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Abstract: As one of the core applications of computer vision, object detection has become more
important in scenarios requiring high accuracy but with limited computational resources such as
robotics and autonomous vehicles. Object detection using machine learning running on embedded
device such as Raspberry Pi provides the high possibility to detect any custom objects without the
recalibration of camera. In this work, we developed a smart and lean object detection model for
shipping containers by using the state-of-the-art deep learning TensorFlow model and deployed
it to a Raspberry Pi. Using EfficientDet-Lite2, we explored the different cross-validation strategies
(Hold-out and K-Fold). The experimental results show that compared with the baseline EfficientDet-
Lite2 algorithm, our model improved the mean average precision (mAP) by 44.73% for the Hold-out
dataset and 6.26% for K-Fold cross-validation. We achieved Average Precision (AP) of more than
80% and best detection scores of more than 93% for the Hold-out dataset. For the 5-Fold lean dataset,
the results show the Average Precision across the three lightweight models are generally high as
the models achieved more than 50% average precision, with YOLOv4 Tiny performing better than
EfficientDet-Lite2 and Single Shot Detector (SSD) MobileNet V2 Feature Pyramid Network (FPN) 320
as a lightweight model.

Keywords: object detection; cross-validation; TensorFlow lite; model preparation

1. Introduction

Object detection using machine learning is becoming an important component of
Pick-and-Place operation, providing the high possibility to detect any objects without
recalibration of the cameras. With object detection, Pick-and-Place application is more
robust against any varying parameter such as lighting, shadow, and background noise.
One of the key tasks in object detection is feature extraction and object classification based
on convolutional neural network (CNN) models, which are generally computationally
intensive [1]. However, most of the conventional high-performance machine learning
algorithms require relatively high-power consumption and memory usage due to their
complex structure. Our research aims at developing a smart and lean machine learning
model fulfilling the following requirements: low power consumption, small memory usage,
and fast run time [2].

TensorFlow provides a variety of tools that makes it very easy to implement a model
for machine learning applications in different areas [3]. From TensorFlow, the model
is converted to TensorFlow Lite (TFLite), which is a production ready, cross-platform
framework for deploying machine learning on mobile devices and embedded systems such
as Raspberry Pi. The TensorFlow model we are using is EfficientDet-Lite 2, which is based
on EfficientNet. EfficientNet is a network architecture for deep learning that was developed
in 2019. This architecture illustrates the relationship between three terms that significantly
impact the performance of architectures for deep networks. These are defined as depth,
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width, and resolution. This architecture uses the composite scaling method and enables the
network to correlate between scaling sizes of varying sizes [4].

This project aims to develop an automated container loading Proof-Of-Concept (POC)
using a smart and learn object detector. We used a TFLite running on a Raspberry Pi to
capture the images of the shipping container and developed a smart machine vision system
to differentiate colours, sizes, and tags despite changing environmental conditions. The
Raspberry Pi was used as embedded system as it is easier to find and more affordable
in terms of price while carrying sufficient computing performance compared to other
alternatives such as the NVIDIA Jetson Nano. Similar to [5], our POC covers the entire
mechatronics spectrum with elements of electronics (Raspberry Pi), control (sensors and
actuators), and computer science (convolutional neural networks).

In the shipping industry, it is common to have a variety of colours to represent the
type of container and its owner. These colours include maroon, orange, green, blue, yellow,
red, magenta, brown, grey, and white. Dark colours usually age better and therefore a
colour such as maroon is a good choice for leasing companies. Other colours, such as a
light blue colour, are used to represent the owner of containers. For example, light pantone
blue is the trademark colours for Maersk, a well-known sea freight transport company.

This study focuses on Hold-out and 5-Fold cross-validation methods to measure
overfitting of data in machine learning. Cross-validation is a critical technique in machine
learning as it helps to evaluate the performance of a model on unseen data and detect
overfitting. By using cross-validation, the risk of overfitting is decreased and the model’s
performance is more precisely evaluated. In this work, the objects trained are similar
in shape and size despite having distinct colours. Hence, the similarity in the majority
of the features such as shape and size may lead to data overfitting if insufficient image
augmentation is introduced. Our dataset is separated into training, validation, and testing
groups. The data utilized for all the groups are different. To test the algorithm, we used
data that it does not know. Thus, a more realistic testing procedure and accuracy rate are
obtained.

