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Abstract: The present study introduces the heterogeneous quasi-continuous spiking cortical model
(HQC-SCM) method as a novel approach for neutron and gamma-ray pulse shape discrimination.
The method utilizes specific neural responses to extract features in the falling edge and delayed
fluorescence parts of radiation pulse signals. In addition, the study investigates the contributions
of HQC-SCM’s parameters to its discrimination performance, leading to the development of an
automatic parameter selection strategy. As HQC-SCM is a chaotic system, a genetic algorithm-based
parameter optimization method was proposed to locate local optima of HQC-SCM’s parameter
solutions efficiently and robustly in just a few iterations of evolution. The experimental results
of this study demonstrate that the HQC-SCM method outperforms traditional and state-of-the-
art pulse shape discrimination algorithms, including falling edge percentage slope, zero crossing,
charge comparison, frequency gradient analysis, pulse-coupled neural network, and ladder gradient
methods. The outstanding discrimination performance of HQC-SCM enables plastic scintillators to
compete with liquid and crystal scintillators’ neutron and gamma-ray pulse shape discrimination
ability. Additionally, the HQC-SCM method outperforms other methods when dealing with noisy
radiation pulse signals. Therefore, it is an effective and robust approach that can be applied in
radiation detection systems across various fields.

Keywords: n-γ discrimination; pulse shape discrimination; heterogeneous quasi-continuous spiking
cortical model; pulse coupled neural network; charge comparison; zero crossing

1. Introduction

As a fundamental component of the nucleus, the neutron has played a critical role in
many scientific disciplines and modern industries. Instances include boron neutron capture
therapy [1], particle and nuclear physics [2], astronomy [3,4], meteorology [5], and atomic
reactors [6,7]. These neutron-related fields all require advanced neutron detection tech-
nology. Among the available options, 3He-based and scintillator-based neutron detectors
are the two most widely used types of neutron monitoring setups. With the depletion of
3He reserves [8,9], scintillator-based neutron detectors have become increasingly important
in all neutron-related fields. However, a significant challenge in using scintillator-based
neutron detectors is that they are also sensitive to gamma-ray photons, which are inevitably
generated in the interaction between neutrons and their surrounding environment. This
dual sensitivity can result in the miscounting of neutrons, as detectors simultaneously
record both neutrons and gamma rays. To address this issue, the pulse shape discrimination
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(PSD) technique has been developed [10]. PSD makes use of the subtle differences in the
interaction of neutrons and gamma-ray photons with the sensitive volume of a detector,
enabling the discrimination of neutrons and gamma rays based on their radiation pulse
signal shapes.

Typical neutron and gamma-ray pulse signals (n-γ PSs) are shown in Figure 1a [11]. It
can be observed that these two types of pulses exhibit a similar rising edge in the time frame
of 50–60 ns. However, in the falling edge region of 70–120 ns, they exhibit a significant
difference in their decay rate. Additionally, the slight amplitude variation in the 130–170 ns
interval is a unique feature of the neutron pulse signal, known as delayed fluorescence.
Consequently, to distinguish between n-γ PSs, PSD algorithms are designed to detect
differences between n-γ PSs in the falling edge and delayed fluorescence parts, calculating
a discrimination factor for each radiation pulse signal. Subsequently, these results are used
to create a histogram of discrimination factors. This histogram generally displays two
groups that follow Gaussian distributions, representing the radiation pulse signal counts of
neutrons and gamma-ray photons, respectively. The effectiveness of the PSD is determined
by the distance between the two Gaussian distributions and the smallness of the variance
of each Gaussian distribution.
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Figure 1. Typical radiation pulse signals and feature extraction results. (a) Neutron and gamma-ray
pulse signals. (b) Feature extraction results of n-γ PSs by PCNN. (c) Feature extraction results of n-γ
PSs by QC-SCM.

Over the past few decades, numerous PSD methods have been developed. One of
the earliest PSD methods is the zero crossing (ZC) method [12,13], which uses differential-
integral filters to determine the decay rate of radiation pulse signals. This method is simple
to implement and has low computational complexity, but it disregards the differences
between n-γ PSs in the delayed fluorescence part, and it is highly sensitive to noise. This
leads to poor discrimination performance and even unreliable results when the pulse
signals are not pre-processed to remove noise. Another widely used PSD method is the
charge comparison (CC) method [14]. This method calculates the ratio of the charge
integrals of the falling edge part and the entire pulse signal to discriminate n-γ PSs. The
CC method takes into account differences in both the falling edge and delayed fluorescence
parts, resulting in better performance compared to the ZC method. Despite its satisfactory
discrimination performance for most scientific and industrial applications using high-
quality liquid scintillators, the unsatisfactory performance of the CC and ZC methods on
more affordable plastic scintillators has led researchers to develop algorithms with better
discrimination capabilities, such as those based on frequency domain analysis [15,16] and
feature extractions [17,18].

