A Shallow Pooled Weighted Feature Enhancement Network for Small-Sized Pine Wilt Diseased Tree Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. UAV Pine Forest Image Acquisition
2.2. Pine Wilt Diseased Tree Dataset
2.3. Method
2.3.1. Shallow Pooled Weighted Feature Enhancement Network (SPW-FEN)
2.3.2. Pooled Weighted Channel Attention (PWCA) Module
2.3.3. Small Target Expansion (STE) Data Enhancement Method
3. Results
3.1. Experimental Environment and Parameter Setting
3.2. Evaluation Metric
3.3. Comparative Experimental Results
3.4. Ablation Study
3.4.1. Small-Scale Diseased Tree Shunt Prediction Output
3.4.2. Recalibration of Anchor Boxes
3.4.3. Pooled Weighted Channel Attenuation (PWCA) Module
3.4.4. Comprehensive Experimental Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, R.; Luo, Y.; Li, H.; Yang, L.; Huang, H.; Yu, L.; Ren, L. Three-dimensional convolutional neural network model for early detection of pine wilt disease using UAV-based hyperspectral images. Remote Sens. 2021, 13, 4065. [Google Scholar] [CrossRef]
- Hu, L.-J.; Wu, X.-Q.; Li, H.-Y.; Zhao, Q.; Wang, Y.-C.; Ye, J.-R. An effector, BxSapB1, induces cell death and contributes to virulence in the pine wood nematode Bursaphelenchus xylophilus. Mol. Plant-Microbe Interact. 2019, 32, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, H.; Ding, X.; Wang, L.; Wang, X.; Chen, F. The detection of pine wilt disease: A literature review. Int. J. Mol. Sci. 2022, 23, 10797. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Tian, T.; Yin, J. A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use of agricultural monitoring in China. Remote Sens. 2021, 13, 1221. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Yu, J.; Kumar, M.; Mao, Y. Remote sensing image mosaic technology based on the SURF algorithm in agriculture. EURASIP J. Image Video Process. 2018, 2018, 85. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Chen, P.; Dan, Z.; Sun, S.; Wan, J.; Li, W. Scale-free heterogeneous cycleGAN for defogging from a single image for autonomous driving in fog. Neural Comput. Appl. 2023, 35, 3737–3751. [Google Scholar] [CrossRef]
- Wan, J.; Xi, H.; Zhou, J.; Lai, Z.; Pedrycz, W.; Wang, X.; Sun, H. Robust and Precise Facial Landmark Detection by Self-Calibrated Pose Attention Network. IEEE Trans. Cybern. 2021, 53, 3546–3560. [Google Scholar] [CrossRef]
- Wan, J.; Liu, J.; Zhou, J.; Lai, Z.; Shen, L.; Sun, H.; Xiong, P.; Min, W. Precise Facial Landmark Detection by Reference Heatmap Transformer. IEEE Trans. Image Process 2023, 32, 1966–1977. [Google Scholar] [CrossRef]
- Lan, M.; Zhang, J.; Wang, Z. Coherence-aware context aggregator for fast video object segmentation. Pattern Recognit. 2023, 136, 109214. [Google Scholar] [CrossRef]
- Osco, L.P.; Junior, J.M.; Ramos, A.P.M.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.; Pistori, H.; Gonçalves, W.N.; Li, J. A review of deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102456. [Google Scholar] [CrossRef]
- Xu, X.; Tao, H.; Li, C.; Cheng, C.; Guo, H.; Zhou, J. Detection and location of pine wilt disease induced dead pine trees based on Faster R-CNN. Trans. Chin. Soc. Agric. Mach. 2020, 51, 228–236. [Google Scholar]
- Li, F.; Shen, W.; Fang, J.; Sun, F.; Xu, L.; Liu, Z. LAN, Study on the Detection Method for Pinewood Wilt Disease Tree Based on YOLOv3-CIoU. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2021, 52, 224–233. [Google Scholar]