Cross-validation allows us to compare different machine learning methods and get
a sense of how well they will work in practice. According to Berrar [6], one way for
resampling data to evaluate the generalization capacities of prediction models is the cross-
validation technique.

As such, this project aims to study the effect of cross-validation on the performance of
TensorFlow Lite model running on Raspberry Pi. The main contributions of the paper lie in
the following:

• Compared to baseline EfficientDet-Lite2 mAP of 33.96%, our mean Average Pre-
cision (mAP) increased by 44.73% for the Hold-out dataset and 6.26% for K-Fold
cross-validation.

• The Hold-out dataset with 80% train split achieved high Average Precision of more
than 80% and high detection scores of more than 93%.

• The containers with great contrast colours achieved high detection scores of more
than 90%.

• The validation detection loss, box loss, and class loss are the lowest achieved during
the mid of the total epochs.

2. Related Work

Considerable research has already been done for object detection using machine
learning, laying the foundation for this work. Many machine learning models previously
developed had very large datasets that are not suitable for sustainable and real-life appli-
cations. The contribution of every work done previously in all the relevant domains has
played a significant role in developing this work.

There are several projects utilizing smart and lean Pick-and-Place solutions have been
carried out in the industry, demonstrating the current trend toward using low-cost solutions
for projects. Torres [2] developed a bin-picking solution on low-cost vision systems for
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the manipulation of automotive electrical connectors using machine learning techniques.
Pajpach [5] used a low-cost module Arduino, TensorFlow and Keras, a smartphone camera,
and assembled them using a LEGO kit for educational institutions.

Glučina [7] used YOLO for detection and classification of Printed Circuit Boards using
YOLO and performed evaluation using mean average precision, precision, recall, and
F1-score classification metrics.

Andriyanov [8] developed a computer vision model for apple detection using Rasp-
berry Pi and a stereo camera. Using the transfer learning on YOLOv5, they estimated the
coordinates of objects of interest and performed subsequent recalculation of coordinates
relative to the control of the manipulator to form a control action. Chang [9] developed
a low-power, memory-efficient, high-speed machine learning algorithm for smart home
activity data classification on Raspberry Pi and MNIST dataset.

Yun [10] implemented object detection and avoidance for autonomous vehicle using
OpenCV, YOLO v4, and TensorFlow. Shao [11] improved the accuracy of vehicle detection
using YOLOv5 and increased the convergence rate. Wu [12] identified lane changing
manoeuvres of vehicles through a distinct set of physical data such as acceleration or speed.

Outside the automobile industry, objection detection is used in other projects such as
urban sustainability [13], marine [14] and railway [15]. As of now, not much research has
been done for EfficientDet-Lite on Pick-and-Place application especially for cross-validation,
and thus our research aims to fill this gap.

By leveraging recent developments in object detection using TensorFlow Lite, this work
aims to develop a machine learning model with practical data preparation for embedded
devices. The use of machine learning models for Pick-and-Place application on Raspberry Pi
using EfficientDet Lite is relatively new and will provide useful insights towards developing
smart and lean Pick-and-Place system.

3. Materials and Methods

In this project, a model experimental setup is created to replicate the container at the
shipyard, similar to Kim [16] for smart hopper. The performance of the proposed smart
and lean Pick-and-Place solution for the shipping containers are evaluated by constructing
an indoor model laboratory to perform experiments using the Pick-and-Place solution on
the Raspberry Pi and Universal Robot. A 6-axis Universal Robot 3 (UR3) shown in Figure 1
was integrated with a machine vision system and a Programmable Logic Controller (PLC)
to control the conveyor system. Once the machine-vision guided robot picks up the correct
coloured containers from the dock, it places it onto the conveyor which represents the
vessels.
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The framework of the Pick-and-Place solution is mainly divided into two parts; object
detection and location using an embedded system, and workpiece placement using a robot
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arm. As shown in Figure 2, a camera is mounted on the arm extension of Universal Robot
3 at a height of 44 cm and connected to a Raspberry Pi to take the picture of the containers.
In this project, we used 2 types of cameras: a C505E Logitech 5MP webcam and a Raspberry
Pi 5Megapixels camera. To ensure consistency of environment during the implementation
of machine vision-based image processing techniques, a constant intensity of illumination
was maintained at Lux value of 331.
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Figure 2. The setup of Raspberry Pi and containers.

