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Abstract: As the necessity of supporting ever-increasing demands in video resolution leads to new
video coding standards, the challenge of harnessing their computational overhead becomes important.
Such overhead stems not only from the increased image data due to higher resolutions but also from
the coding techniques per se that are introduced by each standard to improve compression. All
modern standards in the field of video coding offer high compression efficiency, but this is achieved
by increasing the computational complexity of the encoding part. Ultra-High-Definition (UHD)
videos, bring new encoding implementation schemes that are being recommended for CPU and
GPU parallelization. Therefore, several works are published to achieve better performance and
reduce encoding complexity. Following this idea, we proposed and evaluated a hybrid encoding
scheme that utilizes the constant growth of the CPU power with the massive GPU popularity in
parallel. Taking advantage of the encoding schemes from the leading video coding standards, such as
High-Efficiency Video Coding (HEVC) and Versatile Video Coding (VVC), which support parallel
processing thru Wavefront or Tiling, in our work, we combined both of them at the same time as a
whole, and in addition, we introduced a GPU-friendly fast search algorithm that is highly parallel
and alternative to the default non-parallel TZ-Search. Through an experimental evaluation with
common test sequences, the proposed GPU Fast Motion Estimation with our previous Wavefront
per Tile Parallelism (WTP) was shown to provide valid trade-off between speedup and video coding
efficiency, effectively combining the best of two worlds, i.e., WTP using CPUs and parallel Motion
Estimation with GPUs.

Keywords: video coding; tile parallelism; wavefront parallelism; HEVC; VCC; WTP; motion
estimation; GPU

1. Introduction

Video encoding is a computationally demanding process that requires a well-designed
and developed algorithm. An optimal solution requires a trade-off between quality and
processing time. Today, most video standards focus on two goals: to improve compression
performance and implement parallel architectures to minimize encoding time and at the
same time, achieve better quality for higher video resolutions. Two of the most popular
video standards, HEVC and the most recent VCC, are sharing three parallelization ap-
proaches. The first one included is Wavefront Parallel Processing (WPP). WPP allows for
the creation of picture partitions that can be processed in parallel without incurring high
coding losses. Rows of coding tree units (CTUs) are processed in parallel while preserving
all coding dependencies. The processing pattern begins from the top left corner and pro-
gressively goes to the right bottom. In any case, the current CTU requires that top-left, left,
top, and top-right CTUs are available to continue its encoding. For that reason, a shift of at
least two CTUs is enforced between consecutive rows processed in parallel (Figure 1).
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responds to one slice), it may lead to non-negligible coding losses. On the other side, if we 

Figure 1. Principle of WPP and CTU dependencies.

Tiles on the other side divide a picture into independent, rectangular regions, enabling
improved coding efficiency for parallel architectures. Tiles can be thought of as rectangular
regions formed by the intersection of rows and columns (Figure 2). Tiles can have uniform
spacing in a row and column boundary specification, or not. Moreover, Tiles share the
same boundaries with CTUs and they yield a high pixel correlation. A similar partition
scheme to parallelize the encoding or decoding process is Slices. Similar to Tiles, they are
also independent pixel blocks so they can be coded separately (Figure 3).
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Generally, tile partitioning is considered to be more flexible than slicing because Slices
include headers that produce extra overhead that harms the coding efficiency. Therefore,
in the case of multiple CPU threads that serve multiple slices (one thread corresponds to
one slice), it may lead to non-negligible coding losses. On the other side, if we decrease the
number of slices, we also decrease the performance. Furthermore, both video standards
do not allow the co-existence of a Tiles and WPP parallelization scheme at the same time,
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by design [1]. We achieved a bypass of this restriction with our work [2] proposing a new
multi-threaded encoding scheme that is based on Tile partitioning and per tile Wavefront
parallelism (WTP) (Figure 4).
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Figure 4. Example of Wavefront per Tile parallelism (WTP), 2 × 2 Tiles, 16 Threads.

