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Abstract: In the image restoration task, the generative adversarial network (GAN) demonstrates
excellent performance. However, there remain significant challenges concerning the task of gen-
erative face region inpainting. Traditional model approaches are ineffective in maintaining global
consistency among facial components and recovering fine facial details. To address this challenge,
this study proposes a facial restoration generation network combined a transformer module and
GAN to accurately detect the missing feature parts of the face and perform effective and fine-grained
restoration generation. We validate the proposed model using different image quality evaluation
methods and several open-source face datasets and experimentally demonstrate that our model
outperforms other current state-of-the-art network models in terms of generated image quality and
the coherent naturalness of facial features in face image restoration generation tasks.

Keywords: face detection; convolutional neural network; generative adversarial networks; image fusion

1. Introduction

Image restoration is a challenging long-term research task in the field of computer
vision, which aims to fill in the missing parts of an image by using intact regions and
semantic content. High-quality image restoration can be used in many fields, including old
photo restoration, image reconstruction, and image denoising, etc., where the face image
restoration generation task is more challenging. The facial restoration generation task aims
to fill in the missing parts of face features with visually plausible hypotheses. The task
focuses on how to recover the semantic face structure and fine details. Face images are
feature-rich and have fewer feature repetitions, making the restoration task more difficult
and challenging compared to other landscape images that have feature repetitions, for
example. In addition, face complement generation tasks have a wide range of scenarios,
such as public security [1], face editing, masking faces [2], and removing unwanted contents
(e.g., glasses, masks, and scarves), among others. In recent years, with the development of
deep learning, especially in the excellent performance of convolutional neural networks in
computer vision tasks [3,4], significant progress has been made in the research of image
restoration and face complementation.

Image restoration requires the algorithm to complete the missing areas of the image to
be repaired according to the image itself and to maintain the continuity of the image features,
making the repaired image look very natural and hard to distinguish from the undamaged
image. According to Valley Theory, it is very obvious whenever there is an image feature
dissonance between the generated content and the undamaged region. Therefore, high-
quality image restoration requires not only that the generated content is semantically sound
but also that the texture of the generated image features is clear and realistic. Early image
restoration studies tried to solve the problem using ideas similar to texture synthesis by
matching and replicating background patches with holes propagated from low to high, and
these methods are particularly suitable for background restoration tasks and are widely
used in practical applications. However, this approach also has significant shortcomings,
such as cases where the missing patch cannot be found somewhere in the background
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region, where the restored region involves complex non-repetitive structures (e.g., facial
objects), etc.; the method also fails to produce new image content.

The mainstream image restoration methods currently fall into two main categories:
The first is the traditional texture synthesis method [5,6], which samples similar blocks
of pixels from the undamaged regions of an image to fill the area to be completed and is
suitable for relatively simple texture image restoration [7,8]. The second is a neural network-
based generative model that encodes the image into features in a high-dimensional latent
space and then decodes the features into the restored full image [9,10]. However, it is
difficult to utilize the intact region information in the convolution operation of missing
regions, which often causes the restored image to be visually blurred. Both methods
have their limitations in ensuring reasonable semantics and clear texture requirements to
generate a globally uniform image. To solve these thorny problems in image remediation
and restoration tasks, more learning-based approaches have been proposed, also thanks
to the continuous development of neural networks and deep learning. It uses codecs as
the main network for image restoration [11,12], encodes the corrupted image, and then
generates the missing regions through decoders and uses adversarial loss to make the
generated image as realistic as possible to better restore the missing regions. However, this
method suffers from the problem of discontinuity between missing region features and
non-missing region features, and the final generated image has obvious repair traces. The
generative adversarial network (GAN) [13] is a new approach to image restoration, and
the contextual conditional adversarial network (CC-GAN) [14] is one of the methods. This
network uses a codec as a generator and a VGG [15] network as a discriminator to achieve
image restoration. The context loss term is also added to make the restoration marks of the
restored images less obvious. The deep generative model proposed by Yeh [16] also utilizes
adversarial networks for image restoration. Unlike the previously mentioned models that
use adversarial networks for restoration, this network uses undamaged images as a dataset
to train the depth volumes. After training, the trained model is used to find the closest
encoding to the missing image for image restoration.