In 2021, Liu et al. introduced a PSD method based on a pulse-coupled neural network
(PCNN) [19]. This method involves using PCNN to extract features from the original
pulse signals, which are then used to generate an ignition map for each pulse signal. The
resulting ignition maps magnify the differences between n-γ PSs, leading to exceptional
discrimination performance. This method considers information in both falling edge and
delayed fluorescence parts, and is highly anti-noised due to the inherent noise resistant
characteristic of PCNN [20]. In the following year, Liu et al. proposed the ladder gradient
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(LG) method [21], which utilizes a quasi-continuous spiking cortical model (QC-SCM) to
extract pulse signal features in a more effective manner than PCNN. Additionally, the ladder
gradient method employs a new calculation strategy for the discrimination factor, which
reduces the computational burden. Research has demonstrated the robustness of third-
generation neural network-based PSD methods, such as PCNN and LG. However, while
PCNN-based models have the advantage of not requiring pre-training, they do need to
determine the parameters that control the neural response characteristics. These parameters
are often chosen through researcher experience or extensive experimentation and remain
constant throughout the feature extraction process. This can negatively impact analysis
performance because the characteristics of pulse signals in the falling edge and delayed
fluorescence parts are inherently different due to varying nuclear reaction processes.

To address this issue, this study proposes a heterogeneous QC-SCM (HQC-SCM)
for PSD. Unlike previous PSD methods that are based on PCNN and LG, this method is
designed to overcome the limitations associated with the fixed parameters that determine
neural response characteristics in PCNN-based models. The HQC-SCM method utilizes a
different neuron response for each pulse signal feature, resulting in better signal analysis
performance. Additionally, the method incorporates an automatic parameter selection
strategy based on the genetic algorithm (GA), making it a parameter-free algorithm. Ex-
periments were conducted to compare the discrimination performance of the proposed
HQC-SCM method with other established PSD methodologies. Results of these exper-
iments showed that the HQC-SCM method provides not only superior discrimination
performance but also exhibits strong noise-resistant properties.

The present study is organized as follows: Section 2 elaborates on the methodologies
of the HQC-SCM PSD method. Section 3 introduces the GA-based automatic parameter
selection method and evaluation criteria used to assess the performance of PSD methods.
Section 4 presents the detailed structure of the experiments and the corresponding results.
Finally, the conclusion of this work is summarized in Section 5.

2. Methodologies
2.1. Pulse-Coupled Neural Network

PCNN is a further advanced neural network [22] from the cortical model of Eck-
horn [23]. It was derived from the research on interactions between cell assemblies in a
cat’s primary visual cortex. Differing from second-generation neural networks such as
AlphaGo [24], PCNN is a third-generation neural network, meaning its neurons’ activities
are more biologically plausible. In contrast to most neural network models that require a
cumbersome training process, PCNN operates without a pre-training phase and processes
information in a manner similar to an animal’s visual cortex [25]. The network’s neural
response characteristics are determined by several manual parameters. The mathematical
expressions of PCNN are as follows:

Fij[n] = VF∑kl MijklYkl [n − 1] + Sij + e−αF Fij (1)

Lij[n] = e−αL Lij[n − 1] + VL∑kl WijklYkl [n − 1], (2)

Uij[n] = Fij[n]
{

1 + βLij[n]
}

, (3)

θij[n] = e−αθ θij[n − 1] + VθYij[n − 1] (4)

Yij[n] =
{

1, Uij[n] > θij[n]
0, otherwise

, (5)

where, Fij and Lij represent the feedback input and link input of a neuron at position (i, j),
respectively; U represents the internal activity or membrane potential of the neuron; θ
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represents the dynamic threshold; Y is the output of a neuron, which is determined by the
spike generation condition; n represents the iteration count; the constant decay coefficients
for the feedback input and link input are represented by αF and αL, respectively, while the
constant weighting coefficients are represented by VF and VL; the weight matrixes Mijkl
and Wijkl control the connection between a central neuron at (i, j) and its neighboring
neurons at (k, l); the external input fed to the PCNN is represented by S; β represents the
weighting factor that controls the relationship between feedback and link inputs; and the
constant decay coefficient and constant weighting coefficient of the dynamic threshold are
represented by αθ and Vθ , respectively.