Shipping containers and storage containers can come in a range of sizes; 20 feet and
40 feet shipping containers are the most common container lengths (externally) and 8 feet
in width is standard. The typical sizes of the containers are shown in Table 1 and a custom
container of size 11 × 3.4 × 7.3 cm was used for this project.

Table 1. Container sizes.

Type Container Size (Feet3) Scale-Down Size (cm3)

10-feet container 10 × 8 × 8.6 2.5 × 2 × 2.15
20-feet container 20 × 8 × 8.6 5 × 2 × 2.15
40-feet container 40 × 8 × 8.6 10 × 2 × 2.15
40-feet container 40 × 8 × 9.6 10 × 2 × 2.4

45-feet container (high) 45 × 8 × 8.6 10 × 2 × 2.4
Custom made 11 × 3.4 × 7.3 cm

Figure 3 shows the cross-validation flow for Pick-and-Place solution using the Rasp-
berry Pi. Using OpenCV on Raspberry Pi, the data images were captured, and the images
were annotated using the online Roboflow tool. The dataset was then augmented and
run on Google Colab for model building and training. This project used 2 strategies of
cross-validation: Hold-out and K-Fold. The mean and variance AP of both strategies were
calculated and compared. The detection scores, obtained from Raspberry Pi, were observed
for a few minutes before the best values were recorded.

To run the python codes on Raspberry Pi, we created the virtual environment and
used the detect.py file to detect custom object. A virtual environment was used to keep
dependencies required by different projects separate. The filename must be set correctly so
it will detect the containers.

Figure 4 shows the picture of the dataset. To allow generalization and prevent overfit-
ting, 3 different background colours were used: black, brown, and white. The images of
the containers were taken either separately or together, and they also have defects such as
uneven colours and blurry or distorted conditions.
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age; (iii) shadow; (iv) black background; (v) brown background; (vi) white background; (vii) uneven
colours; (viii) red flat and blurry; (ix) red deformed.

The TensorFlow model was developed and tested using Google Colab with Graphics
Processing Unit (GPU) Hardware Accelerator. From TensorFlow, the model was converted
to TensorFlow Lite, which is a production ready, cross-platform framework for deploying
machine learning on mobile devices and embedded systems. The model was trained using a
transfer learning method with a default learning rate 0.08. From our previous research [17],
a batchsize of 8 best represents the trade-off between speed and efficiency. Hence, for this
project, we used a batchsize of 8, in line with our project’s goal of developing a machine
vision assisted smart and lean Pick-and-Place system.

Using TensorFlow’s Model Maker, the model was built, trained, and evaluated before
being converted to TensorFlow Lite. The lite version consumes less memory compared to
the original version. Our evaluation criteria were the mean Average Precision (mAP) and
F1-Score. For our Pick-and-Place application, the Recall was considered as Armax10, as we
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expected to have maximum 10 detections per Pick-and-Place application. The F1-score was
used to evaluate the models’ accuracy since it allows for the simultaneous maximization of
two metrics that are well-known in this field: Precision (which measures the detections of
objects) and Recall (measures the objects that are detected). F1-score is calculated based on
the mAP and Recall values in the formula below:

F1
2 ∗ AP ∗ ARmax10

AP + ARmax10
(1)

According to Raschka [18], the Hold-out method for model evaluation and selection is
not recommended when working with small datasets. Alternative methods for algorithm
selection, such as the combined cross-validation, are recommended for comparing machine
learning algorithms when datasets are small.

