Adaptive SLAM Methodology Based on Simulated Annealing Particle Swarm Optimization for AUV Navigation
Abstract
:1. Introduction
- To improve AUV navigation accuracy, the SAPSO-AUFastSLAM algorithm is proposed to enhance resampling while estimating time-varying measurement noise;
- The Sage–Husa (SH) based UPF algorithm is proposed to estimate time-varying measurement noise adaptively in SLAM for improving the filtering accuracy. Meanwhile, the SH-based UKF algorithm is proposed in SLAM to enhance mapping accuracy;
- The SAPSO-based resampling algorithm is proposed to optimize posterior particles. The random judgment mechanism is used to update feasible solutions iteratively, which makes particles disengage the local extreme values and achieves optimal global effects;
- The proposed SAPSO-AUFastSLAM algorithm was effectively verified in simulation and sea trials. Compared with traditional algorithms, the proposed algorithm has improved accuracy and stability.
2. AUV SLAM Model and Feature Extraction
2.1. The Review of AUV SLAM Model
2.2. The Fusion Feature Extraction Algorithm
2.2.1. Data Preprocessing Based on Threshold Segmentation
2.2.2. Motion Compensation Based on Coordinate Transformation
3. Innovative SAPSO-AUFastSLAM Algorithm
3.1. Overview of the Proposed Algorithm
3.1.1. Importance Sampling
3.1.2. Feature Estimation
3.1.3. Resampling
3.2. Adaptive UPF Algorithm Based on Sage Husa
3.3. Adaptive UKF Algorithm Based on Sage Husa
3.4. Optimal Resampling Based on Simulated Annealing Particle Swarm Optimization
Algorithm 1: Proposed SAPSO: 2-D. |
Initialize parameters: ,, Caiculate fitness: Calculate inertia weight: Update particles velocity: |
4. Experimental Results and Analysis
4.1. Simulation
4.2. Sea Trial
4.2.1. The Experiment at Nanjiang Wharf
4.2.2. The Experiment at Tuandao Bay
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SLAM | Simultaneous Localization and Mapping |
AUV | Autonomous Underwater Vehicle |
SAPSO-AUFastSLAM | Simulated Annealing Particle Swarm Optimization-Adaptive |
Unscented FastSLAM | |
SH | Sage–Husa |
UT | Unscented Transformation |
PF | Particle Filter |
UPF | Unscented Particle Filter |
KF | Kalman Filter |
UKF | Unscented Kalman Filter |
EKF | Extended Kalman Filter |
RBPF | Rao–Blackwell Particle Filter |
DR | Dead Reckoning |
GSA | Gravity Search Algorithm |
LSO | Lion Swarm Optimization |
INS | Inertial Navigation System |
DVL | Doppler Velocity Logging |
MSIS | Mechanical Scanning Imaging Sonar |
ASVSF | Adaptive Smoothing Variable Structure Filter |
MLE | Maximum Likelihood Estimation |
EM | Expectation–Maximization |
VB | Variational Bayesian |
RMSE | Root Mean Square Error |
IMU | Inertial Measurement Unit |
Appendix A. The Time Update Step in UPF
References
- Paull, L.; Saeedi, S.; Seto, M.; Li, H. AUV navigation and localization: A review. IEEE J. Ocean. Eng. 2013, 39, 131–149. [Google Scholar] [CrossRef]
- Wakita, N.; Hirokawa, K.; Ichikawa, T.; Yamauchi, Y. Development of autonomous underwater vehicle (AUV) for exploring deep sea marine mineral resources. Mitsubishi Heavy Ind. Tech. Rev. 2010, 47, 73–80. [Google Scholar]
- Liu, W.; Quijano, K.; Crawford, M.M. YOLOv5-Tassel: Detecting tassels in RGB UAV imagery with improved YOLOv5 based on transfer learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8085–8094. [Google Scholar] [CrossRef]