In this case, the primary encoding scheme used is Tiles, but internally, our modified
encoder enables a custom multi-threading Wavefront encoding each tile separately. To
comply with the original output-encoded streaming, we had to propagate the original
HEVC structures in a thread-safe environment. The frame is divided into independent Tiles
that have the same size. Each tile has its own thread-safe WPP data structures (entropy
coders, search & prediction, quantization & transform) (Figure 5), and they are treated
as separate frames but with lower resolution in CTU metrics. Tiles essentially allow for
a typical multithreaded WPP-encoding scheme to be used. For each one of those Tiles,
an independent WPP is used for the encoding procedure (Figure 6) consisting of a new
encoding parallelism scheme (WTP).
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Furthermore, besides the multi-threading role contribution, in any modern video
standard, coding efficiency has a huge impact that relies on the most critical part of the
encoding process, which is the search for the best motion vectors and matching blocks. In
this paper, we propose a novel parametrized GPU-friendly Fast Search algorithm that can
further improve the performance in such an environment. We evaluated this algorithm
with our proven WTP multi-threaded encoding scheme that is based on the HEVC video
standard. It seems that its contribution to the encoding processing time is considerable and
it can be maximized when the system has weaker CPU process power than the GPU itself.
In addition, this fast search algorithm is parameterized for its leaping search steps, which
means that we can feed more steps when more powerful GPUs are installed in the system,
to achieve even more accurate results.

2. Related Work

Motion vector calculations are the most intensive part of any modern video encoder.
Therefore, several works are published to minimize that cost, including software and
hardware implementations.

Software implementations include CPU-only powered processors. Small diamond
pattern search, large diamond pattern search, and horizontal diamond search [3,4] are some
of them that are proposed to replace the default TZ search algorithm. Experiments show
that 49% time saving could be achieved with a minor decrease in the PSNR ratio. Another
implementation is the 6-point hexagon that reduces the motion estimation encoding time
compared with the TZ search, by about 50% [5,6]. Xiong et al. [7] proposed a fast-inter-CU
decision to reduce the encoding time, and Khemiri et al. [8] proposed a fast ME algorithm
that is based on a diamond search pattern but introduced three mode decision levels. The
time saving was about 57% with a minor PSNR decrease.

Hardware implementations include non-CPU integrated circuits, such as Field Pro-
grammable Gate Arrays (FPGAs), Application Specific Integrated Circuits (ASICs), and
video cards. The most popular non-CPU hardware is video cards, which most of them
nowadays include graphics processor units (GPUs) that are programmable for general-
purpose calculations. Parallel SAD calculations using an FPGA Xilinx [9] are used to
achieve ×3.9 speedup in comparison to the baseline (single core or non-parallel) HEVC
algorithm. Moreover, F.H. Shajin et al. [10] proposed a fast search quadrant-based algorithm
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that obtains better block matching, using an FPGA hardware platform. According to their
experiments, they had 8.3562% better PSNR compared with the HEVC diamond search and
0.131% better performance for single-core executions. In addition, hybrid or heterogeneous
algorithms were introduced that use both CPUs and the extra hardware (FPGAs, ASICs, or
GPUs) [11–15], i.e., CPUs for coarse searching and GPUs for fine searching with analogous
results. An average time saving for the latest is about 19% for single cores and×10.75 when
multi-cores are used.

