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Abstract: Drones are increasingly vital in numerous fields, such as commerce, delivery services,
and military operations. Therefore, it is essential to develop advanced systems for detecting and
recognizing drones to ensure the safety and security of airspace. This paper aimed to develop a robust
solution for detecting and recognizing drones and birds in airspace by combining a radar system and a
visual imaging system, and contributed to this effort by demonstrating the potential of combining the
two systems for drone detection and recognition. The results showed that this approach was highly
effective, with a high overall precision and accuracy of 88.82% and 71.43%, respectively, and the high
F1 score of 76.27% indicates that the proposed combination approach has great effectiveness in the
performance. The outcome of this study has significant practical implications for developing more
advanced and effective drone and bird detection systems. The proposed algorithm is benchmarked
with other related works, which show acceptable performance compared with other counterparts.

Keywords: cross sections; drones; vision support; detection; unmanned aerial vehicles

1. Introduction

Unmanned Aerial Vehicles (UAVs), often known as drones, despite garnering consid-
erable interest in various civil and commercial uses, unquestionably offer several risks to
the safety of airspace that can threaten livelihood and property [1]. While these dangers
can range widely in terms of the attackers’ motivations and level of expertise, they can all
result in malicious attacks, from carelessness to severe disturbance; these occurrences are
likewise becoming more frequent. For instance, in the first few months of the year 2019,
numerous airports in the USA, UK, Ireland, and UAE suffered significant disruption to
operations after drone observations [1,2].

According to traditional risk theory, huge risks are created when a chance is great and
its repercussions are severe (risk assessment equals probability impact). By regulating drone
operations, flight authorities worldwide are making great efforts to lower the probability
component of the risk equation. Regulations may deter negligent or incompetent drone
operations but cannot stop unlawful or terroristic attacks. They must be supported by
technology that allows for drone detection, categorization, tracking, drone interdiction, and
evidence gathering to be effective [3].
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Visual and radar-based detection approaches can identify aerial objects with decreased
radar cross sections (RCS) operating at low altitudes under various environmental situa-
tions. To increase the model’s resilience, radar-based detection approaches must be used
for detection because optical detection methods are limited to favorable weather circum-
stances [4–6]; a convolutional neural network (CNN) performed so well in current object
detection that older methods have almost vanished from the scene. The capacity of the
convolutional neural network to extract features is its finest feature [7]. In [8], the authors
thoroughly investigated drone RCS. They highlighted the blade material’s influence over
the RCS. According to their findings, the metallic blade’s RCS is significantly greater than
the RCS of the plastic ones.

The malicious use of UAVs has increased widely, and uncontrolled, it can considerably
threaten livelihood. Furthermore, the relatively small RCS of UAVs is challenging due
to distinguishing between drones and birds, resulting in poor, learned radar systems [9].
Previous research highlighted several methods that cannot deal with many complex en-
vironments; overcoming methods have relatively inaccurate outcomes. Therefore, an
intelligent and optimized radar system is highly required; an integrated method to over-
come these problematic disputes is a suitable solution [10].

In [11], the authors proposed conventional constant false alarm rates (CFARs) for radar
detection of moving targets. The paper utilized deep learning (DL)-based algorithms for
UAV detections. A CNN was used to classify and regress the input Range-Doppler Radar
(RDR) maps patch and the Euclidean distance between the patch center and the target.
Then, a non-maximum suppression (NMS) technique was proposed to reduce and control
the false alarm. Finally, the experimental results for the training and test data show that the
DL-CNN-NMS-based mechanism can detect the target more precisely and attain a much
better false alarm rate than CFAR.

A novel ML Doppler signature (ML-DS)-based detection mechanism was proposed
in [12] for the localization and classification of small drones. Extensive tests and exper-
iments were conducted for performance and accuracy measurements for the proposed
method. The achieved results show 97% accuracy by using the R square method, the model
also shows acceptable complexity.