In this study, we solve the problem that the traditional generative confrontation
network cannot preserve the consistency and naturalness of the global feature of the
image when the local image is generated. For the task of face restoration generation,
we have designed the novel T-GANs (Transformer-Generative Adversarial Networks)
image generation network model. In the network, a transformer module with an attention
mechanism [17] is employed to detect the missing features of the face image and perform
feature generation verification. In the generation network, a double discriminator is used
to improve the ability to sense local and global features of the image. The following is a
brief summary of the contributions of this work:

1. We studied and proposed T-GANs for face image restoration generation tasks, which
solved the inability of most GANs-based image generation networks in image local
feature generation to achieve uniformity and natural fidelity of the generated image
as a whole.

2. In the network, add multiple transformer modules to confirm the missing features of
the face before generating the local features of the face, and perform feature prediction.
In the generative network, a discriminator is combined to perform local and global
feature detection on the generated image.

3. In the generation network, the generator uses convolution and dilated convolution to
generate facial features. In the discriminator, global and local dual discriminators are
used for feature discrimination of the generated images.

4. The proposed network is validated using several open-source datasets such as VGG
Face, Celeba, FFHQ, and EDFace-Celeb as well as various image quality evaluation
methods such as FID, PSNR, and SSIM.
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2. Related Work

Traditional image restoration methods
Traditional image restoration methods can be roughly divided into two categories:

diffusion-based methods and sample patch-based methods. The diffusion-based meth-
ods [18,19] use the edge information of the missing area to try to slowly diffuse the structure
and texture information of the area to fill in the internal information of the missing area.
Bertalmio et al. First proposed a diffusion-based model. This model diffuses the known
information of the edge of the missing area in the image to the interior of the missing area
along the direction of the ISO illuminance line to achieve the goal of image repair. However,
the model does not take into account the integrity of the image, resulting in poor repair
effect. Shen and Chan improved the BSCB model, used the total variation (TV) model to
repair images, and proposed a structural edge processing algorithm based on the variation
principle, but the repair results showed the obvious fracture. Because image reconstruction
is limited to locally available information, diffusion-based methods are usually unable
to restore meaningful structures in the missing areas or adequately process images with
large missing areas. The sample patch-based method [20,21] attempts to search for the
best matching patch in the non-missing part of the image and copy it to the corresponding
location to fill the missing area block by block. Drori et al. proposed an image inpainting
algorithm based on samples, which uses the principle of self-similarity to get information
on missing areas of images, but it runs slowly. Barnes et al. proposed a patch match
algorithm to quickly find similar matches between image patches, which can repair images
with large missing areas to some extent, but it requires manual intervention. Although
these traditional methods can handle some simple instances, the computation of inpainting
completion tasks with complex texture images appears unsatisfactory due to the lack of
high-level understanding of image semantics.

Convolutional neural network-based image restoration completion
Image restoration can be regarded as a special image generation problem, which

generates a part of the image (the area to be filled) and uses the texture of the known part of
the image. The image inpainting completion method based on deep learning generally uses
a mask to process the original image [22], confirms that the image is missing the area to be
repaired, and generates a new repaired image after calculation. At present, the methods
based on convolutional self-encoding networks and generative adversarial networks are
widely used. Pathak et al. first proposed a deep-neural-network-based CE model for image
inpainting of large missing areas and achieved impressive results. Since then, deep-learning-
based image inpainting has been widely studied. Yu et al. [23] proposed a novel image
restoration framework consisting of a coarse-to-fine two-stage network structure. The
first-stage network uses the reconstruction loss to roughly predict the image content of the
missing areas; the second-stage network refines the inpainting results of the first-stage blur
through the reconstruction loss and adversarial loss, which solves the problem of images
with complex textures to a certain extent. Liu et al. [24] added a coherent semantic attention
layer to the two-stage model to solve the problem of discontinuous results produced in
inpainting images. However, these coarse-to-fine two-stage network models often require
a lot of computing resources during training, and the repair effect of the model is highly
dependent on the output results of the first stage. Liu et al. [25] achieve high-quality image
inpainting using partial convolutions (PConv) with automatic mask updates. Yan et al. [26]
proposed a model based on the U-Net [27] architecture to accurately inpainting missing
regions in images from both structure and detail.