On the other hand, video cards are far more common hardware among users. A
high parallel 5-step GPU ME algorithm presented by Chen and Hang [16] reduced the
encoding time for the motion estimation by about ×12 compared with the baseline alterna-
tive, but it concerns the previous standard H.264/AVC, as well as the work by Rodriguez
and Martinez [17], where they achieved a speedup of ×2 compared with the baseline
without any significant PSNR loss. An interesting GPU-based fast motion implemen-
tation is the adaptive search range (ASR), proposed by Kim et al. [18] for the HEVC.
The idea was to adaptively change the search area every time, to reduce the number
of parallel calculations inside the GPU. The results showed a reduction in the encoding
time of about 40.3% and an RD loss of 1.2% compared with the single core competitive.
Jiang et al. [19] implemented the integer ME and fractional ME on the GPU using a
full search algorithm and obtained a time reduction of up to 53% compared with non-
parallel baseline competition. The new NVIDIA’s Fermi GPU architecture was used by
Klemiri et al. [20] to improve the SAD calculations, reducing the encoding time by about
56.17% without any significant loss. Gogoi et al. [21] applied a low-complexity IME algo-
rithm using two different pattern structures (PS) with 38 search points, resulting in 8.725%
and 9.072% time savings, respectively, in HM 16.8. A novel GPU full search multilevel
resolution sample area (MLRME) was proposed by Xue et al. [22] that creates several down-
sampling copies of the searching area to reduce the number of calculations. Experiments
showed that the encoding quality declined by less than 1.5%, and a 30–60× speedup was
achieved compared with on single-core CPU. A parallel motion estimation implementation
was proposed by Zhang et al. [23], which includes pre-motion estimation, integer motion
estimation, and fractional motion estimation. A rapid mapping table algorithm was in-
troduced to improve the efficiency of data access, in addition to a quasi-integral-graph
algorithm, which is designed to calculate SAD or SATD efficiently for blocks of different
sizes thru GPU. A maximum of 12.7% was the encoding gain for this scheme compared
with the single-core sequential code. Finally, a GPU-based low delay ME parallelization
scheme was proposed by Luo et al. [24] that hierarchically uses a GPU parallelization by
optimizing the ME process in a coding tree unit (CTU), prediction unit (PU), and motion
vector (MV) layers. Experimental results demonstrate that the proposed scheme can achieve
41% encoding time savings with ME acceleration up to 12.7 times, and the incurred BD-BR
loss is only 0.52% on average. Our work is different from the latter approach in many ways.
(a) Best MVs have zero assumptions, so there are no dependencies and are all calculated at
the runtime, using a z-order scheme using the full search range at the beginning (1st phase)
and progressively reducing the search area, but leaving constant the searching points for all
phases. (b) Our parallelization scheme optimizes only the IME part as a solid GPU block,
giving better absolute speedup times and leaving space for further optimizations for the
FME part. (c) Our core searching algorithm is versatile and easily parametrized to use any
number of phases, search area boundaries, and searching points for each phase, according
to the power of the GPU and accuracy we prefer. These parameters are passed from Host
to Kernel at the runtime.

The main contribution of our work is to engage the existing hardware without any
extra cost and to maximize the overall performance, especially when the system has
weaker CPU process power than the GPU itself on specific topics. This is accomplished
using an ultra-fast parametrized search algorithm in a parallel pattern, inside the video
card hardware. Furthermore, by combining the GPU contribution to this work, with
our previous parallelization scheme (WTP) running exclusively on CPUs, we propose
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an all-in-one encoding scheme with optimistic experiment results. Taking into account
that exceptional video cards are nowadays very cost-effective and the fact that our fast
search algorithm can be parametrized to delegate with more fine-grained computations
in ultra-high definition resolutions, it is imperative to exploit the existing hardware to
improve the computational complexity of the encoding part.

3. Implementation

For our WTP [2] encoding scheme, a custom thread pool is used to manage an arbitrary
number of threads. Threads are typically set according to the number of available cores, but
any other number can be used. The thread pool examines, in a loop, a reference table map
of the available jobs for each virtual tile created, either sequentially or randomly according
to an inline parameter. The first free thread is assigned to start the encoding process for
the next available CTU for the tile selected. The way each thread is administrated from the
application is also an important factor, and two main options are available to be selected:
(a) to tie every single thread to each CTU row, even keeping them in a wait state cycle when
they have to wait for dependency CTUs and release them back to the thread pool only
when the row is fully encoded, or (b) to release them immediately when the current job
is completed (for example it cannot encode any more CTUs for the current row because
neighbor dependencies are not ready) and re-schedule them for the next available job.
While in [2] the first option was selected, in this work, threads are released as soon as the
current job is completed and re-scheduled to keep GPU cores busy as much as possible [25].

In the proposed algorithm, threads are selected to comply with physical CPU cores
to achieve the maximum performance. If more CPUs are available, the speedup will
automatically scale [26] with respect to the available video resolution and the GPU capa-
bilities [27]. Extending the WTP encoding scheme, we added the power of the GPUs in
the encoding process [28,29], exclusively for the motion estimation part, which is the most
time-consuming task in a video encoder. In the HEVC case, motion estimation requires
about 70% of the total computation time [20]. For this extension, we used the OpenCL
framework [30,31] to set concurrent GPU kernels to compute the calculations required for
the integer motion estimation part (IME). OpenCL was selected because it is a universal
framework for GPGPU programming that supports most of the major GPU manufacturers
and because it achieves better performance compared with other frameworks [32]. Our
novel GPU fast search algorithm, named “4PhaseFS”, is implemented as a high-parallel
alternative to other non-parallel search methods. Despite the heavy parallelization, only
one CPU thread can be used at a time. Mixing our high parallel WTP encoding scheme,
which is CPU-based, with GPU for the IME part [33], we tried to balance the encoding
load between CPUs and GPU. The GPU is charged to calculate the distortion ratio using a
bottom-up accumulative scheme starting with 4 × 4 blocks (256 in total) as a base for all
successive SAD (Sum of Absolute Difference) calculations that are progressively reaching
the final 64× 64 block. A parallel reduction method [34,35], as shown in Figure 7, is used to
speed up this process using 16 × 16 work groups, which means 256 threads in parallel are
executing the GPU program (device kernel). Based on the previous step, we calculate the
SADs of all enumerated CU and PU possible modes (i.e., 4 × 8, 8 × 4, 16 × 4, 4 × 16, etc.)
inside a CTU, as shown in Figure 8, building, this way, an index array of 593 SAD elements
in total, as shown in Figure 9. The minimum distortion ratios from the previous processing
step, which concerns the whole search area, are the motion vectors selected for the next
step in the Host program (CPU). Memory optimization strategies are used to confine the
data transfers between the host and the kernel [36].
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The minimum estimated RD-ratio is defined from Equation (1), which is also computed
inside the kernel (GPU program created with a modified C programming language).