In the PSD application, the PCNN is utilized to extract distinctive features from n-γ
PSs. As illustrated in Figure 1a,b, the PCNN amplifies the differences in the signal shapes
between neutron and gamma-ray photons, resulting in a clear distinction between the
falling edge and delayed fluorescence parts of the pulse signals. This feature extraction
process plays a crucial role in enabling the calculation of high-quality discrimination factors,
which are used to differentiate between neutrons and gamma rays.

2.2. Heterogeneous QC-SCM

QC-SCM was proposed by Liu et al. as a means to enhance feature extraction from
n-γ PSs [21]. While the SCM model, from which QC-SCM was derived, improved com-
putational accuracy by simplifying parameters from the PCNN, both SCM and PCNN
process signals in discrete time steps, limiting the resolution of neuron firing and their
overall information processing capabilities. In contrast, the QC-SCM process signal with
continuous characteristics allows for better resolution of neuron firing and improved analy-
sis of minor structures. The feature extraction performance of QC-SCM is demonstrated
in Figure 1c. Although the differences between n-γ PSs are well captured by PCNN (as
shown in Figure 1b), the ignition times are prone to fluctuation due to noise in pulse signals.
However, the ignition times of QC-SCM remain relatively stable across the falling edge
and delayed fluorescence parts of the signal, owing to its improved anti-noise property,
which is enabled by its continuous time step characteristic. The mathematical formulas of
QC-SCM are defined as follows,

Uij(t + ∆t) = f ∆tUij(n − 1) + Sij(1 + ∑
kl

WijklYkl(n − 1)) (6)

θij(t + ∆t) = g∆tθij(n − 1) + hYij(n) (7)

Yij(t + ∆t) =
{

1, i f Uij(t + ∆t) > θij(t)
0, otherwise

(8)

where the membrane potential of a neuron located at (i, j) is represented by Uij; the
continuous time characteristic of the QC-SCM is determined by the parameter ∆t, which
has a value range between 0 and 1; the closer the value of ∆t is to 0, the closer the QC-SCM
becomes to a continuous time system; the neural activities are determined by manually
selected coefficients, represented by f , g, and h; and the rest of the symbols retain the same
meaning as in the mathematical expressions of PCNN.

There are three manual parameters that control the behavior of neurons in the QC-
SCM. These parameters are typically selected based on the experience of the researcher
or through extensive experiments, and they remain constant during the entire feature
extraction process of a pulse signal. However, it is important to note that pulse signals
being processed in the n-γ PSD application can have multiple features within a single pulse
shape. As such, the differences between n-γ PSs are often exhibited in two main parts:
the decay speed of the falling edge and the presence of delayed fluorescence. Utilizing
a fixed neural response characteristic to process these inherently different features can
result in a decrease in the performance of the QC-SCM. Consequently, a heterogeneous
QC-SCM (HQC-SCM) is proposed in this study to solve this conflict between fixed neural
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characteristics and varying feature types, and its discrimination scheme is demonstrated
in Figure 2.
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Figure 2. Discrimination scheme of HQC-SCM. First, the radiation pulse signals are segmented
based on their feature types. The segmented signals are then directed to QC-SCM A and QC-SCM B,
which are specifically designed for analyzing the falling edge and delayed fluorescence parts of pulse
signals, respectively. Afterward, the ignition map of QC-SCM A and QC-SCM B is combined and
further calculate the discrimination factor. Finally, a histogram of discrimination factors is drawn,
based on which neutron and gamma-ray discrimination is made possible, and the Figure of Merit
(FOM)-value is computed.

As shown in Figure 2, radiation pulse signals of neutrons and gamma rays are first
separated into two parts based on their feature characteristics. The first part extends from
the beginning of a radiation pulse to the end of the falling edge, while the second part
commences from the end of the falling edge and continues until the end of the pulse signal.
Subsequently, the separated pulse signal parts are processed by two distinct QC-SCM
models, each with unique neural response characteristics. These two QC-SCM models are
specifically tailored to extract the features of the falling edge and delayed fluorescence
parts, resulting in ignition maps of the separated pulse signals that present the differences
between n-γ PSs the most. The ignition maps generated by QC-SCM A and QC-SCM B are
then combined to form a composite ignition result for each n-γ PS. Finally, discrimination
factors are calculated by integrating portions of the ignition maps that correspond to the
falling edge and delayed fluorescence parts. Each n-γ PS is assigned a discrimination factor;
hence a histogram of discrimination factors that represent all n-γ PSs can be drawn. In this
histogram, the counts of gamma-ray photons and neutrons exhibit two separate Gaussian
distributions, indicating the successful discrimination of the two particle types.

