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Abstract: Detection and parameter estimation of maneuvering targets having a jerking motion are
some of the challenging problems for modern radar systems. Such targets usually introduce range
migration (RM) and Doppler frequency migration (DFM) problems leading to serious performance
degradation in detection. To address these problems, a novel coherent integration (CI) algorithm
is proposed based on a new symmetric instantaneous autocorrelation function (NSIAF), which can
be utilized to reduce the order on the slow time and to eliminate the linear range migration (LRM)
first. Then, the jerk and acceleration of the target are estimated after applying the keystone transform
(KT) and the scaled Fourier transform (SFT); both of these are then used to construct the reference
function for matched filtering. Finally, CI and target detection can be accomplished by the scaled
inverse Fourier transform (SCIFT) after matched filtering. Both simulation data (this work) and
practical radar experiment data (data set of others) were processed to validate the proposed algorithm.
Compared with other representative algorithms, our algorithm can achieve a good balance between
computational complexity and detection performance.

Keywords: coherent integration (CI); maneuvering target detection; motion parameter estimation;
new symmetric instantaneous autocorrelation function (NSIAF)

1. Introduction

The method and algorithm for coherent integration (CI) of echoes from highly ma-
neuvering targets (MaTs), along with motion parameter estimation, have been attracting
growing attention, and significant efforts have made in research as part of the rapid devel-
opment of modern radars [1–5]. Due to the feasible low-radar cross-section of maneuvering
targets, the returned radar signal can be quite weak, which can make the detection more
difficult. With the help of long-time CI techniques, the MaT detection performance of radar
can be significantly improved [6–9]. However, target maneuvering can cause high-order
range migration (RM) and Doppler frequency migration (DFM), which creates considerable
challenges for CI.

In order to address the linear range migration (LRM) caused by the target velocity,
several algorithms have been developed, e.g., the keystone transform (KT) can correct
the LRM without requiring knowledge about the target’s velocity beforehand [10,11].
However, its performance might be limited due to velocity ambiguity resulting from the
resampling process. Additionally, the interpolation operation can also affect the detection
performance while resulting in a significant computational burden. The Radon–Fourier
transform (RFT) can remove the LRM and realize CI by jointly searching in the target’s
motion parameter space. The axis-rotation moving-target detection (AR-MTD) [12] corrects
the range migration (RM) by rotating the fast-time and slow-time axes at the same time
and completes the CI by moving target detection (MTD). Both the RFT and the AR-MTD
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suffer from heavy computational burdens because of motion parameter searching. The
scaled inverse Fourier transform (SCIFT) [13] can eliminate the LRM and accomplish the
CI without any searching procedure. However, the aforementioned algorithms cannot deal
with a target experiencing acceleration or a jerking motion.

The acceleration of MaTs will induce quadratic range migration (QRM) and linear
Doppler frequency migration (LDFM). The Radon-fractional Fourier transform (RFRFT) [14]
was proposed to deal with MaTs experiencing acceleration. The RFRFT can extract the target
trajectory and eliminate the LDFM by applying the Radon transform and the fractional
Fourier transform together. Nonetheless, the RFRFT is hindered by high computational
cost resulting from the three-dimensional searching. The second-order KT (SOKT) [15], and
the KT-Lv’s distribution (KT-LVD) [16] algorithms were developed to reduce the dimension
of parameter searching. However, these algorithms still require one-dimensional searching.
The discrete polynomial-phase transform (DPT) [17], although it can achieve fast CI without
any searching, is not suitable for low signal-to-noise-ratio (SNR) scenarios due to the cross-
correlation applied. Additionally, all the above algorithms fail to deal with a maneuvering
target experiencing a jerking motion because cubic range migration (CRM) and quadratic
Doppler frequency migration (QDFM) are induced.

Although the generalized Radon–Fourier transform (GRFT) [18] is an effective al-
gorithm to accomplish CI regarding acceleration, the brute-force searching of motion
parameters significantly increases the computation complexity. In addition, the blind speed
side lobe (BSSL) effect may appear due to discrete pulse sampling, finite range resolution,
and limited integration time, leading to serious false alarms and CI degradation. The
adjacent cross-correlation function (ACCF) applied iteratively [19] is an efficient CI algo-
rithm for MaTs, but the detection performance is sacrificed since the multiple nonlinear
operations are conducted with a fixed lag time. The multiple nonlinear operations using
variable lag time were studied in [20], demonstrating higher anti-noise performance than
the ACCF-based algorithms. Unfortunately, this algorithm is not suitable for maneuvering
targets with a jerking motion.