JMV = SADMV + λRMV (1)

where JMV is the total cost, SADMV is the SAD of the specific block inside the index array as
described in Figure 8, λ is the Lagrangian multiplier, and RMV is the total number of bits
required to encode the specific motion vector.

“4Phase” fast search is executed completely inside GPU cores, calculating the neigh-
boring area of the current encoding CTU with a reduced step in every cycle (phases). That
is true for both the searching area and the number of selected CTUs (leap step) for the
calculations described above.
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Figure 8. Enumeration of all CU and PU modes in a CTU.

The 1st phase is the initial coarse search, starting from the top left side of the initial
128 × 128 searching area, and uses 16-leap steps (meaning how many CTUs to skip before
the next CTU can proceed) in a top-down z-order pattern. The CTU block that has the
minimum SAD (sum of absolute differences) from each phase becomes the center for the
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next phase. From the 3rd phase and after, every new search area, as well as every leaping
step, becomes half of the previous phase, meaning that a progressively fine-grained search
is made. Following this pattern, starting the fine-grained search from the 2nd phase, it
covers an area of 32 × 32 CTUs around the center found at phase 1, with 4-leap-steps,
16 × 16 for the 3rd phase with 2-leap-steps, and finally, an 8 × 8 area for the 4th phase with
1-leap-step (tests every CTU around the center), as indicated in Figure 9. The CTU was
chosen from phase 4 of the GPU Kernel as the best candidate that the Host gets back to
continue its process. The comparisons that are needed for the 4Phase fast search algorithm
are always 256 in total (64 comparisons for each phase). Even though the 4Phase fast search
always performs 256 comparisons (with the appropriate calculations) to obtain the motion
vectors for the minimum SAD, this job is done ultra-fast by the GPU and it takes about 40%
of the total time that the algorithm needs. The remaining 60% of the time is the data bus
transfers overhead from the CPU to GPU and vice versa.

This means that an integrated GPU, or the next PCIe generations, can achieve better
speedups, as well as better quality, since the 4PhaseFS algorithm can be adapted to be
more accurate in its computations since there will be more headroom time to increase the
searching area with detailer leap steps for each phase.
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To summarize, the GPU program, called Kernel, executes two main functions for each
position in the search area, which normally is double the CTU size. Function A calculates
the SAD for each possible CU/PU block in the CTU to construct a new SAD Array and
Function B calculates the rate–distortion ratio (RD-ratio) for each block and selects every
time, the minimum cost, according to the SAD calculation history of Function A inside
593 data array elements. For the minimum cost calculated before, we also calculate and
store in this function, the counterpart motion vector coordinates, which are 593 integer data
arrays for X and Y parts accordingly. The resulting arrays of (a) ruiCost and (b) motion
vectors are sent back to the Host (kernel caller) for further processing. The simplified
algorithm of the kernel program (Figure 10a) and the way the host gets back the calculation
results are shown below (Figure 10b).
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The first part of Figure 10, Lines 1–3, are the initialization of the variables that are used
in the inner loops below. We need AreaStartX, AreaStartY, AreaEndX, and AreaEndY to avoid
boundary errors (below zero or out of the 128 × 128 search area). Line 4 is the counter of
the phases and lines 5–14 calculate the SAD and the Rate-Distortion Cost from the current
CTU pointed from the x and y loop variables. The Calculate_IndexArray_SADs function
fills the index array described in Table 1. This is performed in parallel from the available
GPU cores and independently from each other. To calculate the RD costs for all 593 SAD
elements, we must synchronize all GPU cores, which means that the Kernel should wait
until all of them complete their calculations. At line 11, we save the best SAD Motion Vector
for each one of the indexes, as well as the Cost. Lines 15–21 set the new search area, as
well as the searching leap steps. The second part of Figure 10, Lines 1–15, are the GPU
Kernel calling process from the Host side. This part is called only once, i.e., every new
64 × 64 CTU block is met. When the Kernel returns, we copy all calculated MVs and the
ruiCost from the GPU memory back to Host data structures. From now on, for every PU
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mode pattern we receive from the encoder, we only search inside the Host’s data structures
to obtain the pre-calculated MV and ruiCost for further processing (lines 17–20).