In machine learning, it is important to evaluate the bias and variance. Assuming there
is a point estimator θ̂ of some parameter or function θ, the bias is commonly defined as the
difference between the expected value of the estimator and the parameter that we want to
estimate. The equation of bias:

Bias = E[θ̂] − θ (2)

If the bias is larger than zero, we also say that the estimator is positively biased.
Conversely, if the bias is smaller than zero, the estimator is negatively biased. If the bias is
exactly zero, the estimator is unbiased. The variance is defined as the difference between
the expected value of the squared estimator minus the squared expectation of the estimator.
It has its alternative form as:

Var(θ̂) = E[(E[θ̂] − θ̂)
2
] (3)

To implement the cross-validation method of our smart and lean Pick-and-Place
solution, we used a simple method for accuracy estimation; Hold-out with random resam-
pling [19] for a larger dataset, followed by a second method, K-Fold cross-validation, for a
smaller dataset.

3.1. Hold-Out Validation Method

The Hold-out dataset consists of 793 original photos that have been brightened and
exposed to create 1262 additional images, as shown in Table 2. The effectiveness of this
technique lies in the way neural networks understand the images and their characteristics.
If an image is slightly altered, it is perceived by the network as a completely different image
belonging to the same class.

Table 2. Specification of the images for Hold-out dataset.

Number of Original
Images

Number of
Augmented Images

Augmented
Treatment Background Colour

793 2055 Brightness and
exposure ± 25% Black, Brown, White

To ensure equal distribution of workpieces in dataset, the project used Roboflow as an
online annotation and data splitting tool. Using Label Assist tool in Roboflow, the highest
mAP was used to annotate images and the confidence was lowered to 20%. The confidence
level was lowered to make the annotation visible for all objects. The overlap was reduced
to 50% to enable detection of workpiece with poor confidence. For faster annotation, the
zoom and lock view functions were used to ensure more accurate annotation as the test
objects looked bigger. For faster annotation, the functions zoom and lock view at 60% were
used.

In total, this work uses 6 validation sets. Datasets A to D were used for Hold-out cross-
validation while datasets E and F were used for K-Fold cross-validation. All the datasets
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were trained on EfficientDet 2 before conversion to EfficientDet-Lite2 for deployment on
Raspberry Pi. The hyperparameters are shown in Table 3.

Table 3. Hyperparameter for Deep Learning for Hold-out dataset.

Dataset Model Input Resolution Learning Rate Batchsize Epoch

A, B, C EfficientDet Lite2 640 × 640 0.08 4 50
D EfficientDet Lite2 416 × 416 0.08 4 50

Table 4 shows that there are 3 train/valid split ratios used in this work. Dataset A
was set to 80:20 with the training set as 80% of the total images before augmentation. After
augmentation, the train percentage was 92% and valid was 8% as the training images
increased threefold. Dataset B had less original training images (70%) while Dataset C had
the least original training images at 60%. Dataset D had a similar training split to Dataset A
except that the input resolution was lower.

Table 4. Train/Valid split composition for Hold-out dataset.

Train/Valid/Test Dataset A
(80:18:2)

Dataset B
(70:28:2)

Dataset C
(60:38:2)

Dataset D
(80:18:2)

Augmented Train images 1900 92% 1700 87% 1400 82% 1900 92%
Valid images 162 8% 238 13% 318 18% 162 8%

Table 5 shows the breakdown of the hold-out dataset into different colours. By
ensuring the containers were equally distributed, the model is more robust and will not
lead to overfitting. Other than this, other defects shown in Table 6 such as container in flat
orientation were added into the dataset.

Table 5. Class distribution of containers for Hold-out dataset.

Class
(Main)

Light
Brown Yellow Red White Black Red Blue Dark Blue

Quantity 784 784 782 782 769 731 633 570
Percentage 15.02% 15.02% 14.987% 14.987% 14.73% 14.0% 12.13% 10.92%

Table 6. Added defects for Hold-out dataset.

