W-Band GaN HEMT Switch Using the State-Dependent Concurrent Matching Method
Abstract
:1. Introduction
2. Proposed Design Technique of the W-Band Switch
3. Design of the W-Band SPST Switch
4. Measurement Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lam, K.; Ding, H.; Liu, X.; Orner, B.A.; Rascoe, J.; Bewitt, B.; Mina, E.; Gaucher, B. Wideband millimeter wave pin diode SPDT switch using IBM 0.13 μm SiGe technology. In Proceedings of the 2007 IEEE European Microwave Integrated Circuit Conference, Munich, Germany, 8–10 October 2007; pp. 108–111. [Google Scholar]
- Hongtao, W.; Xuebang, G.; Hongjang, W.; Bihua, W.; Yanan, L. W-band GaAs pin diode SPST switch MMIC. In Proceedings of the 2012 IEEE International Conference on Computational Problem-Solving (ICCP), Leshan, China, 19–21 October 2012; pp. 93–95. [Google Scholar]
- Song, P.; Schmid, R.L.; Ulusoy, A.C.; Cressler, J.D. A highpower, low-loss W-band SPDT switch using SiGe PIN diodes. In Proceedings of the 2014 IEEE Radio Frequency Integrated Circuits Symposiu, Tampa, FL, USA, 1–3 June 2014; pp. 195–198. [Google Scholar]
- Lin, K.-Y.; Tu, W.-H.; Chen, P.-Y.; Chang, H.-Y.; Wang, H.; Wu, R.-B. Millimeter-wave MMIC passive HEMT switches using traveling-wave concept. IEEE Trans. Microw. Theory Tech. 2004, 52, 1798–1808. [Google Scholar] [CrossRef]
- Monayakul, S.; Sinha, S.; Weimann, N.; Schmückle, F.J.; Hrobak, M.; Krozer, V.; John, W.; Weixelbaum, L.; Wolter, P.; Krüger, O.; et al. Flip-Chip Interconnects for 250 GHz Modules. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 358–360. [Google Scholar] [CrossRef]
- Lin, K.Y.; Wang, Y.J.; Niu, D.C.; Wang, H. Millimeter-wave MMIC single-pole-double throw passive HEMT switches using impedance-transformation networks. IEEE Trans. Microw. Theory Tech. 2003, 51, 1076–1085. [Google Scholar] [CrossRef]
- Thome, F.; Ture, E.; Bruckner, P.; Quay, R.; Ambacher, O. W-Band SPDT Switches in Planar and Tri-Gate 100-nm Gate-Length GaN-HEMT Technology. In Proceedings of the 2018 11th IEEE German Microwave Conference (GeMiC), Freiburg, Germany, 12–14 March 2018; pp. 331–334. [Google Scholar]
- Thome, F.; Ambacher, O. Highly-Isolating and Broadband Single-Pole Double-Throw Switches for Millimeter-Wave Applications up to 330 GHz. IEEE Trans. Microw. Theory Tech. 2018, 66, 1998–2009. [Google Scholar] [CrossRef]
- Thome, F.; Massler, H.; Wagner, S.; Leuthe, A.; Kallfass, I.; Schlechtweg, M.; Ambacher, O. Comparison of two W-band low-noise amplifier MMICs with ultra low power consumption based on 50 nm InGaAs mHEMT technology. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–4. [Google Scholar]
- Dyskin, A.; Peleg, N.; Wagner, S.; Ritter, D.; Kallfass, I. An asymmetrical 60–90 GHz single-pole double throw switch MMIC. In Proceedings of the 2013 IEEE European Microwave Integrated Circuit Conference, Nuremberg, Germany, 6–8 October 2013; pp. 145–148. [Google Scholar]
- Tsai, Z.-M.; Yeh, M.-C.; Lei, M.-F.; Chang, H.-Y.; Lin, C.-S.; Wang, H. DC-to-135 GHz and 15-to-135 GHz SPDT traveling wave switches using FET-integrated CPW line structure. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, USA, 17 June 2005; pp. 1–4. [Google Scholar]