Table 1. Index array of the SAD.

Index PU Index PU Index PU

0–127 8 × 4 480–511 8 × 16 576 64 × 16U

128–255 4 × 8 512–515 32 × 8U 577 64 × 16D

256–271 16 × 4U 516–519 32 × 8D 578 64 × 48U

272–287 16 × 4D 520–523 32 × 24U 579 64 × 48D

288–303 16 × 12U 524–527 32 × 24D 580 16 × 64L

304–319 16 × 12D 528–531 8 × 32L 581 16 × 64R

320–335 4 × 16L 532–535 8 × 32R 582 48 × 64L

336–351 4 × 16R 536–539 24 × 32L 583 48 × 64R

352–367 12 × 16L 540–543 24 × 32R 584–587 32 × 32

368–383 12 × 16R 544–559 16 × 16 588–589 64 × 32

384–447 8 × 8 560–567 32 × 16 590–591 32 × 64

448–479 16 × 8 568–575 16 × 32 592 64 × 64

The costliest part for the GPU calculations is the data transfer from the Device (Video
Card) to the Host (CPU) and vice versa because of the PCIe bus, which is much slower
than CPU registers and the Host main memory data bus. For that reason, to minimize the
transfer data costs, the kernel (GPU program) is implemented as a single program that
executes both the A and B functions described above, at once, without having to return
partial results to the host. When the 4-phase search cycle is completed, then and only then,
the host receives back the final minimum RD cost array with respective MVs [36]. From
this point so far, the CPU thread continues with the next step.

Each CPU thread is calling its Device kernel (GPU), which means that the Device
executes multiple kernels concurrently, as shown in Figure 11. This is a new feature for
the Video Cards manufactured in 2013 and after i.e., Nvidia’s Fermi architecture (CUDA
API version 3.0) [20]. The workhorse of the GPU is the streaming multiprocessor, or simply
SM in the Nvidia world. In the OpenCL jargon, they are called Compute Units. The
number of Compute Units may range from two to several dozen, and each Compute
Unit contains the following: (1) execution units to perform 32-bit integer and single or
double-precision floating-point arithmetic; (2) special function units (SFUs) to compute
single-precision approximations of log/exp, sin/cos, and rcp/rsqrt; (3) a work-group
scheduler to coordinate instruction dispatch to the execution units; (4) a constant cache to
broadcast data to the Compute Units; (5) shared memory for data interchange between
threads; and (6) dedicated hardware for texture mapping.

CUDA streams are used to manage concurrency between execution units with coarse
granularity. This feature is implemented in the OpenCL framework with multiple queues.
Therefore, each CPU thread uses a different queue to execute the same kernel but with
different data. If the Compute Units are all busy, then the execution of the next kernel
takes on a wait state until one becomes free. Thus, separate GPU streams are executing
concurrently, and the operations requested in each queue are performed sequentially; in
a sense, OpenCL queues are like CPU threads where operations are performed in order.
Even when multiple queues are not used, keeping all operations asynchronous (i.e., out-
of-order execution with only one queue) improves performance by enabling the CPU
and GPU to run concurrently by letting the video card drivers automatically decide the
best strategy for the load distribution. This method is working asynchronously, which
means that a later encoding CPU thread may be serviced sooner than a previous one, so a
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synchronization engine should be used to keep track of the encoding process of the WTP.
An arbitrary number of CPU threads request the same number of Video Card Compute
Units to calculate the RD cost of the IME part. According to the capabilities of the Video
Card being used, i.e., number of concurrent Compute Units, local memory size, L1 and L2
cache sizes, etc., the right balance must be chosen between the CPU’s physical cores and the
video card’s Compute Units, to get the best results from each world combined. Increasing
CPU threads to a number that exceeds the maximum Compute Units of the Video card does
not offer any important gain to the encoding speedup since the CPU threads are obtaining a
wait state. In addition, kernels with a very large number of threads or increased demands of
local memory size (most GPUs today give about 64 KB of local memory for each Compute
Unit) may need two or more Compute Units to execute the same code, which means that
the concurrency level is dropping down. The Kernel for this extension is written carefully
to avoid data waste and to be as compact as possible. Moreover, the code is optimized to
avoid raw multiplications and division program statements and is replaced with left and
right shifting statement commands, respectively, which are far faster.
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4. Experiments
4.1. Implementation Details