In [13], a human–vehicle objects classification was proposed by a combination of a
support vector classifier (SVC) and the DL model called you-only-look-once (YOLO), which
is applied to high-resolution automotive radar systems. To improve the performance of the
classification, the target boundaries predicted from the DL-SVC-YOLO model are projected
to the DL. Then, the overall classification accuracy was enhanced by combining the YOLO
and SVC results with predefined boundaries of the targets. The achieved results illustrated
that the proposed technique outperforms other algorithms based on SVC or YOLO only.

The 77 GHz millimeter Wave (mmW) radar was proposed based on machine learning-
artificial neural networks (ML-ANNs), which are sometimes called deep learning (DL) [14].
The proposed ML-ANN-mmW radar utilized the targets’ statistics knowledge. The radar
cross-section (RCS) data. The proposed method achieved more than 90% accuracy for
the classification. Experiments were conducted on a beam steering-based radar, which
achieved 98.7% accuracy. The ML-ANN-RCS radar was compared with the other related
works and showed acceptable performance.

In [15], the ML-FMCW radar was proposed based on machine learning frequency
modulation continuous waves that operate at 60–64 GHz for multiclass objects. The key aim
of the study was feature extraction from the cloud data and object classification utilizing the
Bagged ensemble models to reduce dataset variance and bias. To validate the robustness
and validity of the proposed technique, noisy datasets have been utilized for moving UAV
vehicles various distances, angles, and velocities. Experimental results showed that the
proposed ML-FMCW method attains better accuracy for object classification than other
related works based on signal characteristics, i.e., signal strength and velocities. A summary
of the related works is illustrated in Table 1.
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Table 1. A summary of the related works.

Related Works Problem Statement Model Methodology Findings

[16] Classification of
radar-detected targets

Range-Doppler
radar using CNN

DopplerNet: RDRD database
with CNN classifier for RDR

The high-accuracy
results (99.48%)

[17] Misuse and unauthorized
intrusion

YOLOv4 DL-CNN
with vision aid

A video dataset is introduced to
YOLOv4

More precise and
detailed semantic
features were extracted
by changing the
number of CNN layers

[18]

Detect small and slow
UAVs in challenging
scenarios, e.g., smoky,
foggy, or loud
environments

W-band radar with
Micro-Doppler
analysis

W-band radar n realistic
scenarios, including 3D
localization, combined with
classification by utilizing
Micro-Doppler analysis

Small UAS detected the
range coverage of
several hundred meters

[19]

Detection of physical
characteristics of the
drone during
communication

Matthan theory

Matthan was prototyped and
evaluated using SDR radios in
three different real-world
environments

High accuracy,
precision, and recall, all
above 90% at 50 m
were achieved.

[20]
Drone detection of
various miniaturization
and modification.

CNN with the
acoustic signals

2D feature employed is made of
the normalized short-time
Fourier transformation (STFT)
magnitude. The experiment is
conducted in the open
environment with DJI Phantom
3 and 4 hovering drone

98.97% detection rate
and 1.28 false alarm

[21]
Enhance the robustness
of micro-Doppler-based
classification of drones

A dual band radar
classification
scheme

PCA is utilized for features
extraction, then SVM is used for
classification

Accuracy of 100%, 97%,
and 92% were achieved
for helicopter,
quadcopter, and
hexacopter,
respectively.

This paper aims to develop an efficient and optimized detection system to classify
between drones; the objectives for this represented work are:

• To increase drone detection range using 3D k-band radar and visual imaging;
• To build a deep learning technique for detecting and recognizing drones using convo-

lutional neural networks.

The construction of deep learning-based software that tracks, detects, and classifies
objects from raw data in real-time using a convolutional neural network technique is
proposed. Due to their comparatively high accuracy and speed, deep convolutional neural
networks have been proven to be a trustworthy method for picture object detection and
classification [22,23]. In addition, a CNN method enables UAVs to transform object data
from the immediate surroundings into abstract data that machines can understand without
human intervention. Machines can make real-time decisions based on the facts at hand.
The ability of a UAV to fly autonomously and intelligently can be significantly enhanced by
integrating CNN into the onboard guiding systems [24,25].