The feature extraction performance of the HQC-SCM is demonstrated through the
ignition condition of n-γ PSs and the histograms of discrimination factors, as presented
in Figure 3. As shown in Figure 3a, the ignition count of the two particles exhibits clear
differences in the falling edge and delayed fluorescence parts, ranging from approximately
60 ns to 150 ns. The neutron’s ignition count decreases at a slower rate than that of the
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gamma-ray and remains at a higher value due to its characteristic delayed fluorescence
effect. The two Gaussian distributions are significantly separated, indicating an exceptional
PSD performance, as shown in Figure 3d.
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The ignition results of the entire pulse signal processed by the QC-SCM A and QC-
SCM B in the HQC-SCM model are presented in Figure 3b and 3c, respectively. For an
optimal ignition result, the ignition maps of the neutron and gamma-ray should be well-
differentiated. The parameters of QC-SCM A are determined to specifically extract features
from the falling edge part, allowing it to differentiate between neutrons and gamma rays
from approximately 60 ns to 120 ns, as shown in Figure 3b. However, the ignition count of
QC-SCM A ranging from 130 to 170 ns does not show a clear distinction between neutrons
and gamma-rays as the neural response characteristics of QC-SCM A can only analyze
features in the falling edge and perform poorly on the task of processing features in the
delayed fluorescence. The histogram of discrimination factors generated using QC-SCM
A, as shown in Figure 3e, exhibits poor discrimination performance with distorted and
non-separated Gaussian distributions.

Furthermore, the parameters of QC-SCM B are determined so that its neural responses
can best extract the differences in the delayed fluorescence part of n-γ PSs. The ignition
results of QC-SCM B are similar to those of the HQC-SCM, as shown in Figure 3c, due to
the requirements for extracting features from the highly noisy delayed fluorescence part.
With its ability to extract features from this part, QC-SCM B generally exhibits a satisfactory
performance with the feature extraction task of the falling edge part. However, using
QC-SCM B to process the entire signal still results in inferior performance compared to the
HQC-SCM, as shown in Figure 3f. The histogram from QC-SCM B has larger variances of
Gaussian distributions and a narrower gap between the two Gaussian groups compared to
the result of the HQC-SCM.

In conclusion, neither QC-SCM A nor QC-SCM B alone can achieve excellent feature
extraction results and n-γ discrimination performance. Only when the HQC-SCM is used,
specific neural response tuning can be performed for the characteristics of both features to
produce outstanding PSD performance.
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3. Parameter Selection Strategy

The HQC-SCM model demonstrates excellent performance in the feature extraction of
n-γ PSs. However, it requires the use of two different neural models, which significantly
increases the number of manual parameters. Typically, the parameters of PCNN-derived
models are selected based on the experience of the researchers, making it a challenging and
time-consuming task to determine the parameters for a broad range of applications. Deter-
mining parameters based on neural response characteristics for different types of features is
even more complex and goes beyond the scope of individual experience. Consequently, this
study proposes a genetic algorithm-based method for automatic parameter determination.
This strategy tunes the neural response characteristics of the neural network models in the
HQC-SCM, allowing each QC-SCM to precisely analyze and extract the assigned pulse
signal features.

3.1. Genetic Algorithm

GA is an optimization algorithm that takes inspiration from natural selection and
evolution in biological systems [26]. Its main objective is to find the optimal solution to a
problem by iteratively generating new candidate solutions, evaluating their f itness based
on a given objective function, and selectively breeding them to produce offspring for the
next generation. In GA, each solution corresponds to a chromosome that includes multiple
genes generated through the binary encoding of parameters. These parameters determine
the performance of a solution for the problem. By using the crossover and mutation process
on these genes, the genetic algorithm emulates the natural selection process by gradually
improving the f itness of the population of candidate solutions over multiple generations.

