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Abstract: In this study, a W-band GaN single-pole single-throw (SPST) switch was designed. To
realize the pass and isolation modes of the SPST switch, we proposed the design technique of a unit
branch consisting of one transistor and one transmission. The characteristic impedance and length
of the transmission line were determined by the impedance and the angle at which the straight line
connecting the impedances of the on and off states of the transistor meets the real axis of the Smith
chart. Using the design technique, the matching networks for the pass and isolation modes of the
switch are concurrently completed. In order to improve the insertion loss and isolation characteristics
of the switch, the size of the transistor and the number of unit branches were investigated. To verify
the feasibility of the proposed design technique, we designed the W-band SPST switch using a 100 nm
GaN HEMT process. The measured insertion loss and isolation were below 2.9 dB and above 23.5 dB,
respectively, in the frequency range from 91 GHz to 101 GHz.

Keywords: GaN; isolation; insertion loss; switch; W-band

1. Introduction

With the innovative development of military science and technology, research on
explorers and trackers for the efficient operation of precision launch and hitting systems is
being actively conducted. In particular, millimeter wave searchers and tracers are designed
mainly using a 96 GHz frequency with low atmospheric loss and a short wavelength.
Accordingly, it is essential to develop it as a millimeter-wave monolithic integrated circuit
(MMIC) to ensure compact size and excellent performance.

MMICs for such explorers and trackers include power amplifiers, low-noise amplifiers,
and switches. In particular, the switch affects the output power of the transmitter and the
noise figure of the receiver. The switches require high isolation and high power handling
capability and low insertion loss. Switches using p-i-n diodes capable of ensuring good
isolation characteristics even at high frequencies have been reported [1–3]. However, p-
i-n diode switches are not suitable for military millimeter wave searcher and tracking
devices where high power is essential because the p-i-n diodes are incompatible with
microwave integrated circuits [4]. Therefore, when a p-i-n diode is used, a switch cannot
be integrated with other circuits such as power amplifiers and low-noise amplifiers. In this
case, additional power loss and bandwidth reduction may occur during the modularization
process of connecting the transceiver circuits and the switch [5]. This problem becomes
more serious in the W-band with a high operating frequency. Therefore, research on
switches using high electron-mobility transistor (HEMT) devices compatible with MMIC is
being actively conducted [4,6–13]. In particular, gallium nitride (GaN) HEMT has a faster
switching speed and high band gap characteristics compared to silicon-, gallium arsenide
(GaAs)-, and silicon germanium (SiGe)-based devices. Accordingly, GaN HEMT can handle
high power at a high operating frequency such as a W-band [14]. As a result, GaN HEMT
can be regarded as one of the promising candidate devices among the MMICs for explorers
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and trackers. In this work, we conducted a study on a single-pole single-throw (SPST)
switch using GaN HEMT.

In this study, we proposed a design methodology that can achieve simultaneous match-
ing for on and off states of traveling-wave-type SPST switches using the GaN HEMT process.
The design methodology utilizes the parasitic components of GaN HEMT and additional
transmission lines. Many studies related to the design methodologies for traveling-wave
type switches have already been introduced [15,16]. However, most of the previous works
are based on mathematical methodology. In this study, for the design of the traveling-wave
type switch, we proposed a technique to design the characteristic impedance and length
of the transmission line from impedances at on and off states of transistors using the
Smith chart.

2. Proposed Design Technique of the W-Band Switch

The design process of the proposed methodology can be summarized as follows. The
key components of the proposed switch are transistors and transmission lines. At this
time, the transmission line is connected in series with the drain of the transistor. First,
impedances according to the on and off states of the transistor are checked on the Smith
chart. Thereafter, the impedance of each state is connected in a straight line on the Smith
chart. The point where the straight line connecting the two impedances meets the real axis
of the Smith chart is referred to as the characteristic impedance of the transmission line.
In addition, the length of the transmission line is determined by the angle between this
straight line and the real axis. In this way, impedance matching for the on and off state
of the traveling-wave-type SPST switch may be achieved simultaneously. The following
describes the actual design process of the proposed design methodology.

The designed switch consists of a unit branch as shown in Figure 1. The transmission
line of TLS connects the port of the RFIN and the port of the RFOUT. For 50 Ω load
impedance, the transmission line of TLS was designed to have a characteristic impedance
of 50 Ω. In the final optimization process of the switch, the length of the TLS was adjusted
to improve the input and output return losses. In Figure 2, the equivalent circuit of the unit
branch is shown. In the case of the unit branch, it is composed of an HEMT transistor and a
transmission line of TLP. The transmission line of TLP connects the drain of the transistor
and the transmission line of TLS. The transistor and TLP determine the pass and isolation
mode characteristics of the entire traveling-wave-type SPST switch.
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Figure 1. Schematic of the designed W-band SPST switch.