The remainder of the paper is organized as follows: Section 2 presents the visual-
support detection method. Section 3 discusses the 3D K-band radar system. Then, in
Section 4, the visual detection system is introduced; the performance evaluation and results
are discussed in Section 5. Finally, a concluding remark is presented in Section 6.

2. The Visual-Support Method of Detection

The system supports two different detection methods, as shown in Figure 1. The
first detection uses the 3D K-band radar, in which the signal is received from the radar
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antenna [26], then is added to the CNNs to analyze the simulated radar signals reflected
off the drones using the short-time Fourier transform (STFT) spectrograms [27]. The drones
differ in numerous respects, including blade length and rotation rates, which affect the
STFT spectrograms.

The second method, visual imaging optical sensing, takes visual imaging of the target,
then another CNN extracts the pixelated features for classification [28]. The second system
is added to enhance the recognition of the first system; in case of failure in classifying the
target, the second (vision) is used. The received signal on the first system is recorded to
optimize the radar database [29].
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3. K-Band Radar System

The detection process highly depends on two main functional factors, RCS and Signal-
to-Noise Ratio (SNR). The surface area of a target visible to the radar is its RCS. When
classifying drones with radars, the RCS is essential because it directly affects how strong the
radar signal is returned [30]. This study utilizes 3D radar, which provides radar direction,
ranging, and elevation in 3D compared with 2D radar, which provides only range and
azimuth. Applications include weather monitoring, air defense, and surveillance. The
micro-Doppler effects produced by drone propeller blades are used in this work (Figure 2).
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Consequently, the RCS of the drones’ blades is crucial for this inquiry much more
than the bodies [31]. As the SNR increases, classification performance should decline
as the target becomes less distinct when separating drones from birds. Equation (1) [2]
demonstrates how the SNR and RCS are firmly related, and as a result, the SNR is typically
low for drones [32].

SNR = PtG2λ2σ/(4π)3R4KTBFl (1)

where Pt is the transmitted power, G is the antenna gain, λ is the wavelength, σ is the
radiate isotopically parameter, and R is the distance between the target and antenna. KTB
is the thermal noise; K is the Boltzmann’s constant = 1.38 × 10−23 J/K [33], T is the room
temperature, B is the noise bandwidth, F is the added noise of the actual receiver, and l is
extra losses such as scanning, beam shape, integration, etc.

Therefore, as the signal SNR substantially impacts the effectiveness of the trained
model, it is vital to comprehend and value it. Suppose the SNR of the training data is too
high, in that case, the model does not generalize well to lower SNR and more realistic
circumstances [34].

The Micro-Doppler Signature

To collect micro-Doppler data of aerial targets with birds and drones, a K-band radar
was developed [35]. Based on our continuous flying methods, the initial investigation
categorizes drones as one classification group and birds as another. The accuracy of
categorization directly depends on the caliber of the extracted data. Along with the primary
Doppler of the target, the target’s micro-Doppler signature is also received.

Since the micro-Doppler phenomenon provides information about the target’s moving
parts, its implementation for precise feature extraction is essential for the target’s correct
detection and categorization. After reducing noise, the mixer’s output extracts the Doppler
and micro-Doppler components. The feature extraction from the radar data accommodates
the time dependency because micro-Doppler is time dependent. The radar wavelength
λ and the relative or radial blade tip speed vrot

r are what determine the micro-Doppler
shift for f rot

D [36], a single propeller with a rotating axis parallel to the LoS is shown in
Equation (2) and Figure 2.

f rot
D = − 2

λ
vrot

r (2)