Mutation and crossover are the two essential operations in GA. Specifically, mutation
involves randomly changing a gene in a chromosome to create a new candidate solution.
This operation is performed to introduce diversity in the population of candidate solutions
and to prevent the algorithm from getting stuck in local optima. In the mutation, a random
gene in a chromosome is selected, and its value is randomly changed. The mutation rate
determines the frequency of the mutation operation, and it typically ranges from 0.4 to
0.8 [27]. Crossover, on the other hand, involves combining two parent chromosomes to
produce an offspring chromosome. This operation is performed to recombine the good
features of two parent solutions and create a new candidate solution different from its
parents. In the crossover, two parent chromosomes are randomly selected, and a crossover
point is chosen. The genes before the crossover point from one parent are combined with
the genes after the crossover point from the other parent to form the offspring chromosome.
The crossover rate determines the frequency of the crossover operation, typically ranging
from 0.6 to 0.9 [27]. Both mutation and crossover are combined to create a new generation
of candidate solutions. These processes are repeated until a new population of offspring
solutions is created. Then, these solutions are evaluated based on a given objective function,
and the best solutions are selected to form the next generation of candidate solutions. The
processes mentioned above continue until a satisfactory solution is found or a termination
criterion is met.

3.2. Evaluation Criteria

An objective function is required to calculate the fitness of solutions generated by
GA’s iteration of evolution, evaluating the performance of each solution with regard to the
PSD of neutrons and gamma rays. In order to define this objective function and compare
performance between different PSD algorithms, serval evaluation criteria are introduced in
this section.

3.2.1. Figure of Merit

The Figure of Merit (FOM) is a commonly used metric to evaluate the ability of
a system to distinguish between neutrons and gamma rays [28]. To calculate FOM, a
histogram of discrimination factors is first generated, with two groups corresponding to
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gamma-ray and neutron counts. A Gaussian fitting function is then applied to both groups
to create a fitting curve, which is used to determine the distance, S, between the two groups
and the full width at half maximum (FWHM) of each group. FOM is then computed using
the following formula:

FOM =
S

FWHMn + FWHMγ
(9)

where, FWHMn and FWHMγ represent the FWHM of the neutron group and gamma-ray
group, respectively. A large distance, S, and small values of FWHMn and FWHMγ indicate
good discrimination performance. Consequently, a higher FOM value indicates a better
discrimination performance.

3.2.2. Davies-Bouldin Index

The Davies-Bouldin index (DBI) is a commonly used metric for evaluating clustering
algorithms’ performance in machine learning and data analysis [29]. Davies et al. intro-
duced this index in 1979 as a way of measuring both the separation between the clusters and
the compactness of each cluster. The DBI can be used to evaluate clustering algorithms in
both multi-class and two-class classification problems. In a two-class classification problem,
the Davies-Bouldin index is defined as follows,

DBI =
σ1 + σ2

D(C1, C2)
(10)

where, σ1 and σ2 are the average intra-cluster distances of clusters C1 and C2, respectively;
and D(C1, C2) represents the distance between the cluster centers, which is often measured
as the Euclidean distance between their centroids.

The intra-cluster distances, σ1 and σ2, are calculated as the average distance between
each point in a clusCnd the centroid of that cluster. The formula for calculating the intra-
cluster distance of a cluster i can be written as follows,

σi =
1
N ∑N

j=1 D
(
Xj − Ai

)
(11)

where N is the number of points in the cluster; Xj is the j-th point in the cluster; Ai is the
centroid of the cluster i; and D

(
Xj − Ai

)
is the distance between point Xj and centroid

Ai. The DBI measures the similarity between two clusters by comparing the ratio of the
sum of the intra-cluster distances to the distance between the two cluster centers. A lower
Davies-Bouldin index indicates better clustering performance, as it means that the clusters
are more separated and less overlapping. Conversely, a higher Davies-Bouldin index
indicates poorer clustering performance, with clusters that are less well-separated and
more overlapping. In this study, the DBI was calculated by a two-class classification of
k-means on radiation pulse signals’ discrimination factors.

3.3. Parameter-Free HQC-SCM

Before implementing any optimization algorithms for HQC-SCM’s PSD performance,
it is essential to explore the influence of its parameters. Figure 4 illustrates that out of the six
parameters of HQC-SCM, five are set to fixed values, while the remaining one is changed
within a range determined by experience to evaluate the influence of each parameter on
the algorithm performance. FOM and DBI conditions when parameters of QC-SCM A and
QC-SCM B are changed are presented in Figure 4a–c and 4d–f, respectively. It should be
noted that the change of FOM and DBI can be sudden and impulsive when one parameter
is evenly changed without any clear optimization direction. This suggests that HQC-SCM
is a chaotic system in which parameters are closely coupled and lack a discernible pattern
to follow. As a result, traditional optimization algorithms like gradient descent may not
function correctly in such a chaotic system. Instead, using stochastic searching based on a
population of solutions is a potential solution for this challenging optimization problem.
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SCM B’s (d) parameter f , (e) parameter g, and (f) parameter h are changed. The HQC-SCM exhibits
sudden and impulsive changes in the FOM and the DBI when a parameter is changed uniformly
without any clear optimization direction. This characteristic behavior implies that HQC-SCM behaves
like a chaotic system, wherein its parameters are closely interdependent and lack any discernible
pattern to follow.