In this paper, we proposed a novel fast CI algorithm for the detection of MaTs with a
jerking motion. We first define a new symmetric instantaneous autocorrelation function
(NSIAF) with variable lag time, which can be applied to reduce the order on the slow time
and eliminate the LRM. Afterwards, the KT and the scaled Fourier transform (SFT) [21]
are applied to decouple the range frequency, lag time, and slow time, and obtain the
acceleration and jerk estimations, according to which the matched function is constructed
and applied. The CI can then be accomplished using SCIFT [13], and in the final step, the
target is detected through peak searching. The proposed algorithm can be implemented
with a low computational cost by circumventing parameter searching. Comparisons
with other representative algorithms indicate that this proposed algorithm can achieve a
favorable balance between the computational complexity and the detection performance.
Finally, both simulated data and practical radar data are processed to demonstrate the
effectiveness of the proposed algorithm.

The remainder of this paper is organized as follows. Section 2 provides a brief intro-
duction to the signal model. In Section 3, the proposed algorithm is described in detail. In
Section 4, both simulated and practical radar data are processed to validate the proposed
algorithm. Finally, the conclusion is drawn in Section 5.

2. Signal Model

Suppose that a pulse-Doppler radar transmits a linear frequency modulation (LFM)
signal as

s(t, tn) = rect
(

t
Tp

)
exp(j2π fct + jπKt2) (1)

where rect(·) denotes a rectangle function with pulse duration of Tp, K = B/Tp is the
frequency modulation rate, B is the signal bandwidth, fc is the carrier frequency, and
t denotes the fast time.
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In this work, we focus on a maneuvering target with a jerking motion, so the instanta-
neous distance of the target relative to the radar can be expressed as [6,7,22]

R(tn) = R0 + vtn +
at2

n
2

+
bt3

n
6

(2)

where tn = nTr (n = 1, 2, · · · , N) is the slow time, N and Tr are respectively the pulse
number and the pulse repetition interval, R0, v, a, and b denote the initial radial range,
radial velocity, radial acceleration, and radial jerk.

The received echo signal after down conversion can be expressed as

sr(t, tn) = A0rect
[

t− 2R(tn)/c
Tp

]
exp

[
jπK

(
t− 2R(tn)

c

)2
]

exp
[
−j

4πR(tn)

λ

]
(3)

where A0 is the complex amplitude, c is the light speed, fc is the carrier frequency of the
transmitted signal, and λ = c/ fc is the wavelength.

The signal after pulse compression can be expressed as

sc(t, tn) = A1sin c
[

B
(

t− 2(R0+vtn+at2
n/2+bt3

n/6)
c

)]
× exp

(
−j4π R0+vtn+at2

n/2+bt3
n/6

λ

) (4)

where A1 denotes the signal amplitude after pulse compression and sinc(x) = sin(πx)/πx
denotes the SINC function.

As one can see from (4), the peak position and the phase of the range compressed sig-
nal are time varied with slow time tn. Once the position variation exceeds the range
resolution ρr = c/2B in the SINC function, the compressed echo will be situated at
cells having different ranges, i.e., the terms tn, tn

2, and tn
3 induce LRM, QRM, and

CRM, respectively.
From the exponential term in (4), the instantaneous Doppler frequency can be

derived as

fd(tn) = 2
λ

d(R0+vtn+at2
n/2+bt3

n/6)
dtn

= 2v
λ + 2atn

λ + bt2
n

λ

(5)

As clearly shown in (5), the Doppler frequency varies with the slow time tn due to the
radial acceleration a and jerk b, which respectively induce the LDFM and QDFM.

The LRM, QRM, CRM, LDFM, and QDFM all can lead to serious CI loss and should
be corrected to achieve good performance in MaT detection.