The speed of the blade tip along the radar’s line of sight (LoS) to the tangential velocity
(vrot), where r is the rotational speed and t is the time, is known as the radial blade tip
velocity. The blades’ highest vrot

r is attained when perpendicular to the line of sight [37]. An
approaching blade causes a positive micro-Doppler frequency change, and a receding blade
causes a negative micro-Doppler frequency shift. The blade tip velocity can be expressed
as:

vrot = 2πLΩ (3)
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where L is the blade length. The frequency-related information is extracted from the
raw data using Fourier transformations, the Fourier transform only yields frequency
information; thus, we use STFTs (5) to obtain temporal information [38]. The moving
parts of the aerial targets produce the micro-Doppler frequency components that the STFT
extracts. The micro-Doppler frequency can be expressed as follows:

fmicroDoppler =
2 f
c
[ωxr]radial (4)

where f is the carrier frequency, c is the velocity of light in free space, and the target is
assumed to have angular velocity w and translational displacement x [39]. The STFT
mathematical model used to extract the micro-Doppler signal component is as follows:

STFT{x(t)}(τ, ω) ≡ X(τ, ω) =
∫ ∞

−∞
x(t)w(t− τ)e−iωtdt (5)

By obtaining the power spectral density function of the target’s micro-Doppler char-
acteristics, spectrogram pictures are produced from the STFT function [40]. Thus, using
mathematical expressions, spectrogram-based images are obtained.

spectrogram{x(t)}(τ, ω) ≡ |X(τ, ω)|2 (6)

Thus, both the target’s temporal and frequency information are contained in the
resulting spectrogram. The classification algorithm is the final step in the process, allowing
the system to identify the detected target accurately. Figure 3 shows three samples of the
drone’s images and the primary Doppler signature effect produced by drone propeller
blades.
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4. Visual Detection System

There are three phases to the intelligent detecting process: Firstly, the visual system
collects raw data, and the onboard intelligence system then processes the data in real-time.
Autonomous and human-free decision-making is the final stage based on the processed
data [41]. The entire process is completed in milliseconds, resulting in immediate task
execution. The second stage is preprocessing the captured picture to match the network
specification, such as resizing, changing the color scale, and reshaping. Finally, the third
stage, where the CNN system is supposed to detect and classify surrounding objects in real
time, is the most crucial step in the procedure [42].

The system consists of one camera (SIGMA-2000M-1012) with a resolution of 1920 ×
1080 pixels (full H.D.) [43]. CNN (ResNet-50) applies the detected photo to extract features
and compare them with the existing dataset to determine the target type.

4.1. The Convolutional Neural Network for Image Recognition

CNN has many filters that clarify and distinguish the advantages over a regular, fully
connected neural network regarding image recognition. Figure 4 displays a typical CNN
for image classification.
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Technically, a picture enters the computer as a set of pixel values with the dimensions
h, w, and d. Where h and w stand for the pixel counts along the height and width directions,
respectively, and d stands for the number of color channels, three for a typical RGB color
image. By shrinking the input image, the convolutional layer collects features from the raw
image [44]. A convolutional layer consists of several similar filters, each of which is a tiny
matrix with the dimensions fh, fw, and d. While the depth of the input image matrix and
the filter matrix should be the same, fh and fw are typically significantly less than h and w.
Each filter in a convolutional layer convolves an input image as it goes through to produce
a relatively small output matrix known as a feature map. After all, filters complete their
convolutions, and the input image is transformed into a relatively tiny matrix with a more
significant depth. The user should choose the number of filters in the convolutional layer
before image feeding, such that the depth equals that number [45].

Following convolution, a non-linear function performs a non-linear operation on
the generated feature map. Because of its quicker computation and lack of a need for
unsupervised pre-training, the rectified linear unit (ReLU) is typically used in CNN for
non-linear mapping [37]. Equation (7) represents the ReLU function.

f (x) = max(0, x) (7)

4.2. The Convolutional Neural Network of Visual Imaging

One of the convolutional neural network variations in ResNet is ResNet-50, which
has 50 layers. Along with one MaxPool and one Average Pool layer, it has 48 Convolution
layers. ResNet-50 is based on the deep residual learning framework, ResNet [46].
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Even with exceedingly deep neural networks, the vanishing gradient problem is re-
solved. Even though it has 50 layers, ResNet-50 has around 23 million trainable parameters,
which is substantially less than other architectures, as shown in Figure 5. The explanation
for why it performs as it does is debatable, but explaining residual blocks and how they
function can make things more transparent. Consider a neural network block where we
want to learn the true distribution H, and its input is x. Let us write this as the difference
(or residual) [47].