To optimize HQC-SCM’s parameters and achieve a parameter-free HQC-SCM, genetic
algorithms (GA) are utilized. All six parameters of HQC-SCM are encoded into genes using
binary encoding, forming a solution. The initial population is generated randomly based
on the initial solution, which uses the QC-SCM parameter settings described in [21] for
both QC-SCM A and QC-SCM B. The initial solution undergoes mutation and crossover
processes, in which genes are stochastically changed by randomly tuning corresponding
binary arrays. After each iteration of evolution, the f itness of each solution is calculated
using the objective function defined as:

f itness = FOM + 0.001DBI (12)

where FOM represents the Figure of Merit, which is a commonly used objective evaluation
criterion in PSD applications, and DBI is the Davies-Bouldin index, which is used to regu-
larize the fitness function. FOM requires a double Gaussian fitting process, which can be
unstable and produce unreliable results when the histogram of discrimination factors does
not exhibit Gaussian distributions. Therefore, DBI prevents the fitness function from fluc-
tuating abruptly by presenting the two-class classification performance of discrimination
factors, which helps determine the performance of a solution when Gaussian distributions
do not properly fit its discrimination factors.

The global optima of HQC-SCM are challenging to find; multiple local optima exist
for each parameter within narrow ranges, as presented in Figure 4. The performance of
HQC-SCM is acceptable when parameters are chosen within the local optima. Although the
performance is acceptable, minor changes in the parameters can cause the method to fall out
of its local optima, making it challenging to determine the evolution direction of solutions
between iterations. Therefore, a high mutation and crossover rate are recommended, and
GA is used in a way that is closer to stochastic searching than to gradient descent of
evolution direction, which is more effective and efficient in finding a good solution for
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HQC-SCM. The parameter-free HQC-SCM initializes the first population with 50 solutions
and optimizes these solutions throughout iterations of evolution, using the mutation and
crossover rates of 0.9.

Figure 5 illustrates the averaged performance of 1000 populations evolved through
the GA settings mentioned previously. Each population evolved independently, and the
best five solutions in every population’s each iteration were selected and averaged to draw
the graph. The figure presents the mean, max, and median values of FOM, DBI, and
f itness, respectively. These values were first calculated after the random initialization
of the population. Hence, the values at iteration 0 show the performance of the initial
population without any mutation and crossover process. The error bar of the mean value
was drawn using the standard deviation of the 1000-times evolution’s best five solutions.
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As shown in Figure 5, all statistical values of performance remain relatively stable
throughout iterations, with a slightly decreasing tendency. Generally, the best performance
is achieved in the first iteration and does not improve any further. This indicates that
GA can find out most local optima of parameter settings in only a few volution times.
When these local optima were found, further mutation and crossover processes forced
individual solutions already set at local optima to fall out of it, resulting in a decrease in
the population’s general performance. Meanwhile, this decrease is compensated by the
stochastic search results of other solutions that fall in the local optima because GA can
find optima very quickly, which leads to the final outcome of generally stable performance
of generations.

In conclusion, HQC-SCM is a chaotic system with a non-predictable relationship
between its parameter settings and PSD performance. Traditional optimization methods
are unsuitable for this kind of system, while GA is good at solving this optimization
problem with stochastic searching. A GA evolution strategy close to random searching
rather than gradient descent of f itness is used because the global optima of HQC-SCM are
nearly impossible to find, and its local optima are enough to realize robust PSD applications.
With an initialization of 50 populations and high mutation and crossover rates, GA can find
serval good solutions for HQC-SCM’s parameters. This parameter determination method
is effective, easy to realize, and not computationally cumbersome.

4. Experiment
4.1. Experimental Setups and Parameter Settings

In this study, a 241Am-Be isotope neutron source with an average energy of 4.5 MeV
was utilized to generate a superposed field of neutrons and gamma-ray photons. The
n-γ PSs of this superposed field were collected using an EJ299-33 plastic scintillator and a
digital oscilloscope (TPS2000B) with a 1 GS/s sampling rate, 8 bits of vertical resolution,
and 200 MHz bandwidth. To ensure reliable data collection, the trigger threshold was set
at 500 mV, which corresponds to an energy of approximately 1.6 MeVee, where MeVee is
defined in [19]. The pulse duration of 280 ns was carefully chosen to meet the Shannon
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criteria and avoid any corruption of the information within the signals [30]. All experiments
were performed on a Windows 11 platform with an AMD 5900X CPU.