Class (Defects) Red Flat Green Flat

Quantity 150 15
Percentage 2.87% 0.029%

3.2. K-Fold Cross-Validation Method

The second method used was K-Fold validation method on a smaller (leaner) dataset
in order to produce more meaningful and reliable test result [20]. In this method, the
original dataset is randomly partitioned into k equal-size subsamples. In each case, each of
the k subsamples is used as validation data and the remainder as training data. The stages
in performing K-Fold cross-validation are described as follows:

a. Determine the number of K
b. Divide the data into 2 parts: train set and validation set
c. Obtain the evaluation results of model
d. Calculate the overall mean of the APs
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In this project, we set K to be 5. Hence, the overall mean AP equation is:

MeanAP =
1
5 ∑k

i=1 AP (i) (4)

For the 2 datasets shown in Table 7, we used 2 different batchsizes and number of
epochs as well as the input resolution. Table 8 shows the breakdown of a smaller dataset
used for the K-Fold cross-validation. Dataset2 has a total of 178 original images, augmented
to 890 images. Similar to the Hold-out dataset, the photos were taken with 3 different
backgrounds—black, brown, and white background.

Table 7. Hyperparameter of EfficientDet-Lite2 for K-Fold dataset.

Dataset Label Model Input Resolution Learning Rate Batchsize Epoch

E EfficientDet-Lite2 640 × 640 0.08 8 80
F EfficientDet-Lite2 416 × 416 0.08 16 100

Table 8. Augmented K-Fold Dataset.

Dataset Label Number of
Original Images

Number of
Augmented

Images

Augmented
Treatment Background Colour

E 178 890 Flip horizontal, rotate ± 25% Black, Brown, White
F 178 908 Flip horizontal, rotate ± 25% Black, Brown, White

For the K-Fold dataset, the pictures were taken using a Raspberry Pi 5 Megapixels
camera. There are a total of 21 classes with 9 main classes, as shown in Table 9. To make
sure the system is more robust and will not lead to overfitting, other test objects with defects
shown in such as the blue cube were added into the dataset, as shown in Table 10.

Table 9. Class distribution of containers for K-Fold dataset.

Class
(Main) Green Yellow Red White Black Light

Brown
Dark
Blue Gray Dark

Brown

Quantity 148 143 127 117 109 93 75 72 53
Percentage 14.02% 13.54% 12.02% 11.08% 10.32% 8.81% 7.1% 6.8% 5%

Table 10. Added defects for K-Fold dataset.

Class
(Defects) Red Flat Blue Cube Red Cube Red

Deformed Yellow Cube

Quantity 26 15 14 13 12
Percentage 2.4% 1.4% 1.3% 1.1% 0.8%

4. Results of Hold-Out with Different Train/Valid/Test Split

The results in Table 11 show that, not surprisingly, Dataset A with a higher train ratio
has the highest AP (0.803) and Tflite AP (0.787). In contrast, Dataset C with a lower train
ratio has the lowest AP (0.696) and Tflite AP (0.668). This is an expected result as the model
is more accurate after training with more data. Compared to the baseline EfficientDet-Lite2
algorithm with mAP of 33.97%, our model improves the mean average precision (mAP) by
44.73% for Dataset A. The mAP increased by 32.9% for Dataset C with a 60% train split.
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Table 11. The Performance Metrics of the Hold-Out Dataset.

Dataset
A Dataset B Dataset

C Mean Variance

AP TensorFlow 0.803 0.779 0.696 0.759 0.002102
AP Tflite 0.787 0.759 0.668 0.738 0.002581
ARmax 0.824 0.799 0.732 0.785 0.001132
F1-Score 0.805 0.778 0.699 0.761 0.002023

AP of Light brown container 0.802 0.777 0.718 0.765 0.001240
AP of Green container 0.786 0.761 0.717 0.755 0.000814
AP of Yellow container 0.772 0.756 0.681 0.736 0.001574

AP of Red container 0.786 0.776 0.712 0.758 0.001075
AP of White container 0.766 0.764 0.687 0.739 0.001353
AP of Black container 0.778 0.747 0.644 0.723 0.003281

