Industrial Informatics: Emerging Trends and Applications in the Era of Big Data and AI
Abstract
:1. Introduction
- i.
- to discover patterns in the results of scientific publications and the total number of articles published by journals, nations, and research institutions,
- ii.
- to provide a comprehensive overview of the field by visually depicting the major areas of study, their relationships, and their evolution,
- iii.
- to identify the phrases cited most often.
2. Materials and Methods
2.1. Data Gathering
- (i)
- The dataset contains only articles and reviews; books and proceedings were not included;
- (ii)
- We have considered only English-language publications;
- (iii)
- Articles not indexed in the Scopus database were omitted due to the nature of our search.
2.2. Bibliometric Mapping and Clustering
3. Results
3.1. Broad Publication Trends
3.2. Evolution of Research Topics and Their Citation Impacts
4. Discussion
5. Conclusions
- (i)
- Since 1995, the number of publications in the field of industrial informatics has increased rapidly.
- (ii)
- IEEE Transactions on Industrial Informatics has been the most active journal for publishing research in industrial informatics.
- (iii)
- China, Germany and Brazil dominate industrial informatics research.
- (iv)
- Embedded systems, IoT, manufacturing, and automation are the research topics that characterize the current state of research in industrial computing.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holmström, J.; Wiberg, M.; Lund, A. Industrial informatics: What we know and what we don’t know. In Industrial Informatics Design, Use and Innovation: Perspectives and Services; IGI Global: Hershey, PA, USA, 2010; pp. 1–4. [Google Scholar]
- Ansari, A.Q.; Khan, M.A. Fundamentals of industrial informatics and communication technologies. In Handbook of Research on Industrial Informatics and Manufacturing Intelligence: Innovations and Solutions; IGI global: Hershey, PA, USA, 2012; pp. 1–19. [Google Scholar]
- Kling, R. What is social informatics and why does it matter? Inf. Soc. 2007, 23, 205–220. [Google Scholar] [CrossRef]
- Rönnbäck, L.; Holmström, J.; Hanseth, O. It-adaptation challenges in the process industry: An exploratory case study. Ind. Manag. Data Syst. 2007, 107, 1276–1289. [Google Scholar] [CrossRef]
- Wiberg, M. The Interaction Society: Practice, Theories and Supportive Technologies; IGI Global: Hershey, PA, USA, 2005. [Google Scholar]
- Jonsson, K.; Holmström, J.; Lyytinen, K. Turn to the material: Remote diagnostics systems and new forms of boundary-spanning. Inf. Organ. 2009, 19, 233–252. [Google Scholar] [CrossRef]
- Jonsson, K.; Westergren, U.H.; Holmström, J. Technologies for value creation: An exploration of remote diagnostics systems in the manufacturing industry. Inf. Syst. J. 2008, 18, 227–245. [Google Scholar] [CrossRef]
- Bi, Z. Embracing Internet of Things (IoT) and big data for industrial informatics. Enterp. Inf. Syst. 2017, 11, 949–951. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. An integrated outlook of Cyber–Physical Systems for Industry 4.0: Topical practices, architecture, and applications. Green Technol. Sustain. 2023, 1, 100001. [Google Scholar] [CrossRef]
- De Silva, D.; Sierla, S.; Alahakoon, D.; Osipov, E.; Yu, X.; Vyatkin, V. Toward intelligent industrial informatics: A review of current developments and future directions of artificial intelligence in industrial applications. IEEE Ind. Electron. Mag. 2020, 14, 57–72. [Google Scholar] [CrossRef]
- Ali, R.R.M.; Ahmi, A.; Sudin, S. Examining the trend of the research on the internet of things (IoT): A bibliometric analysis of the journal articles as indexed in the Scopus database. J. Phys. Conf. Ser. 2020, 1529, 022075. [Google Scholar]