3. Novel Coherent Integration Algorithm for Maneuvering Target Detection
3.1. Principle of the Proposed Algorithm

As we know, the result of (4) is obtained by performing inverse fast Fourier transform
(IFFT) on the following signal with respect to the range frequency fr:

Sc( fr, tn) = A2rect
(

fr
B

)
exp

[
−j4π( fr + fc)

R0
c

]
× exp

[
−j4π( fr + fc)

vtn+at2
n/2+bt3

n/6
c

] (6)

where A2 denotes the signal amplitude after FFT.
In the following, the NSIAF is defined with variable lag time regarding Sc( fr, tn) in

the ( fr, tn) domain as

R( fr, tn, τ) = S
(

fr, tn +
τ
2 + τ0

)
S
(

fr, tn − τ
2 − τ0

)
×
[
S
(

fr, tn +
τ
2 − τ0

)
S
(

fr, tn − τ
2 + τ0

)]∗ (7)

where “∗” denotes the complex conjugation operation, and τ and τ0 are the variable lag
time and a constant time delay, respectively. Here τ0 is set as 0.089Tc [23,24], Tc = NTr is
the total integration time.
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By substituting (6) into (7), we obtain

R( fr, tn, τ) = A3 exp
[
−j8π

fr + fc

c
τ0τ(a + btn)

]
(8)

where A3 = A4
2rect( fr/B) is the signal amplitude of NSIAF.

Equation (8) shows the LRM has been eliminated and the highest order of the term
tn has been reduced from three to one. However, the coupling between fr, τ, and tn still
exists, which can be decoupled by the KT [10,11], via variable substitution as follows:

( fc + fr)τ = fcτn (9)

where τn is the new lag-time variable.
Then, the signal becomes

RKT( fr, tn, τn) = A3 exp
[
−j8π

fc

c
τnτ0(a + btn)

]
exp(j2π fr · 0) (10)

As (10) shows, fr has been decoupled from τ and tn, and the echo energies of pulses
are all distributed along the fr axis [15], which can be accumulated directly via summation:

Q(tn, τn) = SUM fr [RKT( fr, tn, τn)]

= A4 exp
(
−j8π

fc
c aτnτ0

)
exp

(
−j8π

fc
c bτnτ0tn

) (11)

where SUM fr [·] denotes the addition operation along the fr axis, and A4 is the signal
amplitude after the addition operation.

In the following, we decouple τn and tn by conducting SFT on (11) as follows:

Q( fn, τn) = SFTtn [Q(tn, τn)]

=
∫

tn
Q(tn, τn) exp[−j2πτn fntn]dtn

= A5 exp
(
−j8π

fc
c τnτ0a

)
δ
(

fn +
4
λ τ0b

) (12)

where A5 denotes the signal amplitude after SFT, fn is the scaled frequency variable
corresponding to tn, and SFTtn [·] denotes the SFT operation with respect to tn.

One can see from (12) that tn has been decoupled from τn. By applying the FFT on (12)
with respect to τn, we have

Q( fn, fτn) = A6δ

(
fn +

4
λ

τ0b
)

δ

(
fτn +

4
λ

τ0a
)

(13)

where fτn is the frequency variable corresponding to τn, and A6 denotes the signal ampli-
tude after FFT.

According to (13), the acceleration a and the jerk b can be estimated by searching for
the peak position of (−4aτ0/λ,−4bτ0/λ) in the fn − fτn domain, as

ˆ
a = − λ

ˆ
f τn

4τ0

b̂ = − λ
ˆ
f n

4τ0

(14)

where
ˆ
f n and

ˆ
f τn

are the peak values along the fn and fτn axes, respectively, and
ˆ
a and b̂

are the estimated a and b, respectively.
Based on (14), we can construct the corresponding matched function used to compen-

sate for the acceleration and jerk as follows:

Hc( fr, tn) = exp

j4π( fr + fc)

ˆ
at2

n/2 + b̂t3
n/6

c

 (15)
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By multiplying (6) with (15), we get

S1( fr, tn) = Sc( fr, tn)Hc( fr, tn)

= A2rect
(

fr
B

)
exp

[
−j4π( fr + fc)

vtn
c

] (16)

As shown in (16) the QRM, LDFM, and QDFM have all been eliminated; LRM has
not been eliminated, but can be easily eliminated by SCIFT [13]. So, the final CI result can
be achieved:

S2( fr, fd) = SCIFT[S1( fr, tn)]

= A7sin c
[

B
(

t− 2R0
c

)]
δ
(

fd +
2v
λ

) (17)

where SCIFT[·] denotes the SCIFT operation.
The whole flowchart of the proposed algorithm is given in Figure 1, which is explained

in detail as follows:
Step 1: Perform the pulse compression and range FFT to obtain Sc( fr, tn) in (6).
Step 2: Calculate the NSIAF based on (7), and denote the result as R( fr, tn, τ).
Step 3: Conduct KT on R( fr, tn, τ), followed by the addition operation along the fr

axis to get Q(tn, τn).