- Xia, X.; Meng, Z.; Han, X.; Li, H.; Tsukiji, T.; Xu, R.; Ma, J. Automated Driving Systems Data Acquisition and Processing Platform. arXiv 2022, arXiv:2211.13425. [Google Scholar] [CrossRef]
- Gao, L.; Xiong, L.; Xia, X.; Lu, Y.; Yu, Z.; Khajepour, A. Improved vehicle localization using on-board sensors and vehicle lateral velocity. IEEE Sens. J. 2022, 22, 6818–6831. [Google Scholar] [CrossRef]
- Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef]
- Bailey, T.; Durrant-Whyte, H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 2006, 13, 108–117. [Google Scholar] [CrossRef]
- Kukko, A.; Kaijaluoto, R.; Kaartinen, H.; Lehtola, V.V.; Jaakkola, A.; Hyyppä, J. Graph SLAM correction for single scanner MLS forest data under boreal forest canopy. ISPRS J. Photogramm. Remote Sens. 2017, 132, 199–209. [Google Scholar] [CrossRef]
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. [Google Scholar] [CrossRef]
- Pierzchała, M.; Giguère, P.; Astrup, R. Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Comput. Electron. Agric. 2018, 145, 217–225. [Google Scholar] [CrossRef]
- Paull, L.; Huang, G.; Seto, M.; Leonard, J.J. Communication-constrained multi-AUV cooperative SLAM. In Proceedings of the 2015 IEEE International Conference on Robotics and Auto mation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 509–516. [Google Scholar] [CrossRef]
- Ma, T.; Li, Y.; Wang, R.; Cong, Z.; Gong, Y. AUV robust bathymetric simultaneous localization and mapping. Ocean Eng. 2018, 166, 336–349. [Google Scholar] [CrossRef]
- Carrasco, P.L.N.; Bonin-Font, F.; Campos, M.M.; Codina, G.O. Stereo-vision graph-SLAM for robust navigation of the AUV SPARUS II. IFAC-PapersOnLine 2015, 48, 200–205. [Google Scholar] [CrossRef]
- Hargrave, P.J. A tutorial introduction to Kalman filtering. In Proceedings of the IEEE Colloquium on Kalman Filters: Introduction, Applications and Future Developments, London, UK, 21–21 February 1989; pp. 1/1–1/6. [Google Scholar]
- Xia, X.; Hashemi, E.; Xiong, L.; Khajepour, A. Autonomous Vehicle Kinematics and Dynamics Synthesis for Sideslip Angle Estimation Based on Consensus Kalman Filter. IEEE Trans. Control. Syst. Technol. 2022, 31, 179–192. [Google Scholar] [CrossRef]
- Xiong, L.; Xia, X.; Lu, Y.; Liu, W.; Gao, L.; Song, S.; Yu, Z. IMU-based automated vehicle body sideslip angle and attitude estimation aided by GNSS using parallel adaptive Kalman filters. IEEE Trans. Veh. Technol. 2020, 69, 10668–10680. [Google Scholar] [CrossRef]
- Liu, W.; Xia, X.; Xiong, L.; Lu, Y.; Gao, L.; Yu, Z. Automated vehicle sideslip angle estimation considering signal measurement characteristic. IEEE Sens. J. 2021, 21, 21675–21687. [Google Scholar] [CrossRef]
- Xia, X.; Xiong, L.; Huang, Y.; Lu, Y.; Gao, L.; Xu, N.; Yu, Z. Estimation on IMU yaw misalignment by fusing information of automotive onboard sensors. Mech. Syst. Signal Process. 2022, 162, 107993. [Google Scholar] [CrossRef]
- Rauniyar, S.; Bhalla, S.; Choi, D.; Kim, D. EKF-SLAM for Quadcopter Using Differential Flatness-Based LQR Control. Electronics 2023, 12, 1113. [Google Scholar] [CrossRef]
- Bailey, T.; Nieto, J.; Guivant, J.; Stevens, M.; Nebot, E. Consistency of the EKF-SLAM algorithm. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 3562–3568. [Google Scholar] [CrossRef]