- Ding, X.; Yang, Z. Knowledge mapping of platform research: A visual analysis using VOSviewer and CiteSpace. Electron. Commer. Res. 2020, 22, 787–809. [Google Scholar] [CrossRef]
- Van der Veer Martens, B. Mapping research specialties. Annu. Rev. Inf. Sci. Technol. 2007, 42, 213. [Google Scholar]
- Ye, C. Bibliometrical analysis of international big data research: Based on citespace and vosviewer. In Proceedings of the 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Huangshan, China, 28–30 July 2018; pp. 927–932. [Google Scholar]
- Kuzior, A.; Sira, M. A Bibliometric Analysis of Blockchain Technology Research Using VOSviewer. Sustainability 2022, 14, 8206. [Google Scholar] [CrossRef]
- Oyewola, D.O.; Dada, E.G. Exploring machine learning: A scientometrics approach using bibliometrix and VOSviewer. SN Appl. Sci. 2022, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Wang, Q. Metrology Atlas Research on the CNKI Literature Big Data of Sports Artificial Intelligence Based on COOC/VOSviewer. In Proceedings of the 2021 2nd International Conference on Information Science and Education (ICISE-IE), Chongqing, China, 26–28 November 2021; pp. 720–724. [Google Scholar]
- Ballew, B.S. Elsevier’s Scopus® database. J. Electron. Resour. Med. Libr. 2009, 6, 245–252. [Google Scholar] [CrossRef]
- Burnham, J.F. Scopus database: A review. Biomed. Digit. Libr. 2006, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Aguillo, I.F. Is Google Scholar useful for bibliometrics? A webometric analysis. Scientometrics 2012, 91, 343–351. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29, 1. [Google Scholar] [CrossRef]
- Thelwall, M. Bibliometrics to webometrics. J. Inf. Sci. 2008, 34, 605–621. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Text mining and visualization using VOSviewer. arXiv 2011, arXiv:1109.2058. [Google Scholar]
- Bhattacharya, S.; Basu, P. Mapping a research area at the micro level using co-word analysis. Scientometrics 1998, 43, 359–372. [Google Scholar] [CrossRef]
- McAllister, J.T.; Lennertz, L.; Atencio Mojica, Z. Mapping a discipline: A guide to using VOSviewer for bibliometric and visual analysis. Sci. Technol. Libr. 2022, 41, 319–348. [Google Scholar] [CrossRef]
- He, Q. Knowledge discovery through co-word analysis. Library Trends. 1999, 48, 133–159. [Google Scholar]
- Van Eck, N.J.; Waltman, L.; Dekker, R.; Van Den Berg, J. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2405–2416. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOS: A new method for visualizing similarities between objects. In Proceedings of the Advances in Data Analysis: Proceedings of the 30 th Annual Conference of the Gesellschaft für Klassifikation eV, Berlin, Germany, 8–10 March 2006; Freie Universität Berlin: Berlin, Germany; pp. 299–306. [Google Scholar]
- Waltman, L.; Van Eck, N.J.; Noyons, E.C. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef] [PubMed]
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. Meas. Sch. Impact Methods Pract. 2014, 285–320. [Google Scholar] [CrossRef]
- Van Eck, N.J. Methodological Advances in Bibliometric Mapping of Science. Erasmus Research Institute of Management: Rotterdam, The Netherlands, 2011. [Google Scholar]
- Small, H. Visualizing science by citation mapping. J. Am. Soc. Inf. Sci. 1999, 50, 799–813. [Google Scholar] [CrossRef]
- Boyack, K.W.; Klavans, R. Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2389–2404. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L.; van Raan, A.F.; Klautz, R.J.; Peul, W.C. Citation analysis may severely underestimate the impact of clinical research as compared to basic research. PLoS ONE 2013, 8, e62395. [Google Scholar] [CrossRef] [PubMed]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Jackson, D.J.; Caspi, P. Embedded systems education: Future directions, initiatives, and cooperation. ACM SIGBED Rev. 2015, 4, 1–4. [Google Scholar] [CrossRef]