Step 4: Apply the SFT and FFT on Q(tn, τn) and estimate the acceleration
ˆ
a and the

jerk b̂ through searching the peak position.
Step 5: Construct the matched function based on (15) and multiply it with Sc( fr, tn) to

get S1( fr, tn).
Step 6: Perform the SCIFT on S1( fr, tn) to realize coherent integration.
Step 7: Carry out the constant false alarm (CFAR) detection to accomplish target detection.
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Figure 1. Flowchart of the proposed algorithm.

3.2. Cross-Term Analysis

The above analysis is valid only for a single target scenario. Cross-terms can appear
when multiple targets are considered, and these shall be analyzed in the following.

Similar to (6), the received signal backscattered from K targets after pulse compression
in the range frequency domain can be expressed as

Sc( fr, tn) =
K
∑

k=1
A2krect

(
fr
B

)
exp

[
−j4π( fr + fc)

R0
c

]
× exp

(
−j4π( fr + fc)

vktn+akt2
n/2+bkt3

n/6
c

) (18)
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By performing NSIAF on (18), we obtain

R( fr, tn, τ) =
K

∑
k=1

A3k exp
[
−j8π

fr + fc

c
τ0τ(ak + bktn)

]
︸ ︷︷ ︸

self−term

+
K−1
∑

i=1

K
∑

j=i+1
Rcross,i,j( fr, tn, τ)

(19)

where Rcross,i,j( fr, tn, τ) denotes the cross term generated by the ith and jth target.
After the KT of (9) and addition operation of (11) applied to (19), we obtain

Q(tn, τn) =
K

∑
k=1

A4k exp
(
−j8π

fc

c
akτnτ0

)
exp

(
−j8π

fc

c
bkτnτ0tn

)
︸ ︷︷ ︸

self−term

+
K−1
∑

i=1

K
∑

j=i+1
Qcross,i,j(tn, τn)

(20)

where Qcross,i,j(tn, τn) is the outcome of Rcross,i,j( fr, tn, τ) after KT and addition operations.
After performing SFT and FFT on (20) with respect to tn and τn, respectively, we have

Q( fn, fτn) =
K
∑

k=1
A6kδ

(
fn +

4
λ τ0bk

)
δ
(

fτn +
4
λ τ0ak

)
+

K−1
∑

i=1

K
∑

j=i+1
Qcross,i,j( fn, fτn)

(21)

where Qcross,i,j( fn, fτn) denotes the cross-term of Q( fn, fτn). The detailed expressions of
Rcross,i,j( fr, tn, τ), Qcross,i,j(tn, τn), and Qcross,i,j( fn, fτn) can be found in Appendix A.

As (21) shows, all the K maneuvering targets can be well focused in the fn − fτn

domain, whose peak locations correspond to (−4akτ0/λ,−4bkτ0/λ), while, as shown in
Appendix A, the cross-terms are dispersed in the fn − fτn domain, so the cross-terms’
energies are much smaller than those of the self-terms.

Additionally, we should point out that the proposed algorithm may suffer from
performance degradation in scenarios when both stronger and weaker maneuvering targets
exist since the cross-terms associated with the strong targets may submerge the self-terms
of the weak targets. In this case, the “CLEAN” technique [25] can be adopted to adaptively
remove the influence of strong target.