We implemented GPU Fast Search in HM 16.17 reference software using a custom
C++ code for multi-threaded parallelization and with AMP (Asymmetric Motion Partition-
ing) enabled, a feature that was not used in our previous benchmark publication [2]. All
algorithms were implemented using a thread pool with a configurable number of threads.
In addition, in this implementation, we have changed the thread assignment strategy and
routing. Instead of preserving the CPU thread until it finishes the whole encoding CTU
line, obtaining a wait state cycle in case the neighbor dependencies are not ready—this is a
WPP restriction; in this implementation, we free the CPU thread immediately as soon as it
meets the above condition paying, of course, the thread scheduling initialization cost. We
selected this approach to keep the GPU’s core load as high as possible.

4.2. Setup

We conducted experiments on a Linux Server with two 12-core Intel Xeon E5-2650s
running at 2.20 GHz as the base frequency and 2.90 GHz for turbo mode and 1.20 GHz for
power save mode. The Graphics Card installed on our chain was an Nvidia Quadro P4000
with 8 GB of GPU Memory that combines 1792 CUDA Cores (drivers version 470.141.03).
The Pascal architecture of the Video Card was introduced on April 2016 and uses the PCI
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Express 3.0 × 16 system interface. To make experimentation time manageable we used, for
our evaluation, the first 150 frames of Class A and B common test sequences [37] listed in
Table 2. Results were obtained from Low Delay (LD) set up with an initial I frame followed
by B frames and a GOP size of 4. Bit depth was 8, CTU size was 64 × 64, max partitioning
depth was 4, and the search mode was TZ. As mentioned above, AMP (Asymmetric Motion
Partitioning) was enabled. One slice was used. Experiments with WTP involved 24 threads
(the number of physical cores available in our server), with tile partitions of 2 × 2, 3 × 3,
and 6 × 4, respectively.

Table 2. Test video sequences.

Class Sequence Name Resolution

B Basketballdrive 1920 × 1080 50 fps

B Bqterrace 1920 × 1080 60 fps

B Cactus 1920 × 1080 50 fps

B Kimono 1920 × 1080 24 fps

B Parkscene 1920 × 1080 24 fps

A Peopleonstreet 2560 × 1600 30 fps

A Traffic 2560 × 1600 30 fps

4.3. Coding Efficiency Results

Next, we evaluated the compression efficiency and video quality of the GPU-accelerated
WTP with the original WTP and the default HEVC TZSearch. We considered three tile
partitions for WTPs, namely 2 × 2, 3 × 3, 6 × 4, and a 1 × 1 partition for the default. All
algorithms run with 24 threads for QP = 22, 27, 32, and 37, except for the original TZSearch
which runs with 1 thread (sequential).