- Kaelbling, L.P. Learning in Embedded Systems; MIT Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Lee, E.A.; Seshia, S.A. Introduction to embedded systems. A Cyber-Phys. Syst. Approach 2011, 499. [Google Scholar]
- Pfeiffer, S. The vision of “Industrie 4.0” in the making—A case of future told, tamed, and traded. Nanoethics 2017, 11, 107–121. [Google Scholar] [CrossRef]
- Greengard, S. The Internet of Things; MIT Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Lohr, S. The age of big data. The New York Times, 11 February 2012. [Google Scholar]
- Adibhatla, V.A.; Chih, H.-C.; Hsu, C.-C.; Cheng, J.; Abbod, M.F.; Shieh, J.-S. Defect detection in printed circuit boards using you-only-look-once convolutional neural networks. Electronics 2020, 9, 1547. [Google Scholar] [CrossRef]
- Chen, M.; Yu, L.; Zhi, C.; Sun, R.; Zhu, S.; Gao, Z.; Ke, Z.; Zhu, M.; Zhang, Y. Improved faster R-CNN for fabric defect detection based on Gabor filter with Genetic Algorithm optimization. Comput. Ind. 2022, 134, 103551. [Google Scholar] [CrossRef]
- Mehta, D.; Rahman, M.; Aono, K.; Chakrabartty, S. An adaptive synaptic array using Fowler–Nordheim dynamic analog memory. Nat. Comm. 2022, 13, 1670. [Google Scholar] [CrossRef]
- Rahman, T.; Wheeldon, A.; Shafik, R.; Yakovlev, A.; Lei, J.; Granmo, O.-C.; Das, S. Data Booleanization for Energy Efficient On-Chip Learning using Logic Driven AI. In Proceedings of the 2022 International Symposium on the Tsetlin Machine (ISTM), Grimstad, Norway, 20–21 June 2022; pp. 29–36. [Google Scholar]
- Ricci, J.; Baggili, I.; Breitinger, F. Blockchain-based distributed cloud storage digital forensics: Where’s the Beef? IEEE Secur. Priv. 2018, 17, 34–42. [Google Scholar] [CrossRef]
- McKinley, D.C.; Briggs, R.D.; Bartuska, A.M. When peer-reviewed publications are not enough! Delivering science for natural resource management. For. Policy Econ. 2012, 21, 1–11. [Google Scholar] [CrossRef]
- Marzi, G.; Dabić, M.; Daim, T.; Garces, E. Product and process innovation in manufacturing firms: A 30-year bibliometric analysis. Scientometrics 2017, 113, 673–704. [Google Scholar] [CrossRef]
- Borrett, S.R.; Moody, J.; Edelmann, A. The rise of network ecology: Maps of the topic diversity and scientific collaboration. Ecol. Model. 2014, 293, 111–127. [Google Scholar] [CrossRef]
- Borrett, S.R.; Sheble, L.; Moody, J.; Anway, E.C. Bibliometric review of ecological network analysis: 2010–2016. Ecol. Model. 2018, 382, 63–82. [Google Scholar] [CrossRef]
- Belter, C.W.; Seidel, D.J. A bibliometric analysis of climate engineering research. Wiley Interdiscip. Rev. Clim. Chang. 2013, 4, 417–427. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.-H.; Ho, Y.-S. Trends in research on global climate change: A Science Citation Index Expanded-based analysis. Glob. Planet. Chang. 2011, 77, 13–20. [Google Scholar] [CrossRef]
- Fu, H.-Z.; Waltman, L. A large-scale bibliometric analysis of global climate change research between 2001 and 2018. Clim. Chang. 2022, 170, 36. [Google Scholar] [CrossRef]
- Wang, B.; Pan, S.-Y.; Ke, R.-Y.; Wang, K.; Wei, Y.-M. An overview of climate change vulnerability: A bibliometric analysis based on Web of Science database. Nat. Hazards 2014, 74, 1649–1666. [Google Scholar] [CrossRef]
- Moura, L.R.; Kohl, H. Maturity assessment in Industry 4.0—A comparative analysis of Brazilian and German companies. Emerg. Sci. J. 2020, 4, 365–375. [Google Scholar] [CrossRef]
Database | Period | Search Term | # of Documents |