In order to evaluate the robustness and efficiency of the HQC-SCM method, four
traditional and two state-of-the-art discrimination methods were utilized to compare
with the HQC-SCM, including falling edge percentage slope (FEPS) [31,32], zero-crossing
(ZC) [12,13], charge comparison (CC) [33], frequency gradient analysis (FGA) [15], pulse-
coupled neural network (PCNN) [19], and ladder gradient methods [21]. The parameters of
these discrimination methods are set at optimized values presented in [21]. The parameters
of HQC-SCM are determined by the GA-based parameter selection strategy, from which
the best solution in iteration one is used as the optimal parameters. In the following
experiments, all methods but ZC process raw radiation pulse signals directly. The Fourier
filter is utilized to denoise the n-γ PSs for the ZC method because this method cannot
discriminate noisy signals.

4.2. PSD Performance of HQC-SCM

The present study investigated the discrimination performance of various methods on
plastic scintillators’ n-γ PSs. The histograms of discrimination factors for each method are
shown in Figure 6. Among the traditional methods, FEPS and FGA showed the poorest
discrimination performance, with FOM of 0.80 and 0.95, respectively. As indicated by
the histograms in Figure 6a,b, these methods failed to separate neutron and gamma-ray
groups, resulting in hundreds of n-γ PSs that could not be categorized as either neutron or
gamma-ray. The ZC method’s FOM value was 1.01, slightly better than that of FEPS and
FGA, as shown in Figure 6c. However, the ZC method’s small number of bins resulted in a
discrete distribution of its neutron and gamma-ray groups, posing difficulties in Gaussian
fitting these groups.
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On the other hand, CC, one of the most commonly used traditional discrimination
methods, exhibited much better performance than the previous methods, with a FOM
value of 1.33. The neutron and gamma-ray groups of CC were shown to exhibit undistorted
Gaussian distributions and separated from each other with a low count between them
(Figure 6d). Furthermore, two recently proposed discrimination algorithms, LG and PCNN,
presented better performance than all the traditional methods. Their FOM values were 1.48
and 1.66, respectively (Figure 6e and 6f). These methods displayed small variances of their
Gaussian distribution groups and a clear gap between neutron and gamma-ray groups.

Finally, the performance of HQC-SCM is presented in Figure 6g. Its neutron and
gamma-ray groups showed accurate Gaussian distributions with low variances. A wide
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range with approximately zero counts existed between these two groups, making no pulse
signal indeterminate. The FOM value of HQC-SCM was 2.03, 52.6% higher than that of CC
and 22.2% higher than that of PCNN. A FOM over two typically means that no pulse signal
would be misidentified due to the discrimination algorithm, as no overlapping pulse counts
exist between two Gaussian probability distributions. This discrimination performance
boost enables plastic scintillators’ n-γ PSs discrimination ability to compete with that of
liquid and crystal scintillators.

In conclusion, the feature extraction ability of PCNN-derived models enables HQC-
SCM significantly outperforms traditional PSD algorithms. Meanwhile, specific neural
responses for different features allow HQC-SCM to show superior performance to PCNN.

4.3. Anti-Noise Performance of HQC-SCM

All electronic systems are influenced by random noise, and radiation detection systems
make no exception. To evaluate the anti-noise capabilities of HQC-SCM, experiments were
conducted under different noise levels. These experiments involved adding random noise,
following Gaussian distributions with variances ranging from 0.01 to 0.025, to raw radiation
pulse signals. Discrimination processes were independently performed one hundred times
for each discrimination method under each noise level to obtain the average performance of
each method under different noise conditions. Figure 7 presents the FOM and failure count
of discrimination methods. The failure count refers to the number of times a discrimination
method fails to generate a histogram that can be fitted by Gaussian distribution. If a
method’s failure count exceeds 10 under a noise level, it is considered unreliable in that
noise condition. The discrimination results of HQC-SCM were compared with other
methods in the field.
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As depicted in Figure 7a, the ZC method exhibits the poorest discrimination per-
formance when raw n-γ PSs are contaminated by random noise. This method is highly
sensitive to noise, and it cannot properly function without preprocessing by de-noise filters.
Consequently, when extra random noise is added to the raw signals, ZC fails to generate
usable histograms under all noise levels. Similar performance can be observed in the FGA
method, as shown in Figure 7b. Although its failure counts are generally smaller than that
of ZC, they exceed 10 in all noise conditions. Furthermore, the anti-noise performance of
FEPS is also poor, as presented in Figure 7c. Its failure count is below 10 at the beginning,
but it quickly exceeds 10 and surges to almost a hundred as the noise level goes from 0.01
to 0.025. Therefore, ZC, FGA, and FEPS methods are not suitable for high noise conditions.
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In industrial and scientific applications, de-noise filters are required for these methods to
achieve reliable discrimination performance.