- Huang, G.P.; Mourikis, A.I.; Roumeliotis, S.I. On the complexity and consistency of UKF-based SLAM. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 4401–4408. [Google Scholar] [CrossRef]
- Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. FastSLAM: A factored solution to the simultaneous localization and mapping problem. In Proceedings of the Eighteenth National Conference on Artificial Intelligence, Edmonton, AB, Canada, 28 July–1 August 2002; pp. 593–598. [Google Scholar]
- Thrun, S.; Montemerlo, M.; Koller, D.; Wegbreit, B.; Nieto, J.; Nebot, E. Fastslam: An efficient solution to the simultaneous localization and mapping problem with unknown data association. J. Mach. Learn. Res. 2004, 4, 380–407. [Google Scholar]
- Murphy, K.; Russell, S. Rao-Blackwellised particle filtering for dynamic Bayesian networks. Seq. Monte Carlo Methods Pract. 2001, 499–515. [Google Scholar] [CrossRef]
- Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. IJCAI 2003, 3, 1151–1156. [Google Scholar]
- Havangi, R.; Nekoui, M.A.; Taghirad, H.D.; Teshnehlab, M. An intelligent UFastSLAM with MCMC move step. Adv. Robot. 2013, 27, 311–324. [Google Scholar] [CrossRef]
- He, B.; Ying, L.; Zhang, S.; Feng, X.; Yan, T.; Nian, R.; Shen, Y. Autonomous navigation based on unscented-FastSLAM using particle swarm optimization for autonomous underwater vehicles. Measurement 2015, 71, 89–101. [Google Scholar] [CrossRef]
- Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef]
- Douc, R.; Cappé, O. Comparison of resampling schemes for particle filtering. In Proceedings of the ISPA 2005 4th International Symposium on Image and Signal Processing and Analysis, Zagreb, Croatia, 15–17 September 2005; pp. 64–69. [Google Scholar] [CrossRef]
- Hol, J.D.; Schon, T.B.; Gustafsson, F. On resampling algorithms for particle filters. In Proceedings of the 2006 IEEE Nonlinear Statistical Signal Processing Workshop, Cambridge, UK, 13–15 September 2006; pp. 79–82. [Google Scholar] [CrossRef]
- Lei, X.; Feng, B.; Wang, G.; Liu, W.; Yang, Y. A Novel FastSLAM Framework Based on 2D Lidar for Autonomous Mobile Robot. Electronics 2020, 9, 695. [Google Scholar] [CrossRef]
- Hua, J.; Cheng, M. Improved UFastSLAM Algorithm based on Particle Filter. In Proceedings of the 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 11–13 December 2020; pp. 1050–1055. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Zhai, N.; Chen, Z.; He, B. Research on UFastSLAM Algorithm Based on Gravity Search Algorithm. In Proceedings of the OCEANS 2022, Hampton Roads, VA, USA, 17–20 October 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Zhu, D.; Ma, Y.; Wang, M.; Yang, J.; Yin, Y.; Liu, S. LSO-FastSLAM: A new algorithm to improve the accuracy of localization and mapping for rescue robots. Sensors 2022, 22, 1297. [Google Scholar] [CrossRef]
- Ran, X.; Bian, H.; Zhang, G.; Sun, Y. Hierarchical Motion Planning of AUVs in Three Typical Marine Environments. Electronics 2021, 10, 292. [Google Scholar] [CrossRef]
- Tian, Y.; Suwoyo, H.; Wang, W.; Li, L. An asvsf-slam algorithm with time-varying noise statistics based on map creation and weighted exponent. Math. Probl. Eng. 2019, 2019, 2765731. [Google Scholar] [CrossRef]
- Tian, Y.; Suwoyo, H.; Wang, W.; Mbemba, D.; Li, L. An AEKF-SLAM algorithm with recursive noise statistic based on MLE and EM. J. Intell. Robot. Syst. 2020, 97, 339–355. [Google Scholar] [CrossRef]