AP of Dark Blue container 0.758 0.706 0.6 0.688 0.004323
AP of Gray container 0.777 0.76 0.662 0.733 0.002569

The results show that the light brown container has the highest overall mean AP value
of 0.766 with the low variance value of 0.001240. The lowest variance 0.0008 is attained
by the green container, which attains the second highest AP value of 0.755. This could be
because strong colours and lighter tone colours offer strong contrast to the background and
hence more features to the machine learning. In contrast, the dark blue container has the
lowest mean AP of value 0.688, but with the highest variance at value 0.004323, which is
more than three times higher than the light brown container.

Similarly, for detection scores shown in Table 12 and Figure 5, the lighter tone and
strong-coloured containers have higher detection scores over the dark-coloured containers.
Other than this, there are some misdetections due to the similar tone in colours. For
example, the white colour is mistaken as gray on some detections. This could be prevented
when more features are added into the container image, such as the corner castings. The
corner castings are the big three-holed blocks which form the corners of all ISO shipping
containers.

Table 12. Detection Scores of Hold-Out Dataset.

Detection Score Dataset A Dataset B Dataset C Average

Light brown container 0.93 0.85 * Yellow 0.89
Green container 0.64 0.76 0.9 0.7667
Yellow container 0.62 0.92 0.85 0.797

Red container 0.66 0.94 0.94 0.847
White container 0.88 0.46 * Gray 0.67
Black container 0.64 * Gray <0.5 0.64

Dark Blue container 0.73 0.82 0.45 0.667
Gray container * White * Green 0.43 0.43

* Misdetection.

Figure 6 shows the loss function for Dataset A, which shows validation detection
loss, box loss, class loss, and loss the lowest at epoch22. For comparison, we used Dataset
B (Figure 7), which shows similar validation detection loss, box loss, class loss, and loss
the lowest at the epoch28, which is almost the mid run of the model. As the validation
detection loss, box loss, and class loss are all at their lowest points in the middle of the total,
this suggests that the model might be stopped sooner, leading to a leaner solution. This
also suggests that Dataset A with a higher Train/Valid/Test split has faster convergence
speed than Dataset B.
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5. Results of K-Fold Validation

Table 13 shows the Average Precision of the K-Fold cross-validation for the model
running on batchsize of 8 and epochs 80. A strong-coloured container such as a green
container has a higher AP compared to a neutral-coloured container such as dark brown.
The highest mean AP was obtained by the green container with a value 0.6662 while the
dark brown container had the lowest mean AP value of 0.4036. Similar to the Hold-out
dataset, a strong-coloured container offers more features compared to a neutral-coloured
container especially when the background is of a similar coloured tone. More features in
machine learning help improve the accuracy of machine learning models by allowing them
to make more accurate predictions.

Table 13. Performance metrics of for batchsize of 8, epoch 80.

Average Precision K-Fold 1 K-Fold 2 K-Fold 3 K-Fold 4 K-Fold 5 Mean

AP 0.316 0.543 0.404 0.516 0.252 0.4062
AP Tflite 0.27 0.485 0.366 0.255 0.267 0.3286
ARmax10 0.350 0.537 0.424 0.536 0.380 0.445
F1-Score 0.305 0.510 0.393 0.346 0.324 0.373

Green container 0.687 0.678 0.666 0.644 0.656 0.6662
Yellow container 0.75 0.659 0.596 0.668 0.614 0.6574

Red container 0.728 0.489 0.666 0.626 0.67 0.6358
White container 0.646 0.667 0.55 0.625 0.275 0.5526
Black container 0.533 0.767 0.391 0.48 0.565 0.5472

Dark brown container 0.397 0.577 0.352 0.401 0.291 0.4036

Table 14 shows the Average Precision of the K-Fold cross-validation for the model
running on batchsize of 16 and epochs 100. A strong-coloured container such as the green
container has a higher mean AP while a neutral dark-coloured container such as the dark
brown has a lower mean AP. The highest mean was obtained by the green container with an
AP value of 0.6832 while the dark brown container had the lowest mean AP value of 0.4002.