- Kallfass, I.; Diebold, S.; Massler, H.; Koch, S.; Seelmann-Eggebert, M.; Leuther, A. Multiple-throw millimeter-wave FET switches for frequencies from 60 up to 120 GHz. In Proceedings of the 2008 38th IEEE European Microwave Conference, Amsterdam, The Netherlands, 27–31 October 2008; pp. 1453–1456. [Google Scholar]
- Kim, J.; Ko, W.; Kim, S.-H.; Jeong, J.; Kwon, Y. A high-performance 40–85 GHz MMIC SPDT switch using FET-integrated transmission line structure. IEEE Microw. Wirel. Compon. Lett. 2003, 13, 505–507. [Google Scholar]
- Kim, T.; Im, H.; Lee, S.-H.; Kim, K.-J.; Park, C. Highly Linear K-/Ka-Band SPDT Switch Based on Traveling-Wave Concept in a 150-nm GaN pHEMT Process. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 987–990. [Google Scholar] [CrossRef]
- Singh, A.; Mandal, M.K. Parasitic Compensation and Hence Isolation Improvement of PIN Diode-Based Switches. IEEE Trans. Circuits Syst. II-Express Briefs 2021, 68, 97–101. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, J.; Cui, Y.; Guo, J.; Qian, C. A low-cost W-band SPDT switch with Q-MMIC concept using quartz substrate. J. Electromag. Waves Appl. 2018, 32, 428–438. [Google Scholar] [CrossRef]
- Trinh, K.T.; Kao, H.-L.; Chiu, H.-C.; Karmakar, N.C. A Ka-Band GaAs MMIC Traveling-Wave Switch with Absorptive Characteristic. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 394–396. [Google Scholar] [CrossRef]
- Zhao, L.; Liang, W.-F.; Zhou, J.-Y.; Jiang, X. Compact 35–70 GHz SPDT Switch with High Isolation for High Power Application. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 485–487. [Google Scholar] [CrossRef]
- Margomenos, A.; Kurdoghlian, A.; Micovic, M.; Shinohara, K.; Moyer, H.; Regan, D.C.; Grabar, R.M.; McGuire, C.; Wetzel, M.D.; Chow, D.H. W-Band GaN Receiver Components Utilizing Highly Scaled, Next Generation GaN Device Technology. In Proceedings of the 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 19–22 October 2014; pp. 1–4. [Google Scholar]
- Sonnenberg, T.; Romano, A.; Verploegh, S.; Pinto, M.; Popović, Z. V- and W-Band Millimeter-Wave GaN MMICs. IEEE J. Microw. 2023, 3, 453–465. [Google Scholar] [CrossRef]
[19] | [20] | [20] | [20] | This Work | |
---|---|---|---|---|---|
Structure | SPST | SPST | SPST | SPDT | SPST |
Tech. (nm) | 40 | 40 | 40 | 40 | 100 |
Freq. (GHz) | 60–110 | 75–110 | 75–110 | 75–110 | 91–101 |
Insertion loss (dB) | 0.9–1.4 | 0.9–3.5 | 1.0–2.2 | 1.8–8.0 | <2.9 |
Isolation (dB) | >9 | 25–30 | 15–20 | 30–40 | >23.5 |
IP1dB (dBm) | >24 | >10 (1) | >10 (1) | >10 (1) | >14.9 (2) |
Chip size (mm2) | 0.544 | - | - | - | 0.757 (0.306 (3)) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, H.; Lee, J.; Park, C. W-Band GaN HEMT Switch Using the State-Dependent Concurrent Matching Method. Electronics 2023, 12, 2236. https://doi.org/10.3390/electronics12102236
Im H, Lee J, Park C. W-Band GaN HEMT Switch Using the State-Dependent Concurrent Matching Method. Electronics. 2023; 12(10):2236. https://doi.org/10.3390/electronics12102236
Chicago/Turabian StyleIm, Hyemin, Jaeyong Lee, and Changkun Park. 2023. "W-Band GaN HEMT Switch Using the State-Dependent Concurrent Matching Method" Electronics 12, no. 10: 2236. https://doi.org/10.3390/electronics12102236
APA StyleIm, H., Lee, J., & Park, C. (2023). W-Band GaN HEMT Switch Using the State-Dependent Concurrent Matching Method. Electronics, 12(10), 2236. https://doi.org/10.3390/electronics12102236