Accuracy

[17] 1.5−3 10 mm
radius

1× rotated antenna
around the phantom N/A Accurate

[18] 10 5 mm
radius 2× Vivaldi antenna Superficial (60 mm) Weak detection

[19] 1–5 15 mL
(tube-shaped)

2× horn TX antenna,
2× Vivaldi RX antenna Superficial (50 mm) Accurate

[20] 3–4 4, 10 mm
radius

1× circular shaped
antenna 60 mm Weak detection

[21] 3–10.7 N/A 2× elliptical shaped
antenna 70 mm Weak detection

[22] 2.9–12 N/A 1× cupcake shaped
antenna N/A Weak detection

This work 2.45–25 5, 15 mm
radius

8× custom-designed
SWB array element

around the phantom

Deep-seated (141 mm)
Superficial (61 mm)

Accurate with size
measurement

capability

7. Conclusions

This paper presented a study of the dielectric properties of human torso and lung
cancer detection based on SWB microwave reflectometry. The obtained dielectric and
conducting properties were used to design a phantom model that mimics the biological
structure of an adult-sized human torso. A custom-designed eight-element SWB array set
up around the lung phantom was simulated for detecting tumor lesion in both deep and
superficial locations. A quick detection was successfully achieved based on the contrast of
reflection coefficients between normal and anomalous tissues. A data pattern was further
presented to explore the capability of such a detection method for localizing the tumor
with respect to the array element locations. Furthermore, images of the lung phantom
with deep-seated tumor inclusion of different sizes were reconstructed with remarkably
enhanced resolution due to using backscattering datasets acquired over a super-wide
frequency range. Accurate detection, localization, and size measurement of deep-seated
tumor inclusion was validated using DAS and DMAS beamforming algorithms.

Our future work will include the fabrication of the designed SWB antenna array and
physical experimentation of the proposed system. Work is also underway to extend the
current capability of detecting both deep and superficial tumors to achieve a single system
that can detect multiple cancer types such as skin, breast, and lung cancers.
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