As illustrated in Figure 2, ZTR,ON and ZTR,OFF are impedances due to the parasitic
components of the transistor depending on the on and off states of the transistor, respec-
tively. In Figure 2, for the convenience of analysis, it is assumed that the ground connected
to the source of the transistor is ideal. When the transistor is on, the transistor is equivalent
to the inductance (LM) and the resistance (RON). On the other hand, when the transistor
is off, the transistor is equivalent to inductance (LM), capacitance (COFF), and resistance
(ROFF) [4,14,17,18]. Here, the transistor in the off state may be modeled in parallel with
the resistance and the capacitance. However, in this study, the transistor in the off state
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was modeled with a series circuit of resistance and capacitance through parallel-to-series
conversion.
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modes of the SPST switch.

Figure 3 shows the tendency of impedance change according to the on and off state
of the transistor. In Figure 3, the values of ZTR,ON and ZTR,OFF are not actual values but
are values for conceptualizing the proposed design technique. When points ZTR,ON and
ZTR,OFF on the Smith chart were connected in a straight line, the impedance of the point
where the straight line and the real axis of the Smith chart meet was set as the characteristic
impedance value of the TLP. Thereafter, the impedances of ZTR,ON and ZTR,OFF were moved
on the real axis using the θ value adjusted according to the length of the TLP.
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If l is the length of the TLP, the equations for determining the characteristic impedance,
Z0, and θ of TLP are as follows:

ZTR,ON = a + jb, ZTR,OFF = c + jd, β = θ
l (1)

ZTL,ON = Z0
a+j(b+Z0 tanβl)
Z0+j(a+jb) tanβl , ZTL,OFF = Z0

c+j(d+Z0 tanβl)
Z0+j(c+jd) tanβl (2)

Z2
0 tanβl + b

(
1− tan2 βl

)
Z0 −

(
a2 + b2

)
tanβl = 0

Z2
0 tanβl + d

(
1− tan2 βl

)
Z0 −

(
c2 + d2

)
tanβl = 0

(3)

Z2
0 =


d(a2+b2)−b(c2+d2)

d−b for tanβl >> 1, tanβl << 1√
a2 + b2 =

√
c2 + d2 for tanβl ∼= 1

(4)

tanβl =


|Z0|

b

(
1− (a2+b2)(d−b)

d(a2+b2)−b(c2+d2)

)
for tanβl >> 1

1 for tanβl ∼= 1
− (d−b)
(a2+b2)−(c2+d2)

|Z0| for tanβl << 1

(5)

The ZTR,ON and ZTR,OFF moved by the TLP are shown in Figure 3 as ZTL,ON and
ZTL,OFF, respectively. From the perspective of the whole SPST switch, ZTL,ON has a relatively
high resistance and ZTL,OFF has a relatively low resistance, so the on and off states of the
transistor were used as the pass and isolation modes of the switch, respectively, as shown in
Figure 3. Consequently, the proposed design technique of the switch could realize the pass
and isolation modes of the switch by adjusting the characteristic impedance and length of
the transmission line, TLP according to the on and off impedances of the transistor.

3. Design of the W-Band SPST Switch

A W-band SPST switch based on the 100 nm GaN HEMT process was designed using
the proposed design methodology for the switch. First, we investigated the transistor size
of the unit branch to obtain low insertion loss and high isolation performance in the pass
and isolation modes of the SPST switch as shown in Figure 4.
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As previously described, the proposed switch operates in pass mode when the tran-
sistor is off. Conversely, the switch operates in isolation mode when the transistor is
on. Therefore, it is advantageous for the individual transistors that make up the switch
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to have high and low impedances in the on and off states, respectively. Figure 4 shows
the impedance of the transistor according to the gate width of the transistor when the
transistor is in the on and off states. As shown in Figure 4, the insertion loss and isolation
characteristics can be improved when the gate width is from 25 µm to 35 µm. In this study,
30 µm was used as the initial value of the gate width, while the gate length and operating
frequency were 100 nm and 96 GHz, respectively.

The unit branch with a transistor of 30 µm gate length was designed, as illustrated in
Figure 5, using the proposed design methodology. The source of the transistor is connected
to the ground through the back via a hole. Here, the effect of the back via the hole provided
for ground in the GaN HEMT process was considered. The on and off states of the transistor
are controlled by the gate voltage, and the gate is connected to the voltage source through
Rg of 5 kΩ. In Figure 5, the impedance trajectory at the unit branch is shown using the
Smith chart. The actual design process shown in Figure 5 is very similar to the conceptual
diagram of the proposed design methodology shown in Figure 3.
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As a result, the schematic of the designed SPST switch is configured as shown in
Figure 1. However, the size of the transistor slightly changed during the final detailed
tuning process. Finally, the used gate widths of M1, M2, and M3 were 25 µm, 30 µm, and
25 µm, respectively.

4. Measurement Results

We designed a W-band SPST switch using a 100 nm GaN HEMT process to verify
the feasibility of the proposed design technique. Figure 7 shows the chip photograph of
the designed SPST switch with a chip size of 1.13 × 0.67 mm2 including test pads. For
measurement, Rohde & Schwarz’s ZVA67 network analyzer and ZVA-Z110E converter
were used. For the measurement of power handling capability, a driver amplifier and an
attenuator were used. The gate voltages for the isolation and pass modes were −1.4 V and
0 V, respectively.
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Figure 8 shows the measured insertion loss and isolation characteristics. The mea-
surement results showed a similar tendency to the simulation as a whole, although the
insertion loss was somewhat degraded compared to the simulation results. Insertion loss
and isolation were measured below 2.9 dB and above 23.5 dB, respectively, in the range of
operating frequencies from 91 GHz to 101 GHz.
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As shown by the measured S-parameters of Figure 9, both S11 and S22 were measured
to be −10 dB or less in the measurement frequency range of 75 GHz to 105 GHz.