GAN-based face image restoration completion
The emergence of the generation confrontation network generates high-quality sam-

ples with a unique zero-sum game and confrontation training ideas. It has more powerful
feature learning and feature expression capabilities than traditional machine learning
algorithms, has achieved significant success in the field of sample generation, and has
become a research hotspot in the field of image generation [28]. Gao et al. [29] proposed a
two-stream network for image inpainting, respectively, reconstructing texture structure and
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structure-constrained texture synthesis. At the same time, the bidirectional gated feature
fusion (Bi-GFF) module and the context feature aggregation (CFA) module are designed
inside the network to enhance global consistency and generate finer detailed features.
Christian et al. [30] proposed SRGAN to infer realistic natural images with a 4x upscaling
factor for image super-resolution (SR). Zhang et al. [31] proposed a DeBLuRring Network
(DBLRNet) by applying 3D convolutions to perform spatio-temporal learning in both spatial
and temporal domains for restoring blurred images in videos. Zhang et al. [32] Designed a
multi-facial prior search network (MFPSNet) to optimally extract information from different
facial priors for blind face restoration (BFR) tasks [33,34]. Ge et al. [35] proposed Identity
Diversity GAN (ID-GAN), which integrates the face recognizer of CNN into GAN, uses
CNN for feature reconstruction, and GAN for visual reconstruction, generating realistic
and preserving identity feature images. Xu et al. [36] proposed a GAN-based feedforward
network to generate high-quality face images, coupling facial features such as identity and
expression through 3D priors, and extracting each facial attribute information separately.

3. Methods

In this section, we describe the proposed facial restoration generative networks T-
GANs. The network contains two parts, the transformer module and the ResNet-based
image generation network, as shown in Figure 1. It is well known that convolutional
computing is weak in perceiving global feature information, and the generated image
cannot achieve the desired effect if the missing face image is computed and generated
directly. We use the transformer module to extract global feature information from its
original image before image restoration generation and confirm the missing feature part
of the face at the same time. In the face restoration generation network, we use ResNet
as a generator for image restoration generation. In the discriminator, global and local
discriminators are used to improve the detail discrimination performance of the generated
images, and the transformer module is added to further discriminate the quality of the
generated face-restored images.
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3.1. Transformer Module

In the image generation task, compared to the global feature image generation from
nothing, the face part feature generation has to generate both the missing feature image
parts and maintain the uniformity and naturalness of the overall face image features, and
the simple use of GANs-based generative network models cannot achieve the desired
results. In the network, we use the transformer module of the original framework to extract
the global features of the face and detect the missing feature parts under the multi-layer
perceptron and multi-head self-attention calculations, which are used to repair and generate
the missing parts of the face, as shown in Figure 2. The module contains an MLP layer,
multi-head self-attention layer, layer-norm layer, etc., which divide the input missing face
image into multiple image patches, where each patch can be regarded as a language ‘word’
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similar to NLP (Natural Language Processing), through the multi-head attention feature
extraction of each patch, after multi-layer calculation obtains the global feature information
and confirms the missing part of the feature.
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Where the multi-head attention is denoted as:

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
multi − head(Q, K, V) = Concat(head1, . . . , headh)WO

(1)

In the equation, K, V, and Q represent the key, value, and query of the matrix packing
sets. Wo is the projection matrix of multi-head output; WQ, WK, and WV represent their
corresponding different subspace correspondence matrices.

3.2. Facial Restoration Generative Network

In the facial restoration network, we use the GAN framework and reconstruct the
internal generators and discriminators, as shown in Figure 3. In the generator part, we
adopt Resnet as the main network and use dilated convolution instead of upsampling and
downsampling operations. The size of the perceptual field of view affects the generation of
image texture features during image generation; therefore, we use dilated convolution [37]
to reduce excessive convolution operations while increasing the perceptual field of view.
Resnet’s use of multiple residual blocks avoids the appearance of image generation overfit-
ting, generates more detailed image texture, and generates missing face part features and
global facial features to maintain consistency.