3.3. SNR Loss of the NSIAF

It was pointed out in [22,26–28] that the use of autocorrelation functions will result in
SNR loss due to the emergence of additional noise terms. In this subsection, we quantita-
tively analyze the SNR loss of the NSIAF defined by (7). For the convenience of analysis,
we assume the input signal of the NSIAF is included with independent white Gaussian
noise. Let 

S1 = S
(

fr, tn +
τ
2 + τ0

)
, S2 = S

(
fr, tn − τ

2 − τ0
)

S3 = S
(

fr, tn +
τ
2 − τ0

)
, S4 = S

(
fr, tn − τ

2 + τ0
)

n1 = n
(
tn +

τ
2 + τ0

)
, n2 = n

(
tn − τ

2 − τ0
)

n3 = n
(
tn +

τ
2 − τ0

)
, n4 = n

(
tn − τ

2 + τ0
)

(22)

where n1, n2, n3, and n4 are the Gaussian white noise with variance of σ2. We define the
input SNR as SNRin = A2

2/σ2. Substituting (22) into (7) yields

Rn( fr, tn, τ) = (S1 + n1)(S2 + n2)[(S3 + n3)(S4 + n4)]
∗

= Rns( fr, tn, τ) + Rnc( fr, tn, τ)
(23)
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where

Rns( fr, tn, τ) = A4
2 exp

[
−j8π

fr + fc

c
τ0τ(a + btn)

]
(24)

Rnc( fr, tn, τ) = n1n2n∗3n∗4 + n1n2n∗3S∗4 + n1n2S∗3n∗4 + n1S2n∗3n∗4 + S1n2n∗3n∗4
+n1n2S∗3S∗4+n1S2n∗3S∗4 + n1S2S∗3n∗4 + S1n2n∗3S∗4 + S1n2S∗3n∗4
+S1S2n∗3n∗4 + S1S2S∗3n∗4 + n1S2S∗3S∗4 + S1n2S∗3S∗4 + S1S2n∗3S∗4

(25)

According to (24) and (25), we can derive

E
[
|Rns( fr, tn, τ)|2

]
= A8

2 (26)

E
[
|Rnc( fr, tn, τ)|2

]
= σ8 + 4A2

2σ6 + 6A4
2σ4 + 4A6

2σ2 (27)

Thus, the output SNR of the NSIAF is

SNRout =
E[|Rns( fr ,tn ,τ)|2]
E[|Rnc( fr ,tn ,τ)|2]

=
A8

2
σ8+4A2

2σ6+6A4
2σ4+4A6

2σ2

(28)

Then the SNR loss can be calculated by
SNRout

SNRin
=

1
4 + 1

SNR3
in
+ 4 1

SNR2
in
+ 6 1

SNRin

(29)

As shown in (29), when SNRin � 1, SNRout/SNRin ≈ 1/4, the maximum loss of the
output SNR is about 6 dB [17].

4. Simulations and Experiments

In this subsection, we evaluate the performance of the proposed algorithm via simula-
tions for both single target and multiple targets. The simulated radar parameters are listed
in Table 1.

Table 1. Radar parameters.

Parameters Value

Carrier frequency 1 GHz
Bandwidth 30 MHz

Sampling frequency 60 MHz
Pulse duration 5 µs

Pulse repetition frequency 400 Hz
Pulse number 500

4.1. Simulation Results for Single MaT

In this simulation, let us consider a MaT whose motion parameters are set as follows:
the initial range R0 = 150 km, the radial velocity v = 480 m/s, the radial acceleration
a = −35 m/s2, and the jerk b = 16 m/s3. This experiment is conducted without consider-
ing any noise for the purpose of better revealing the properties of the proposed algorithm.
The simulation results are presented in Figure 2.

Figure 2a shows the pulse compression result, where serious RM is shown. Figure 2b
presents the tn − τ distribution at fr = 30 MHz, i.e., R(30 MHz, tn, τ). After performing
SFT on (11) with respect to tn, we obtain the result of Q( fn, τn), as shown in Figure 2c. After
performing FFT on Q( fn, τn) with respect to τn, one peak appears, as shown in Figure 2d,
according to which the radial acceleration and jerk can be estimated as â = −35.02 m/s2

and b̂ = 16.04 m/s3, respectively. The final CI by SCIFT is presented in Figure 2e. Obviously,
both a and b have been very accurately estimated.
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4.2. Simulation Results for Multiple MaTs