R(x) = output− input = H(x)− x (8)
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Rearranging Equation (8) to have:

H(x) = R(x)− x (9)

The remaining block attempts to understand the accurate output, H. (x). We can
observe that the layers are learning the residual, R, because we have an identity connection
from x. (x). In contrast, the layers in a residual network learn the residual (R(x)), and the
layers in a traditional network learn the accurate output (H(x)). Additionally, it was found
that learning the residual of the input and output is more straightforward than learning the
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input alone [48]. Since they are skipped and do not complicate the architecture, the residual
identity model permits the reuse of activation functions from earlier levels in this way.

1. A convolution with 64 different kernels, each with a stride of size two and a kernel
size of 7 × 7, provides us one layer;

2. The next layer includes max pooling and a stride size of 2;
3. The following convolution consists of three layers: a 1× 1, 64 kernel, a 3× 3, 64 kernel,

and finally, a 1× 1, 256 kernel. These three levels were repeated three times, providing
us nine layers in this phase;

4. The kernel of 1 × 1, 128 is shown next, followed by the kernel of 3 × 3, 128 and
finally, the kernel of 1 × 1, 512. We performed this procedure four times for a total of
12 layers;

5. Following that, we have a kernel of size 1 × 1, 256, followed by two more kernels of
size 3 × 3, 256 and size 1 × 1, 1024; this was repeated six times, providing us a total of
18 layers;

6. Then a 1 × 1, 512 kernel was followed by two other kernels of 3 × 3, 512 and 1 × 1,
2048, and this was repeated three times providing us a total of nine layers;

7. Then, we performed an average pool, finished it with a fully connected layer of
1000 nodes, and add a softmax function to produce one layer [25].

The evaluation of the performance of the CNN model is conducted using four main
aspects that control the performance of the system and are mentioned below in detail:

A. Confusion Matrix (CM)

A CM is represented in table format (see Table 2) to measure the machine learning
classification model and algorithm accuracy and performance. From the visualized table
that the CM created, one can tune and improve the ML model performance. This paper
used the scikit-learn library to build the table confusion-matrix (y-test, y-pred) for a multi-
class classification problem. The CM contains four numbers (characteristics) true positive
(TP), false positive (FP), true negative (TN), and false negative (FN). These characteristics
aim to describe the performance and accuracy of the classification algorithm [49].

Table 2. The specification of the radar.

Parameter Value Parameter Value

Operating Frequency 24 GHz (K-band) Peak Power 10 watts

Bandwidth 200 MHz Signal polarization Horizontal

Antenna Gain 30 dB P.F.A. 1 × 10−6

Noise Temperature 800 K Pulse Width 7 × 10−5 s

PRF 1 kHz Cutoff range 5 m

Evaluation of the system performance depends on the counts of test records correctly
and incorrectly predicted by the model. Therefore, four classification metrics are calculated.

TPR =
TP

TP + FN
(10)

FPR =
FP

TP + FN
(11)

where TPR is the TP rate, and TNR is the TN rate.

B. The critical classification metrics are accuracy, recall, precision, and F1 score

Accuracy: In this study, the deep learning model correctly detects the percentage of
the input data class (multirotor, helicopter, and bird).

Precision: Among the inputs whose class is predicted to be positive, what percentage
of them are positive class members? The value of this metric is between zero and one.
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Precision is calculated separately for each of the classes. In this study, precision is defined
in each multirotor, hexacopter, and bird class. For instance, the precision of the multirotor
class means that of all the inputs projected as multirotor, what percentage are multirotor?
Similarly, these criteria are defined for other classes.