Electronics 2023, 12, 2236 7 of 9

Electronics 2023, 12, x FOR PEER REVIEW 7 of 10 
 

 

Figure 8 shows the measured insertion loss and isolation characteristics. The meas-
urement results showed a similar tendency to the simulation as a whole, although the 
insertion loss was somewhat degraded compared to the simulation results. Insertion loss 
and isolation were measured below 2.9 dB and above 23.5 dB, respectively, in the range 
of operating frequencies from 91 GHz to 101 GHz. 

 
Figure 8. Measurement results: insertion loss and isolation. 

As shown by the measured S-parameters of Figure 9, both S11 and S22 were measured 
to be −10 dB or less in the measurement frequency range of 75 GHz to 105 GHz. 

 
Figure 9. Measurement results: S-parameters. 

Figure 10 shows the measured output power according to the input power in the 
operating frequency of 96 GHz. In general, when the switch operates in pass mode while 
the transistor constituting the switch is off, the power handling capability is limited by the 
breakdown voltages between the drain-source or drain-gate of the transistors. On the 
other hand, in this study, it is advantageous in terms of power handling capability because 
the switch operates in pass mode while the transistors constituting the switch are on. At 
the 96 GHz operating frequency, the output power of the switch has a loss of 2.68 dB 
compared to the input power. As shown in Figure 10, 0.23 dB compression was measured 
at an output power point of 12.4 dBm with 14.9 dBm input power. The higher output 
power could not be measured due to the power limit of the equipment we used. Therefore, 
the input P1dB and output P1dB of the designed switch may be higher than 14.9 dBm and 
12.4 dBm, respectively. 

Figure 9. Measurement results: S-parameters.

Figure 10 shows the measured output power according to the input power in the
operating frequency of 96 GHz. In general, when the switch operates in pass mode while
the transistor constituting the switch is off, the power handling capability is limited by
the breakdown voltages between the drain-source or drain-gate of the transistors. On
the other hand, in this study, it is advantageous in terms of power handling capability
because the switch operates in pass mode while the transistors constituting the switch are
on. At the 96 GHz operating frequency, the output power of the switch has a loss of 2.68 dB
compared to the input power. As shown in Figure 10, 0.23 dB compression was measured
at an output power point of 12.4 dBm with 14.9 dBm input power. The higher output
power could not be measured due to the power limit of the equipment we used. Therefore,
the input P1dB and output P1dB of the designed switch may be higher than 14.9 dBm and
12.4 dBm, respectively.
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Table 1 summarizes the performance of state-of-the-art switches. As shown in Table 1,
the designed switch has a somewhat narrow operating frequency range, but has reasonable
insertion loss and isolation, and the input P1dB of the switch also exceeds 14.9 dBm. In
addition, if the gate length of the GaN HEMT used in the switch decreases, the on-resistance
decreases. Therefore, when using GaN HEMT with a reduced gate length, insertion loss is
expected to be improved in the pass mode of the switch.
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Table 1. Performance comparison of state-of-the-art GaN switches.

[19] [20] [20] [20] This Work

Structure SPST SPST SPST SPDT SPST
Tech. (nm) 40 40 40 40 100

Freq. (GHz) 60–110 75–110 75–110 75–110 91–101
Insertion loss (dB) 0.9–1.4 0.9–3.5 1.0–2.2 1.8–8.0 <2.9

Isolation (dB) >9 25–30 15–20 30–40 >23.5
IP1dB (dBm) >24 >10 (1) >10 (1) >10 (1) >14.9 (2)

Chip size (mm2) 0.544 - - - 0.757
(0.306 (3))

(1) Peak large-signal values, (2) limited by available source power, and (3) core size.

5. Conclusions

In this study, for the design of a W-band SPST switch, a design technique for deter-
mining the characteristic impedance and length of a transmission line after confirming
the impedance of the transistor has been proposed. The proposed design methodology
consists of one transistor and one transmission line. At this time, the transmission line
is connected in series with the drain of the transistor. The characteristic impedance and
length of the transmission line were determined by the impedance and the angle at which
the straight line connecting the impedances of the on and off states of the transistor meets
the real axis of the Smith chart. Accordingly, the impedance matching networks of the on
and off states of the traveling-wave-type SPST switch were simultaneously completed. In
addition, in order to improve the pass and isolation mode characteristics of the switch,
the transistor size was investigated, and the number of unit branches was optimized. As
a result, the switch was designed with a total of three unit branches using the proposed
design technique. The measured insertion loss and isolation were below 2.9 dB and above
23.5 dB, respectively, in the frequency range from 91 GHz to 101 GHz. The measured
output P1dB was higher than 12.4 dBm in the operating frequency of 96 GHz.
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