We now evaluate the performance of the proposed algorithm on detection of four
MaTs with noise considered, whose motion parameters are all different and are listed
in Table 2. The echoes are added with complex additive Gaussian white noise, and the
different SNRs of the four targets’ raw echoes are also listed in Table 2. Figure 3a shows
the pulse compression result; as can be seen, four targets are presented with different
trajectories. Figure 3b,c present the results of R(30 MHz, tn, τ) and Q( fn, τn), respectively.
Figure 3d shows the result of Q( fn, fτn), from which one can see four apparent peaks. All
the targets can be identified simultaneously even if their amplitudes are different due to
different input SNRs. According to (14), the radial accelerations and jerks of the four targets
can be estimated, and they are listed in Table 3. According to (15)–(17), the final CI result
of the proposed algorithm is given in Figure 3e. The result of iterative ACCF is given in
Figure 3f, where the echo energies are all defocused. Figure 3g shows the result of GRFT,
where although four peaks corresponding to these four targets can still be located, the BSSLs
indicated by the red circle can also result in false targets, besides lowering the detection
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probability of the truth target. The MTD [29] result is presented in Figure 3h, where the
echo energies are distributed in several range cells and in several Doppler frequency cells,
as well due to serious RM and DFM.
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Table 2. Simulated targets’ parameters.

Parameters Target A Target B Target C Target D

SNR (dB) −11.61 −12.43 −13.85 −14.94
Initial range (km) 150 150.1 150.2 150.05

Radial velocity (m/s) −500 420 300 −250
Radial acceleration (m/s2) 40 −27 32 −10

Radial jerk (m/s3) −18 12 16 −5

Table 3. Estimated targets’ accelerations and jerks.

Estimated Parameters Target A Target B Target C Target D

Estimated radial acceleration (m/s2) 39.99 −27.10 32.06 −9.92
Estimated radial jerk (m/s3) −18.18 11.90 16.20 −4.63

4.3. Computational Complexity and Detection Performance

In this subsection, the computation complexity and the detection performance of the
proposed are compared with that of GRFT and iterative ACCF.

Suppose the numbers of range bins and pulses are M and N, respectively. The com-
putational complexity for the main procedures of the proposed algorithm is composed
of four parts, i.e., calculation of R( fr, tn, τ) [O(MN2)], the operation of Chirp-z-based KT
[O(MN2 log N)], the FFT and SFT operations [O(2MN log N)], and the SCIFT [O(MN2)].
Thus, the overall computation complexity of the proposed algorithm is O(2MN2+
MN2 log N + 2MN log N). For the computational complexities of GRFT and iterative
ACCF, one can refer to [18,19], and these are not repeated here. All complexities are listed in
Table 4, where Nv, Na and Nb represent the searching numbers of radial velocity, accelera-
tion, and jerk, respectively, in GRFT. Obviously, if Nv, Na, and Nb are greater than N (in fact,
this is usually the case, especially when accurate estimates are required), the computational
burden of our algorithm can be significantly lower than that of GRFT. Although the iterative
ACCF algorithm has the lowest computational complexity, its anti-noise performance is
inferior to ours, as shall be shown later.

Table 4. Computational complexity.

Algorithms Computational Complexity

GRFT O(Nv Na Nb MN)
Iterative ACCF O(MN log N + MN log M)

The proposed algorithm O(2MN2 + MN2 log N + 2MN log N)

In the following, we evaluate the detection performances of the proposed algorithm
via Monte Carlo trials. The radar system parameters are the same as those in Table 1, and
the target in Section 4.1 is selected. Complex additive white Gaussian noises are added to
make the SNRs before pulse compression as [−35:1:0] dB, and 100 Monte Carlo trials are
conducted for each SNR value. The detection performances of our algorithm along with
the GRFT, iterative ACCF, and MTD are presented in Figure 4, all using the cell averaging
constant false alarm (CA-CFAR) by setting the false alarm probability as Pf a = 10−5. As
shown, the GRFT performs the best, whereas our algorithm performs better than the MTD
and iterative ACCF.
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ACCF, and MTD.

According to Figure 4 and the above computational complexity analysis, we can
conclude that our proposed algorithm can strike a balance between the computational
complexity and the detection ability.

4.4. Practical Radar Experiment

In this subsection, the practical Ka-band radar data [30] are processed to validate the
proposed algorithm. The basic parameters of the Ka-band radar are provided as follows:
the carrier frequency is 35 GHz, the PRF is 32 kHz, and the range cell is about 1.875 m.