---|---|---|---|
Elsevier Scopus | 1950–2023 | TITLE-ABS-KEY (“Industrial Informatics”) | 1077 documents |
Elsevier Scopus | 1950–2023 | TITLE-ABS-KEY (“Industrial Informatics“) AND (EXCLUDE (DOCTYPE, “ed”) OR EXCLUDE (DOCTYPE, “tb”) OR EXCLUDE (DOCTYPE, “bk”) OR EXCLUDE (DOCTYPE, “ch”) OR EXCLUDE (DOCTYPE, “er”) OR EXCLUDE (DOCTYPE, “no”)) | 1045 documents |
Title | # of Documents |
---|---|
IEEE Transactions on Industrial Informatics | 46 |
Applied Mechanics and Materials | 8 |
IECON Proceedings Industrial Electronics Conference | 8 |
IFAC Proceedings Volumes IFAC Papers online | 7 |
Advances In Intelligent Systems and Computing | 6 |
IEEE Access | 3 |
IEEE Transactions on Industrial Electronics | 3 |
Riai Revista Iberoamericana de Automatica e Informatica Industrial | 3 |
ACM International Conference Proceeding Series | 2 |
Applied Sciences Switzerland | 2 |
Enterprise Information Systems | 2 |
IEEE Industrial Electronics Magazine | 2 |
IEEE Internet of Things Journal | 2 |
IEEE Transactions on Education | 2 |
Lecture Notes in Computer Science | 2 |
Revista Iberoamericana de Tecnologias del Aprendizaje | 2 |
Affiliation | # of Documents |
---|---|
Aalto University | 36 |
Luleå University of Technology | 34 |
City University of Hong Kong | 27 |
Technical University of Munich | 27 |
University of Pretoria | 22 |
Chinese Academy of Sciences | 20 |
Universidade Federal do Rio Grande do Sul | 18 |
Shanghai Jiao Tong University | 17 |
Universidade do Porto | 17 |
Old Dominion University | 16 |
Universidade Federal de Santa Catarina | 15 |
Wuhan University of Technology | 14 |
Instituto Politecnico de Braganca | 14 |
Technische Universität Wien | 14 |
Rheinisch-Westfälische Technische Hochschule Aachen | 13 |
Consiglio Nazionale delle Ricerche | 13 |
Beihang University | 12 |
Tampere University | 12 |
Institute for Systems and Computer Engineering, Technology, and Science | 11 |
Universidade Federal do Rio Grande | 11 |
Period | 1994–2007 | 2008–2013 | 2014–2018 | 2019–2023 |
---|---|---|---|---|
Type of analysis | Co-occurrence | Co-occurrence | Co-occurrence | Co-occurrence |
Unit of analysis | Keywords | Keywords | Keywords | Keywords |
Counting method | Full count | Full count | Full count | Full count |
Minimum threshold value | 5 | 5 | 5 | 5 |
Extracted keywords | 288 | 712 | 3671 | 5968 |
Extracted keywords that occur more than the threshold | 7 | 9 | 112 | 216 |
Excluded term | Industrial Informatics | Industrial Informatics | Industrial Informatics | Industrial Informatics |
Occurrence of excluded term | 17 | 51 | 362 | 547 |
Minimum cluster size | 3 keywords | 3 keywords | 4 keywords | 5 keywords |
# of clusters | 2 | 2 | 7 | 7 |
# of keywords | 6 | 8 | 111 | 215 |
Links | 11 | 20 | 1057 | 3254 |
Total link strengths | 17 | 38 | 1443 | 4739 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pejić Bach, M.; Ivec, A.; Hrman, D. Industrial Informatics: Emerging Trends and Applications in the Era of Big Data and AI. Electronics 2023, 12, 2238. https://doi.org/10.3390/electronics12102238
Pejić Bach M, Ivec A, Hrman D. Industrial Informatics: Emerging Trends and Applications in the Era of Big Data and AI. Electronics. 2023; 12(10):2238. https://doi.org/10.3390/electronics12102238
Chicago/Turabian StylePejić Bach, Mirjana, Arian Ivec, and Danijela Hrman. 2023. "Industrial Informatics: Emerging Trends and Applications in the Era of Big Data and AI" Electronics 12, no. 10: 2238. https://doi.org/10.3390/electronics12102238
APA StylePejić Bach, M., Ivec, A., & Hrman, D. (2023). Industrial Informatics: Emerging Trends and Applications in the Era of Big Data and AI. Electronics, 12(10), 2238. https://doi.org/10.3390/electronics12102238