Figures 12 and 13 plot the average speedup for Class A and B sequences with con-
stant QP = 32 versus the default sequential TZSearch (1 × 1 Tile partition and 1 thread).
In every case, we can observe speedups with an average rate of ×8.8 for Class B videos
and ×9.6 for Class A videos. Figure 14 plots the average speedups, respectively,
for Class A and B sequences with constant QP = 32 versus the original WTP (the one
without GPU acceleration). In this case, the average speedup is ×1.18 or 18% of time-
saving. Figure 15 plots the gain difference between the same setup but with different CPU
frequency clocks, i.e., turbo mode @2.9 Ghz versus low-power mode @1.2 Ghz. Using
a constant QP = 37, we can observe that for the relative average speedup between the
original WTP and the GPU accelerated one, the gain is a little bit higher for the weaker
CPUs than the stronger ones. These are relative comparison benchmark pairs, between
the original WTP and the GPU-accelerated fast search WTP version, for each CPU fre-
quency mode separately. Thus, while the absolute encoding time is significantly smaller
for the high-frequency CPUs, the gain is smaller than the low-frequency competitive
ones. Finally, in Figure 16, the BD-Rate increase is proportional to the tiling scheme used,
with 2 × 2 partitioning, obtaining the lower increase from all video sequences. To capitalize
on the usage of the available CPU cores, a 6 × 4 tile pattern scheme results in a 24-tile
partition that leads to a relatively high bitrate increase (in Cactus it reaches 13%). This is
expected since Tiles do not use the Coding Units from neighboring ones for prediction, and
this results in an increase of the BD-Rate and simultaneously a PSNR decrease since this
affects the CABAC (Context-Based Adaptive Binary Arithmetic Coding) learning process,
as the context variables are reset at the beginning of every Tile. The BD-PSNR [38] decrease
in Figure 17 is also proportional to the tiling scheme. In the worst case, we can observe
a 0.24 quality drop for the kimono video and a 6 × 4 tiling scheme. BD-PSNR values
represented in the plot are the average absolute PSNR experiment results for QP = 22, 27,
32, and 37 with 24 threads.
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5. Conclusions

In this paper, we present a novel GPU fast search motion estimation algorithm that
works in parallel with a CPU-based multi-core encoding scheme WTP, which aims to
minimize the encoding time. Results demonstrated that the 4Phase GPU fast search
motion estimation algorithm can achieve an average speedup of ×8.84 for Class B videos
and ×9.60 for Class A compared with the original sequential TZSearch. Moreover, the GPU
contribution in the original WTP can increase the speed by an average of 18%. According
to the results quoted above, undoubtedly, the GPU contribution is considered adequate to
exploit any improvements. Using our already optimized and parallelized WTP encoding
scheme, the GPU addition improved the encoding times by more than 25% in some cases,
reaching 42% at its peak, when a WTP 3 × 3 pattern is used on a “basketball” video
sequence. Class A video sequences seem to have a better average speedup than Class B
sequences. Regarding the evolving GPU in the encoding process, many factors may have
an impact on the final system performance, for example, PCI performance, video card
resources, GPU performance when thermal throttles are met, operating system scheduling
priorities, etc. It is worth mentioning from our experiments that different official video card
driver versions can perform differently on identical setups.

According to the results demonstrated, it is worth highlighting that the average
speedup gain is higher when CPU core frequencies are lower, enforcing the same setup
but changing the scaling governor in our Linux server from performance to power sav-
ing. Scaling governors implement the algorithms to compute the desired CPU frequency,
potentially based on the system’s needs. Scaling drivers interact with the CPU directly,
enacting the desired frequencies that the current governor are requesting. All experiments
except the last mentioned in Figure 16 were executed with the default scaling governor
(OnDemand), which scales the frequency dynamically according to the current load, i.e.,
jumps to the highest frequency and then possibly back off as the idle time increases. Despite
the technical details and the way we implemented them in our work, the general idea
of the searching algorithm can easily be applied to any platform, taking advantage of
the newer video card innovations and add-ons, such as extensive and explicit memory
(i.e., fewer data transfers from host to the kernel and vice versa) with higher bandwidth
and speed clocks, more GPU cores and streaming processors (meaning more kernels are
executed concurrently), and better support for concurrent kernel execution by the driver
itself in newer architectures, etc. The negative effects of the BD-Rate increase and BD-
PSNR decrease that are observed are more related to tiling since it affects the CABAC
learning process. To reduce these effects, a balancing tile scheme is suggested, preferably a
2 × 2 pattern, to obtain the best of both worlds, combining speed and quality.

Cumulatively, the experimental results confirm the validity of our motivation, namely
that we can benefit from the GPU computational power, especially when massive calcula-
tions take place in parallel for any video encoder that makes use of the motion estimation
concept. As supreme video cards are becoming more and more cost-effective and our
proposed fast search algorithm can easily be adapted and parametrized to delegate fine-
grained computations in ultra-high definition resolutions, it is more than imperative to
exploit the new possibilities and to improve the computational complexity. The gain is
further increased when entry-level systems come into play operated by low-end CPUs. It
is believed that the new-generation GPUs will boost the whole process and maximize the
gain of the proposed GPU-friendly Fast Search without any extra costs.
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