Table 14. Performance metrics of Dataset: Batchsize of 16, epochs 100.

K-Fold 1 K-Fold 2 K-Fold 3 K-Fold 4 K-Fold 5 Mean

AP 0.535 0.528 0.404 0.504 0.253 0.4448
AP Tflite 0.496 0.498 0.365 0.402 0.252 0.4026
ARmax10 0.546 0.580 0.424 0.475 0.323 0.4696
F1-Score 0.520 0.536 0.392 0.435 0.283 0.433

Green container 0.687 0.739 0.666 0.693 0.631 0.6832
Yellow container 0.749 0.729 0.596 0.468 0.604 0.6292

Red container 0.728 0.421 0.666 0.672 0.659 0.6292
White container 0.646 0.661 0.549 0.545 0.245 0.5292
Black container 0.534 0.592 0.391 0.469 0.535 0.5042

Dark brown container 0.583 0.473 0.352 0.291 0.302 0.4002

Table 15 shows the comparison of Average Precision for different K-Fold versions of
the batchsize 8 with 80 epochs run and the batchsize 16 with 100 epochs run. The AP shows
that the green container had the highest AP for both K-Fold versions while the dark brown
had lowest AP for both datasets. Hence, higher contrast has more impact on the accuracy.

Table 15. Comparison of the AP for different K-Fold versions.

Average Precision Dataset E
(Batchsize of 8, Epoch 80)

Dataset F
(Batchsize of 16, Epoch 100) Difference (%)

AP 0.4062 0.4448 9.50
AP Tflite 0.3286 0.4026 22.52
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Table 15. Cont.

Average Precision Dataset E
(Batchsize of 8, Epoch 80)

Dataset F
(Batchsize of 16, Epoch 100) Difference (%)

Green container 0.6662 0.6832 2.55
Yellow container 0.6574 0.6292 −4.29

Red container 0.6358 0.6292 −1.04
White container 0.5526 0.5292 −4.23
Black container 0.5472 0.5042 −7.86

Dark brown container 0.4036 0.4002 −0.84

From Figure 8, it is shown that the larger batchsize has a lower AP compared to the
smaller batchsize. Compared to EfficientDet-Lite2’s mAP of 33.97%, the mAP for Dataset F
increased by 6.29% while the mAP for Dataset E dropped by 1.01%.
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In order to find out if there is any statistically significant difference between the two
datasets in terms of Average Precision, we used the Mann–Whitney U test. According
to [21], the Mann–Whitney U test is the one of the most commonly used non-parametric
statistical tests. This test was independently worked out by Mann and Whitney (1947) and
it is a non-parametric test which is often used for small samples of non-normally distributed
data [22].

In the Mann–Whitney U test, the null hypothesis (H0) stipulates that the two groups
come from the same population. In other terms, it stipulates that the two independent
groups are homogeneous and have the same distribution. The alternative hypothesis (H1)
against which the null hypothesis is tested stipulates that the first group data distribution
differs from the second group data distribution.

In terms of medians, the null hypothesis states that the medians of the two respective
samples are not different. As for the alternative hypothesis, it affirms that one median is
larger than the other or quite simply that the two medians differ.

Therefore, if the null hypothesis is not rejected, it means that the median of each group
of observations is similar. On the contrary, if the two medians differ, the null hypothesis is
rejected. The two groups are then considered as coming from two different populations.

We applied the Mann–Whitney U test to our Datasets E and F as the number of classes
are small, less than 30 [23], and the AP results are not normally distributed. Below are our
null and alternative hypotheses:

H0. The median of APs is equal between the two datasets.
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H1. The median of APs is not equal between the two datasets.

Using SciPy which is a Python library used for scientific computing and technical
computing, we obtained a p-value of 0.5745. Since the p-value (0.5745) is above than
0.05 significance level, we fail to reject the null hypothesis. We conclude there is not enough
evidence to suggest a significant difference in medians between the 2 datasets.