Recall (Sensitivity): Like precision, recall is calculated separately for each class. For
example, the recall in the multirotor class means that among all the multirotor entries, what
percentage are correctly detected and recognized as multirotor?

F1 Score: F is the harmonic average of recall and precision calculated separately for
each class. This measure performs well on unbalanced data because it considers false
negative and false positive values [49].

5. Performance Evaluation and Results

The application of DL detection and a classification-based radar system usually needs
a bulky dataset of different circumstances (i.e., daytime and climate). However, the dataset
captured by radar sensors is even more scarce. Many researchers create their datasets
and conduct research because of the features of the research field, which was dependent
on the generation of the dataset; the author’s radar system used for detecting drones
and birds provided data in the form of a decibel from [50]. These data were processed
using the pseudo-color function in MATLAB, which allowed us to visualize the readings
as images. The generated images served as the basis for the radar dataset used in our
experiments, providing a unique representation of the radar signals that enabled us to
distinguish between drones and birds.

The dataset used for training the proposed algorithm was 88 images in total. For
the radar system, 24 images were applied; for the visual system, 64 images were used
as 60% for training, 30% for validation, and 10% for testing. In the visual system, a
dataset was presented with several sorts of drones and birds, such as hexacopters, Da-Jiang
Innovations® (DJI) Phantoms [4], and birds, all the images were manually gathered from
the Kaggle dataset site. These images featured a wide range of drone and bird kinds and
various image scales, resolutions, and compositions. For instance, pictures of drones from
a great distance and up close were chosen. Additionally, there were variations in terms of
image composition, with most pictures featuring just one drone. The image quality ranged
from high resolution (900 dpi) to extremely low resolution (72 dpi).

In Table 2, the radar specification was chosen carefully to detect the small RCS of
the drones and birds of all different kinds. The radar simulation in MATLAB targets
RCS = 1 cm2 by adjusting the radar pulse width to 70 µ sec and the radar height of 5 m; the
probability of a false alarm (P.F.A.) reduced to 1 in a million, as shown in Figure 6.
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The target detectability range was examined from 10 to 2000 m, and the P.F.A. of radar,
considering the environmental situation, the SNR at 2 km range reached 11.2949 dB, which
exceeds that in [24]. Therefore, the detectability of the target is calculated, as shown in
Figure 7.
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Figure 7. Radar detectability performance.

The results of using the radar system for drone and bird detection showed promise
in its ability to accurately identify the presence of both, shown and illustrated in Figure 8.
The recall for birds was 100%, indicating that the system effectively detected all instances
of birds in the dataset. Additionally, the precision for birds was 63.46%, showcasing the
ability of the system to minimize false positive detections [25].
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Figure 8. Radar classification categories performance.

The precision of drone detection was 100%, highlighting the system’s ability to accu-
rately identify drone presence without any false positive detections. While the recall for
drones was lower at 42.86%, as shown in Figure 8, further analysis and improvement to the
system can lead to an increase in recall while maintaining high precision.

The overall precision of 88.82% and the F1 score of 76.27%, as shown in Figure 9,
demonstrate the overall effectiveness of the radar system in detecting both drones and
birds [26]. This is demonstrated by its higher recall rate and overall accuracy than the
visual system. Furthermore, using a 3D K-band radar, which operates in a frequency
range between 18 GHz and 27 GHz, further enhances the system’s detectability [27]. In
addition, the 3D K-band radar provides improved range resolution, target detection, and
clutter suppression compared with other frequency bands, making it a suitable choice for
drone and bird detection. Overall, the radar system plays a critical role in ensuring the
effectiveness and efficiency of the overall drone and bird detection system.
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5.1. Radar Images under Various Environments