In the discriminator part, a combination of global and local discriminators is used to
discriminate the authenticity of the generated images. The global discriminator consists
of multiple convolutional layers and a fully connected layer. All convolutional layers
use a 2 × 2-pixel step to reduce the image resolution. A similar structure is used for the
local discriminator, except that the size of the input image block is half that of the global
discriminator. The authenticity of the generated face restoration images is finally confirmed
by integrating the global and local discriminator outputs and the transformer module’s dis-
criminator results for the generated images in the sigmoid activation function calculation.
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The face restoration generation network finally generates fake images after the contin-
uous game and update between the generator and the discriminator. Its loss function is
as follows:

Lgan(D, G) = Ex∼pdata (x)[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))] (2)

In the equation, D represents the discriminator, G represents the generator, and z is
the corrupted image.

4. Experiments
4.1. Datasets

We selected four datasets for evaluation in our experiments (Figure 4): VGG Face2 [38],
Celeba-HQ [39], FFHQ [40], and EDFace-Celeb [41]. The VGG Face2 dataset is made of
around 3.31 million images divided into 9131 classes, each representing a different person’s
identity and the images have an average resolution of 137 × 180 pixels. Images are down-
loaded from Google Image Search and have large variations in pose, age, illumination,
ethnicity, and profession (e.g., actors, athletes, and politicians). The CelebA-HQ contains
30,000 face images with a 1024 × 1024 resolution. The FFHQ contains 70,000 high-quality
PNG images at a resolution of 1024 × 1024 with considerable variation in age, ethnicity,
and image background. The EDFace-Celeb is a publicly available ethnically diverse fa-
cial dataset that includes 1.7 million photos covering different countries with a balanced
ethnic composition.

4.2. Implementation Details

Our facial restoration generative networks, T-GANs, contain two parts and three
different network architectures, so they need to be trained separately for optimization
to achieve the best results. In the transformer module, we set the initial learning rate to
0.0001, and the generator learning rate in the generative network is set to 0.001. If the
discriminator learning rate is too high it will directly affect the generation quality, and its
learning rate should not be higher than the generator learning rate to prevent the generators
from failing to converge and the network from crashing. The overall network is optimized
using the Adam optimizer [42], and the batch size is set to 20. Additionally, we added
the beam search algorithm to optimize the learning rate to obtain the best performance of
the network.
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In conducting the quality assessment of the generated images, we evaluated the
network performance of our proposed network using the commonly used FID (Frechet
inception distance) image generation quality assessment method; however, with a single
assessment method, the image quality could not be verified from various aspects. We also
used the PSNR (peak signal-to-noise ratio) and SSIM (structural similarity index map) to
evaluate the quality of the images generated by the proposed networks.

4.3. Main Results

In the local feature repair generation task, compared to the global image generation
task, the generated part often appears to be inconsistent with the surrounding area features,
and the texture features appear distorted. At the same time, artifacts appear on the edges of
the generated features, and the repaired areas are clearly distinguished from other normal
areas, resulting in unnatural images. The occurrence of this situation is mainly due to
the inability of most generative networks to accurately detect missing feature regions and
specific missing features.

Our proposed network performs the restoration of the image by first using the trans-
former module to compute the global features of the image with multiple attention, detect
the missing feature regions, and compute the correct features of the missing faces, as shown
in Figure 5. It solves the problem of the repaired image anomalies that occur in most of
the generative networks due to the inability to confirm the repaired content. For images
missing different facial features, as shown in Figure 6, our proposed network can accurately
detect the feature missing locations and missing contents, and repair them accurately to
generate reasonable facial images, while maintaining the integrity and naturalness of the
image features.

For large areas of missing facial feature image repair, such as the emergence of pan-
demic viruses nowadays when it is necessary to wear masks that obscure large areas of
facial features, the face image cannot be accurately recognized. As shown in Figure 7, our
network can still accurately perform reasonable face feature generation for the masked area.
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In the evaluation of generated image quality, we use the FID image quality evaluation
method to test the quality of images generated by the restoration of missing blocks (mask)
of different sizes. The results of our proposed generative network and other excellent
generative networks are shown in Table 1. Our proposed generation network performed
better. The missing content of different sizes can be accurately repaired to achieve the effect
of real ones.