The target trajectory is shown in Figure 5a; as can be seen, serious RM exists. Figure 5b
shows the MTD result, which shows that the CI performance is degraded due to RM and
DFM. The Q( fn, fτn) result is presented in Figure 5c, from which the acceleration and
jerk can be estimated as â = 0.31 m/s2 and b̂ = 0.99 m/s3, respectively, according to the
peak position. From the true instant velocities provided by the GPS, the true acceleration
and jerk corresponding to the selected data segment can be fitted as a = 0.26 m/s2 and
b = 1.02 m/s3, respectively. The true velocity and the fitted curve are presented in Figure 5d,
which shows that the estimated a and b are very close to the truth values. Figure 5e shows
the final CI result. The Doppler frequency profiles are plotted in Figure 5f; as can be seen,
our result is about 7.52 dB better than that of MTD.
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5. Conclusions

This paper proposes a novel CI algorithm for MaTs having a jerking motion without
the need to search for motion parameters. The NSIAF with variable lag time is defined
and used to reduce the order on the slow time and to eliminate the LRM. Then the KT and
the SFT are applied to obtain the acceleration and jerk estimations, according to which the
matched function is constructed and applied, and the CI and target detection can be finally
accomplished using the SCIFT. The searching for motion parameters can be avoided in the
whole processes. The performance of the proposed algorithm is compared with that of
other representative algorithms, and shows that our algorithm can achieve a good balance
between the computational complexity and the detection ability. Processing results of both
simulated and practical radar data validate the proposed algorithm very well.

Furthermore, we should point out that the proposed algorithm is not specifically
designed for the detection of high- or low-velocity targets. For targets with much lower
velocities, the applicability depends on whether the LRM, QRM, CRM, LDFM, and QDFM
occur. For some radar systems working at much higher carrier frequencies, the low-speed
maneuvering targets can also lead to these problems, in which case our algorithm is still
applicable. If this is not the case, i.e., the above migrations do not exist simultaneously,
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then some other algorithms with comparatively lower computational complexity can be
used to accomplish the coherent integration.
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Appendix A

In Appendix A, we discuss the behaviors of the cross-terms in NSIAF processing. The
cross-term Rcross,i,j( fr, tn, τ) in (19) can be expressed as

Rcross,i,j( fr, tn, τ) =
6

∑
p=1

Rcross,i,j,p( fr, tn, τ) (A1)

where
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The cross-term Qcross,i,j(tn, τn) in (20) can be expressed as
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= 2A2
2i A

2
2j exp

{
−j4π

fc
c
[
τnτ0tn

(
bi + bj

)
+ τnτ0
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)]}
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(
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Qcross,i,j,4( fr, tn, τn)
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2i A
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(A12)
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Qcross,i,j,5( fr, tn, τn)

= 2A2i A3
2j exp

−j4π
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(A13)

Qcross,i,j,6( fr, tn, τn)

= 2A2i A3
2j exp
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(A14)

Compared with the self-term in (20), the following three aspects can be observed:
(a) The cosine function terms will degrade the accumulation of the cross-terms. In fact,

only when vi = vj, ai = aj and bi = bj, the cosine function terms equal to 1 [31–34].
(b) After KT, the new coupling between fr and τn is generated, which means the KT

does not work for the cross-term.
(c) In contrast to (20), where fr has been decoupled from τ and tn, the echo energies

will be dispersed by direct summation along fr.
The cross-term Qcross,i,j( fn, fτn) in (21) can be expressed as

Qcross,i,j( fn, fτn) = FFTτn

[
SFTtn

[
Qcross,i,j(tn, τn)

]]
(A15)

It is obvious that the high-order terms related to the time variable τn and tn exist in the
cosine terms and the exponential terms in Qcross,i,j(tn, τn), such as t2

n, t3
n, τ2

n , and τ3
n . After

performing FFT with respect to τn and SFT with respect to tn, all the cross-terms cannot be
integrated along straight lines parallel to the tn axis in the tn − fτn domain or to the τn axis
in the fn − τn domain due to the complex coupling between tn and τn [24]. Therefore, the
cross-term Qcross,i,j( fn, fτn) cannot form any peaks in the fn − fτn domain. Compared with
the self-term in (21), the cross terms will be smeared in this transformed domain.

The above analyses show that the cross-terms’ contribution cannot be accumulated
well, so they are much smaller than those of the self-terms and thus can be ignored.
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