Noise presents a radar distance restriction; the SNR and noise ratio are necessary for
the radar images and affect the probability of detecting the wrong target. Four measure-
ments were captured under various noise backgrounds for our system, i.e., dust storms,
clouds, noise from surrounding objects, and external sources. In addition, we noticed that
the far reflector produced little signal strength that could not exceed the noise floor, leading
to wrong target detections. These effects are captured in Figure 10, with four radar images
with noise backgrounds.
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5.2. Visual Imaging System Results

The system consists of one camera (SIGMA-2000M-1012) with a resolution of
1920 × 1080 pixels (full H.D.) [28]. CNN (ResNet-50) applies to the detected photo to
extract features and compare them with the existing dataset to determine the target type.
The results of the drone detection and recognition system using visual imaging show a
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high level of accuracy, with an overall accuracy of 89.12%. The precision results indicate
that the system can accurately identify the drones, with a precision of 93.3% for the DJI
Phantom drone, 94.29% for the hexacopter, and 81.08% for birds, as shown in Figure 11.
The overall precision was 89.22%.

The recall results indicate that the system can identify a large proportion of the actual
positive cases, with a recall of 83.35% for the DJI Phantom drone, 97.06% for the hexacopter,
and 88.24% for birds. The overall recall was 89.22%. The F1 score, which balances the
precision and recall, was 89.24%. This indicates that the system has a good balance between
detecting positive cases and avoiding false positive detections [29]. Moreover, the radar
classification network showed a significant decrement in accuracy, recall, precision, and F1
score, which were 71.43%, 71.43%, 81.82%, and 76.27%, respectively.

The results suggest that the system effectively detects and recognizes drones with
exceptionally high precision and recall for the hexacopter. However, the relatively lower
precision for birds may be due to differences in their physical characteristics, such as size
and shape, which may impact the system’s ability to identify them accurately.

In conclusion, the drone detection and recognition system using visual imaging
achieved high accuracy, precision, recall, and F1 score levels for all three drone types,
demonstrating its potential for practical applications. Further research can explore the
system’s performance under different environmental conditions and the potential for in-
tegrating the results from the visual imaging system with those from the radar system to
achieve even higher levels of accuracy and robustness, as shown in Figure 11.

In Figure 11, precision means that among the inputs whose class is predicted to be
positive, precision is calculated separately for each class. This study defines precision
in each of the phantom, hexacopter, and bird classes. For instance, the precision of the
phantom class means that all the inputs are projected as multirotor. In contrast, recall
means sensitivity, which is calculated separately for each class. For example, the recall in
the phantom class means that among all the phantom entries, what percentage are correctly
detected and recognized as phantom? Another example is if the precision for birds is 63%,
this percentage means 63% of the birds in the dataset were recognized as a bird correctly,
which also indicates the ability of the system to minimize false positive detections with
63%. While if the precision of birds’ detection is 100%, it means the bird class was identified
correctly among the other three classes, which highlights the system’s ability to identify
birds’ presence without any false positive detections.
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Figure 11. Precision and recall of categories in the visual imaging system.

The confusion matrix is shown in Table 3. In the case of DJI Phantom drones, 82.35%
of the instances were correctly classified as DJI Phantom drones. In comparison, the
remaining 17.65% were incorrectly classified as birds. This shows that the classifier has
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good precision in detecting DJI Phantom drones, but there may be room for improvement
in reducing the number of false negatives, as represented in Table 3. In Table 3, where
the first row represents the TP and FP, while the second row represents the FN and TN.
In the TP, the model predicted true and true, i.e., the model predicted that the object was
a bird, and the prediction was correct. In TN, the model predicted false, and it is false,
i.e., the model predicted the object is not a bird, which is correct (it was not a bird, either
phantom or hexacopter). In FP, the model predicted a bird but was not a bird. Finally, the
FN model predicted not a bird, and it was a bird. The figures 82.35%, 0, 17%, 0, 97.06%,
2.94%, 5.88%, 5.88%, and 88.24% are based on the statistics from the dataset specifications
and features and can easily obtain it using the phyton lines classifier.fit (X_train, y_train),
y_pred = classifier.predict(X_test).