Table 1. Different sizes of missing regions; image quality comparison generated by different models
under the FID.

Mask
10–20% 20–30% 30–40% 40–50% Center

GAFC [43] 7.29 15.76 26.41 38.85 7.50

PIC [44] 6.57 12.93 20.12 33.71 4.89

Region Wise [45] 7.05 15.53 24.58 31.47 8.75

Edge Connect [46] 5.37 9.24 17.35 27.41 8.22

Ours 4.35 7.23 12.41 17.29 4.91
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We also validated the performance of the proposed network using PSNR and SSIM
image quality evaluation methods, as shown in Table 2; our model is more robust in
the restoration generation of missing parts (mask) of different areas compared to other
good models.

Table 2. Performance comparison of PSNR and SSIM for different models in the face of different
missing content restoration.

Mask GAFC PIC Region
Wise

Edge
Connect Ours

PSNR

10–20% 27.51 30.33 30.58 30.73 35.17

20–30% 24.42 27.05 26.83 27.55 29.53

30–40% 22.15 24.71 24.75 25.21 27.01

40–50% 20.30 22.45 22.38 23.50 25.27

center 24.21 24.27 24.05 24.79 29.74

SSIM

10–20% 0.925 0.962 0.963 0.971 0.983

20–30% 0.891 0.92.7 0.930 0.941 0.974

30–40% 0.832 0.886 0.889 0.905 0.939

40–50% 0.760 0.829 0.855 0.859 0.907

center 0.865 0.869 0.871 0.874 0.925

In addition, we compared the proposed model with other good models in terms of
computational efficiency, testing the average running time and the FLOPs during each
image, as shown in Table 3.
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Table 3. Efficiency comparison of different models.

FLOPs Time

GAFC 103.1 G 1.74 s
PIC 109.0 G 1.62 s

Region Wise 114.5 G 1.82 s
Edge Connect 122.6 G 2.05 s

Ours 95.5 G 1.03 s

The task of facial local feature repair generation is difficult due to the complexity of
facial features, and it is easy to have problems such as distorted features, poor quality,
and unnaturalness in the images generated by the repair. As shown in Figure 8, our
proposed generative network is compared with other advanced models in the task of face
image restoration for different areas and locations with missing features, and the generated
face images suppress the appearance of artifacts well and generates features with higher
accuracy while maintaining face feature consistency and naturalness.
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facial features.

5. Discussion

Our proposed face restoration generation network can perform effective restoration
of the face of multiple scenarios of face loss and generate high-quality, natural-looking
face images. At the same time, we test the performance of our network on face images
with more than 50% missing facial features or even those missing the whole facial features
with only hair features, as shown in Figure 9. Our proposed network still performs well
and can repair their image to generate reasonable facial features and maintain the global
feature consistency and naturalness of the face images. In the following research, we have
improved the performance of our proposed network model in a near step to enhance the
image quality, generating reasonably natural face images while preserving the background
features and the accurate restoration generation of the effect of lighting on skin tones.
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6. Conclusions

We propose a novel T-GANs image generation network for the restoration generation
task of missing feature parts of faces. In the network, the transformer module is added to
effectively obtain global information on the image by using its self-attention mechanism to
focus on the missing features of the face while considering all facial features. In the face
restoration generation network, a ResNet-based network is used as the base network, and a
dilated convolutional computation is added as the generator for the generation of missing
faces. A dual discriminator is used in the discriminator to improve the ability to perceive
both local and global features of the image. Compared to other conventional GANs-based
image generation networks, we address the problem faced in maintaining the consistency
and naturalness of the global features of images while generating local images in the
image generation task, especially in the face feature missing restoration task. Our model is
validated using different datasets and various image quality evaluation methods, where
the FID is 17.29, PSNR and SSIM reach 25.27, and 0.907 is achieved in the image quality
validation generated by large-area feature missing (40–50%) restoration. Additionally, our
network is demonstrated to be more robust compared to other state-of-the-art networks; its
generated face images perform better in terms of image quality, image feature uniformity,
and naturalness.
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