- Mu, P.; Zhang, X.; Qin, P.; He, B. A Variational Bayesian-Based Simultaneous Localization and Mapping Method for Autonomous Underwater Vehicle Navigation. J. Mar. Sci. Eng. 2022, 10, 1563. [Google Scholar] [CrossRef]
- Yang, L.; Li, C.; Song, W.; Li, Z. Innovation-Superposed Simultaneous Localization and Mapping of Mobile Robots Based on Limited Augmentation. Electronics 2023, 12, 587. [Google Scholar] [CrossRef]
- He, B.; Zhang, H.; Li, C.; Zhang, S.; Liang, Y.; Yan, T. Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing. Sensors 2011, 11, 10958–10980. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Sakthivel, R.; Chung, W.K. Unscented FastSLAM: A robust and efficient solution to the SLAM problem. IEEE Trans. Robot. 2008, 24, 808–820. [Google Scholar] [CrossRef]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Crisan, D.; Obanubi, O. Particle filters with random resampling times. Stoch. Process. Their Appl. 2012, 122, 1332–1368. [Google Scholar] [CrossRef]
- Liu, D.; Duan, J.; Shi, H. A strong tracking square root central difference FastSLAM for unmanned intelligent vehicle with adaptive partial systematic resampling. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3110–3120. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Dinavahi, V. Robust forecasting-aided state estimation for power system against uncertainties. IEEE Trans. Power Syst. 2019, 35, 691–702. [Google Scholar] [CrossRef]
- Rui, S. A modified adaptive particle swarm optimization algorithm. In Proceedings of the 2016 12th International Conference on Computational Intelligence and Security (CIS), Wuxi, China, 16–19 December 2016; pp. 511–513. [Google Scholar] [CrossRef]
- Ji, C.; Chen, Q.; Song, C. Improved particle swarm optimization geomagnetic matching algorithm based on simulated annealing. IEEE Access 2020, 8, 226064–226073. [Google Scholar] [CrossRef]
- Xu, N.; Wang, L.; Wu, T.; Yao, Z. An innovative PSO-ICCP matching algorithm for geomagnetic navigation. Measurement 2022, 193, 110958. [Google Scholar] [CrossRef]
- Ingber, L. Simulated annealing: Practice versus theory. Math. Comput. Model. 1993, 18, 29–57. [Google Scholar] [CrossRef]
Sampling Points (Bins) | Scanning Distance (m) | Sampling Interval (cm) |
---|---|---|
200 | 20 | 10 |
Parameters | Value | Meaning |
---|---|---|
0 | observation noise mean | |
observation noise covariance | ||
Q | process noise covariance | |
Particles | 20 | number of particles |
Temperature | 10 | annealing temperature |
Parameters | FastSLAM | UFastSLAM | PSO-UFastSLAM | SAPSO-AUFastSLAM | |
---|---|---|---|---|---|
Simulation case 1 | RMSE(m) | ||||
Accuracy(%) | |||||
Run time(s) | |||||
Simulation case 2 | RMSE(m) | ||||
Accuracy(%) | |||||
Run time(s) |
Variables | Parameters | FastSLAM | UFastSLAM | PSO-UFastSLAM | SAPSO-AUFastSLAM |
---|---|---|---|---|---|
P-RMSE (m) | |||||
F-RMSE (m) | |||||
P-RMSE (m) | |||||
F-RMSE (m) | |||||
P-RMSE (m) | |||||
F-RMSE (m) | |||||
P-RMSE (m) | |||||
F-RMSE (m) | |||||
P-RMSE (m) | |||||
F-RMSE (m) | |||||
Particle Number | Parameters | FastSLAM | UFastSLAM | PSO-UFastSLAM | SAPSO-AUFastSLAM |
---|---|---|---|---|---|
10 | RMSE (m) | 6.9545 | 5.7820 | 3.7796 | 2.8203 |