On the other hand, CC exhibits impressive performance under all noise conditions,
with FOM slowly decreasing from approximately 1.35–1.2 and no failure counts until the
last two noise levels, presented in Figure 7d. Moreover, LG generally outperforms CC
when the external noise level is not too high, as shown in Figure 7e. Its FOM first stabilizes
at 1.45 and begins to drop when the noise level exceeds 0.01. It finally ends at roughly 1.1 of
FOM and has unreliable discrimination performance in the last three noise conditions. This
behavior of LG comes from its noise-resistant characteristics of QC-SCM and low feature
summarization ability of ladder gradient calculation. The former makes LG immune from
noise’s impact to a certain level, and the latter leads to the FOM decrease and, finally,
unreliable discrimination when external noise gets too high.

Subsequently, PCNN shows abnormal performance compared to the aforementioned
methods, as presented in Figure 7f. Its failure count exceeds 10 at several low noise levels
while remaining around zero when external noise is high. This phenomenon arises from
the parameter settings of PCNN. The current parameters were selected to process signals
with high random noise. Unlike HQC-SCM, PCNN has only one set of parameters that
determine a unique neural response. This neural response cannot cope with low noise
conditions when it is tuned for high noise scenarios. The FOM of PCNN is around 1.4 at
most noise levels, which is much better than traditional methods and LG.

Finally, HQC-SCM came out with outstanding discrimination performance, as shown
in Figure 7h. It displays no failure count at any noise levels, and its FOM value ranges
from approximately 2.0–1.4 throughout all noise conditions. This exceptional performance
is due to the heterogeneous structures and automatic parameter selection strategy utilized
by HQC-SCM. The heterogeneous neural response allows HQC-SCM to fully utilize the
features in the falling edge and delayed fluorescence parts. Meanwhile, the GA-based
parameter determination enables HQC-SCM to adapt its parameters to various noise
conditions and perform well even in the presence of exceptionally high noise.

5. Conclusions

In this study, the HQC-SCM method was proposed for neutron and gamma-ray pulse
shape discrimination. The method utilizes specific neural responses for different features
inside radiation pulse signals, fully extracting features present in the falling edge and de-
layed fluorescence parts. Subsequently, the contributions of HQC-SCM’s parameters to its
discrimination performance were studied to find an automatic parameter selection strategy
for HQC-SCM. Since the HQC-SCM is a chaotic system that cannot be optimized by tradi-
tional algorithms like gradient descent, a GA-based parameter optimization method was
proposed. Experiments were conducted to evaluate the performance of this optimization
method in finding the local optima of HQC-SCM’s parameter solutions. It was found that
GA can optimize solutions in a way closer to stochastic searching, which is suitable for
local optima searching of a chaotic system like HQC-SCM. This GA-based optimization
method is efficient and robust, locating local optima in just a few iterations of evolution.

Additionally, this study conducted experiments to evaluate the performance of the
HQC-SCM method in discriminating n-γ PSs from a superposed field of neutrons and
gamma-ray photons generated by a 241Am-Be isotope neutron source. Experimental results
show that the HQC-SCM method outperformed traditional and state-of-the-art PSD algo-
rithms such as FEPS, FGA, ZC, CC, LG, and PCNN. The FOM value of HQC-SCM was 2.03,
52.6% higher than that of CC and 22.2% higher than that of PCNN. The performance boost
provided by HQC-SCM enables plastic scintillators’ n-γ pulse shape discrimination ability
to compete with that of liquid and crystal scintillators. Moreover, the authors evaluate the
anti-noise capability of HQC-SCM, and the results show that it outperforms other methods
when dealing with noisy radiation pulse signals. Therefore, the HQC-SCM method is an
effective and robust approach for discriminating neutron and gamma-ray signals. It can
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be applied in radiation detection systems for various fields, such as nuclear power plants,
environmental monitoring, and medical radiation imaging.

In future studies, the HQC-SCM method will be implemented on a computation unit
with analog circuits to achieve real-time discrimination performance. This analog chips-
based HQC-SCM PSD method will be further integrated into radiation detection systems
to meet industrial and scientific fields’ advanced neutron detection requirements.
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