Table 3. Confusion matrix.

DJI Phantom Hexacopter Birds

DJI Phantom 82.35% 0 17%

Hexacopter 0 97.06% 2.94%

Birds 5.88% 5.88% 88.24%

In the case of hexacopters, the classifier has an excellent recall rate of 97.06%, with only
2.94% of the instances being incorrectly classified as birds. This suggests that the classifier
has a high ability to identify hexacopters [30] correctly. However, the recall rate for birds
is only 88.24%, which indicates that there may be some misclassifications between birds
and other drone types. The confusion matrix also shows that 5.88% of the instances of
birds were incorrectly classified as DJI Phantom drones, and another 5.88% were incorrectly
classified as hexacopters.

Overall, the results of our classifier suggest that it has an excellent ability to detect DJI
Phantom drones and hexacopters. However, when it comes to birds, the images of birds
used for training and testing were of poor quality, such as being too far away or too blurry
because it was manually gathered from the internet; this explains the false recognition as
hexacopters and DJI Phantom.

Figure 12 compares the two systems’ results as a classifier. The result highlights the
superiority of the intelligent vision system over the essential radar system in recognizing
drones vs. birds. However, the radar system is crucial for the whole drone and bird
detection system, as it has better detectability than the visual system. These results suggest
that the radar system can be a valuable tool in detecting and recognizing drones and birds,
particularly when combined with other systems such as visual imaging. It is important to
note that the data generated by the radar system were limited compared with the visual
imaging system. However, these results showcase the potential of radar technology in the
drone and bird detection field.

For comparison between our study and other studies, Table 4 shows accuracy values
for some closely related works such as DL-CNN-NMS [11], ML-DS [12], DL-SVC-YOLO [13],
ML-ANN-RCS [14], ML-FMCW [15], and our study VSD-CNN-RCS. The accuracy values
in the table depend on the dataset and its data variance and bias. Our system accuracy is
71.43% because the DJI dataset needs to be enriched. Moreover, the hexacopter and birds
are similar and difficult to classify compared with other objects used for the related works.
However, the accuracy we achieved is considered excellent for the experiments’ features,
case study, and environment.
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Figure 12. Comparison between the visual and radar results.

Table 4. A benchmark of the work with the related works.

Methodology DL-CNN-NMS ML-DS DL-SVC-YOLO ML-ANN-RCS ML-FMCW VSD-CNN-RCS

Classification
accuracy 68.60 97.00 65.60 98.70 62.90 71.43

6. Conclusions and Future Work

This paper established the potential of using a combination of radar and visual imaging
systems to detect and distinguish between drones and birds and laid the foundation for
future research in this field. The paper also highlights the importance of continued research
in this field, as developing efficient and effective drone and bird detection systems is crucial
for ensuring the safety and security of airspace.

The study successfully demonstrated the potential of using a combination of radar and
visual imaging systems to detect and recognize drones and birds. The proposed algorithm
is benchmarked with other related works, which show acceptable performance compared
with other counterparts.

The results showed that both systems had their strengths, with the radar system
demonstrating high precision and the visual imaging system showing high recall. Com-
bined, these systems provide a comprehensive approach to detecting and recognizing
these objects in airspace. The high overall precision and accuracy of 88.82% and 71.43%,
respectively, and the high F1 score of 76.27% indicate the effectiveness of this combined
approach. Furthermore, the study’s results provide valuable insight into the potential of
using a combination of radar and visual imaging systems. Further research in this area can
lead to even more advanced and effective detection systems.

One of the limitations of this study is the lack of a comprehensive dataset. The data
collection mainly depends on labor, which is quite expensive and time-consuming. The
need for a large dataset is quite important to reduce the bias and variations in the dataset,
consequently reducing the model complexity and the ML model overfitting.

For future works, one can explore the system’s performance for different environmen-
tal conditions and the possible integration of the visual imaging system results with those
from the radar system to achieve even higher levels of robustness and accuracy.
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