Time (s) | 57.795506 | 63.269216 | 73.037585 | 84.306541 | |
20 | RMSE (m) | 6.8969 | 5.9955 | 3.7670 | 2.7215 |
Time (s) | 67.052265 | 73.249120 | 82.191906 | 93.437592 | |
30 | RMSE (m) | 6.3205 | 5.9082 | 3.6904 | 2.6044 |
Time (s) | 90.446690 | 97.460251 | 98.155129 | 100.351062 | |
40 | RMSE (m) | 6.2764 | 5.2701 | 3.4937 | 2.5653 |
Time (s) | 127.754483 | 128.262471 | 130.007165 | 136.641434 | |
50 | RMSE (m) | 6.2242 | 5.2555 | 3.4645 | 2.4673 |
Time (s) | 136.921214 | 137.700600 | 140.136590 | 145.603873 | |
60 | RMSE (m) | 6.1038 | 5.2529 | 3.3926 | 2.3454 |
Time (s) | 145.610535 | 147.274797 | 155.407132 | 165.645236 | |
70 | RMSE (m) | 5.9445 | 4.8277 | 2.9849 | 2.2050 |
Time (s) | 147.782083 | 152.052470 | 157.941029 | 177.088356 | |
80 | RMSE (m) | 5.6225 | 4.8889 | 2.9458 | 1.8203 |
Time (s) | 169.021821 | 173.807379 | 175.848929 | 182.919457 | |
90 | RMSE (m) | 5.4765 | 4.8415 | 2.9294 | 1.8493 |
Time (s) | 179.571131 | 179.720729 | 189.834099 | 198.945290 | |
100 | RMSE (m) | 5.4704 | 4.7750 | 2.0405 | 1.8415 |
Time (s) | 191.781751 | 191.360097 | 194.632039 | 203.538832 |
Sensors | Brand | Precision |
---|---|---|
IMU | Spatial 1750 | bias stability: ≤0.1/h (maximum), ≤0.05/h (average) |
DVL | Explorer DVL | precision: %, cm/s |
GPS | u-blox LEA-M8T | Horizontal position accuracy: m, Range resolution: mm |
MSIS | Tritech Micron | Mechanical resolution: , , , |
Sensors | Brand | Precision |
---|---|---|
INS | HN100 | bias stability: ≤/h |
DVL | Pathfinder DVL | precision: , cm/s |
GPS | u-blox LEA-M8T | Horizontal position accuracy: m, Range resolution: mm |
MSIS | Tritech Micron | Mechanical resolution: , , , |
Datasets | Parameters | FastSLAM | UFastSLAM | PSO-UFastSLAM | SAPSO-AUFastSLAM |
---|---|---|---|---|---|
Sea trial 1 | RMSE (m) | 5.653 | 4.759 | 4.720 | 4.322 |
ERMSE (m) | 4.900 | 4.442 | 4.376 | 3.991 | |
NRMSE (m) | 2.819 | 1.708 | 1.768 | 1.659 | |
Accuracy (%) | 2.230 | 1.877 | 1.862 | 1.705 | |
Step time (s) | 0.0158 | 0.0177 | 0.0179 | 0.0233 | |
Total time (s) | 44.56 | 50.04 | 50.58 | 65.75 | |
Sea trial 2 | RMSE (m) | 4.539 | 4.445 | 4.423 | 4.310 |
ERMSE (m) | 1.655 | 1.475 | 1.495 | 1.397 | |
NRMSE (m) | 4.227 | 4.193 | 4.162 | 4.077 | |
Accuracy (%) | 0.965 | 0.944 | 0.940 | 0.916 | |
Step time (s) | 0.0149 | 0.0191 | 0.0202 | 0.0232 | |
Total time (s) | 94.30 | 120.56 | 127.66 | 146.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Wang, M.; Zhang, X.; Qin, P.; He, B. Adaptive SLAM Methodology Based on Simulated Annealing Particle Swarm Optimization for AUV Navigation. Electronics 2023, 12, 2372. https://doi.org/10.3390/electronics12112372
Zhou L, Wang M, Zhang X, Qin P, He B. Adaptive SLAM Methodology Based on Simulated Annealing Particle Swarm Optimization for AUV Navigation. Electronics. 2023; 12(11):2372. https://doi.org/10.3390/electronics12112372
Chicago/Turabian StyleZhou, Liqian, Meng Wang, Xin Zhang, Ping Qin, and Bo He. 2023. "Adaptive SLAM Methodology Based on Simulated Annealing Particle Swarm Optimization for AUV Navigation" Electronics 12, no. 11: 2372. https://doi.org/10.3390/electronics12112372
APA StyleZhou, L., Wang, M., Zhang, X., Qin, P., & He, B. (2023). Adaptive SLAM Methodology Based on Simulated Annealing Particle Swarm Optimization for AUV Navigation. Electronics, 12(11), 2372. https://doi.org/10.3390/electronics12112372