Therefore, we can confirm that there is no significant difference between Dataset E and
Dataset F in terms of Average Precision, despite having different batchsizes and number of
epoch runs.

6. Comparison of EfficientDet-Lite with YOLOv4 Tiny and SSD MobileNet V2

To compare EfficientDet-Lite2 with other mobile-based object detection algorithms, we
choose YOLOv4 Tiny and SSD MobileNet V2 FPNLite 320. YOLOv4 Tiny is a lightweight
version of the YOLOv4 object detection model and SSD MobileNet V2 FPN 320 is a single-
shot detection (SSD) model that uses the MobileNet V2 architecture as its backbone and a
feature pyramid network (FPN) to improve performance.

Both algorithms are designed to be lightweight and suitable for implementation on
edge devices. We used Dataset F to obtain the AP for these lightweight models with a
learning rate of 0.08 and batchsize of 16. The AP results are shown in Table 16 and the
curves are plotted in Figure 9. In terms of accuracy, YOLOv4 Tiny outperforms both
EfficientDet-Lite2 and SSD MobileNet V2 FPN 320. SSD MobileNet has the lowest AP of
0.2975. The highest AP score among the three models is achieved by YOLOv4 Tiny on the
white container, with a score of 0.8967. EfficientDet-Lite2 has the lowest AP score among
the three models for most of the containers, except for the green container, where it has a
slightly higher score than both models. SSD MobileNet shows lower mean AP due to the
inability of the model to detect other classes, such as the red flat or red deformed container.

Table 16. Comparison of the AP on Dataset F.

Average Precision EfficientDet-Lite2 YOLOv4 Tiny SSD MobileNet V2
FPNLite 320

Mean AP 0.4448 0.5808 0.2975
Green container 0.6832 0.5925 0.4422
Yellow container 0.6292 0.8175 0.6605

Red container 0.6292 0.8861 0.6062
White container 0.5292 0.8967 0.5042
Black container 0.5042 0.8158 0.6396

Dark brown container 0.4002 0.7196 0.5867
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Overall, the results show that despite having a small dataset (Dataset F), the Average
Precision across the three lightweight models is generally high as the models achieved
more than 50% AP for the majority of the containers colours.

7. Conclusions

This work aims to improve the model performance by varying the train/valid/test
split composition and image resolution, and evaluate the average precision and detection
scores on different evaluation strategies. For the Hold-out dataset, the overall mean
average precision increases as the train/test split ratio increases. Compared with the
baseline EfficientDet-Lite2 algorithm, for Hold-out dataset, the mean average precision
(mAP) is improved greatly by 40% with Average Precision (AP) of more than 80% and best
detection scores of more than 93%. For K-Fold cross-validation for a small dataset with
batchsize of 16, the mAP increased by 6.29% compared to the baseline model. Therefore, we
conclude that using a training ratio of 80%, smaller batchsize, and lower image resolution
will allow the network to train better. As shown in the loss graph, Dataset A achieved
faster convergence than Dataset B. Coupled with the fact that the validation detection loss,
box loss, and class loss are all at their lowest points in the middle of the total epochs is
encouraging because it suggests that the model might be stopped sooner, leading to a
leaner solution. The results show that despite having a lean K-Fold dataset, the Average
Precision across the three lightweight models are generally high as the models achieved
more than 50% AP for the majority of the containers colours. It was deduced that YOLOv4
Tiny was better than EfficientDet-Lite2 and SSD MobileNet V2 FPN 320 as a lightweight
model, as a high value of precision was obtained while evaluating Dataset F.

For future works, we look at more precise container positioning. To locate the container
on location, a camera must be positioned in a high spot. The size of each container will
appear smaller as the camera’s height rises, lowering the object recognition system’s ability
to accurately identify objects. At the actual site, however, the size of the container grows
as the camera’s distance does, making recognition possible. We aim to create a machine
vision system that can distinguish between the different container sizes and colours under
conditions of varying illumination such as from morning to dawn. It is possible as well to
increase the dataset using modern techniques such as dataset generation by 3D modelling
software Blender 3.0 or Unity 2022.
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