- Qin, B.; Sun, F.; Shen, W.; Dong, B.; Ma, S.; Huo, X.; Lan, P. Deep Learning-Based Pine Nematode Trees’ Identification Using Multispectral and Visible UAV Imagery. Drones 2023, 7, 183. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. arXiv 2014, arXiv:1405.0312. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. In Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 10–13 December 2016; pp. 770–778. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE Transactions on Pattern Analysis & Machine Intelligence, Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- Li, H.; Qiu, K.; Chen, L.; Mei, X.; Hong, L.; Tao, C. SCAttNet: Semantic segmentation network with spatial and channel attention mechanism for high-resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 905–909. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, B.; Xu, N. SAR ship detection in complex background based on multi-feature fusion and non-local channel attention mechanism. Int. J. Remote Sens. 2021, 42, 7519–7550. [Google Scholar] [CrossRef]
- Wei, D.; Du, Y.; Du, L.; Li, L. Target detection network for sar images based on semi-supervised learning and attention mechanism. Remote Sens. 2021, 13, 2686. [Google Scholar] [CrossRef]
- Cheng, G.; Si, Y.; Hong, H.; Yao, X.; Guo, L. Cross-scale feature fusion for object detection in optical remote sensing images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 431–435. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot Multibox Detector; European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 1854–1862. [Google Scholar]
- Zhang, S.; Chi, C.; Yao, Y.; Lei, Z.; Li, S.Z. Bridging the Gap between Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seoul, Republic of Korea, 16–18 June 2020; pp. 9759–9768. [Google Scholar]
- Chen, Q.; Wang, Y.; Yang, T.; Zhang, X.; Cheng, J.; Sun, J. You Only Look One-level Feature. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13039–13048. [Google Scholar]
- Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Shia, J. FoveaBox: Beyond Anchor-based Object Detector. IEEE Trans. Image Process. 2020, 29, 7389–7398. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Gen, Y.; Ke, Z.; Li, Q.; Cheng, M.; Nee, W. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11534–11542. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Berlin/Heidelberg, Germany; pp. 3–19. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Sun, H.; Li, B.; Dan, Z.; Hu, W.; Du, B.; Yang, W.; Wan, J. Multi-level Feature Interaction and Efficient Non-Local Information Enhanced Channel Attention for image dehazing. Neural Netw. 2023, 163, 10–27. [Google Scholar] [CrossRef]
- Wen, F.; Gui, G.; Gacanin, H.; Sari, H. Compressive sampling framework for 2D-DOA and polarization estimation in mmWave polarized massive MIMO Systems. IEEE Trans. Wirel. Commun. 2023, 22, 3071–3083. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Du, B. Active Learning with Co-Auxiliary Learning and Multi-level Diversity for Image Classification. IEEE Trans. Circuits Syst. Video Technol. 2023. [Google Scholar] [CrossRef]
- Wang, Z.; Du, B.; Tu, W.; Zhang, L.; Tao, D. Incorporating Distribution Matching into Uncertainty for Multiple Kernel Active Learning. IEEE Trans. Knowl. Data Eng. 2021, 33, 128–142. [Google Scholar] [CrossRef]
Parameters | Attribute |
---|---|
Body material | carbon fiber, glass fiber, Kevlar, PVC, etc. |
Maximum take-off weight | 13.5 kg |
Maximum payload | 3 kg (standard load: 1.2 kg) |
Wing area | about 52 dm2 |
Wing load | about 240 g/dm2 @ 12.5 kg |
Standard cruising speed | 19 m/s @ 12.5 kg |
Maximum cruising speed | 93.6 km/h |
Standard battery configuration | 45.6 V |
Stall speed | 15.5 m/s @ 12.5 kg |
Minimum circling radius | 120 m @ 19 m/s |
Fixed-wing maximum thrust-to-weight ratio | 0.6 |
Dataset | Pictures (Sicktree) | Pictures (Notree) | Small Targets | Medium Targets | Large Targets |
---|---|---|---|---|---|
Training Set | 2648 | 1000 | 727 | 4239 | 521 |
Validation Set | 295 | 0 | 64 | 456 | 50 |
Test Set | 328 | 0 | 68 | 538 | 63 |
Name | Version Number/Parameter |
---|---|
GPU | Nvidia GeForce GTX 3090 GPU |
Server memory | 64 G |
Operating system | Ubuntu 18.04 |
Deep learning framework | Pytorch 1.8.0 |
Epoch | 120 |
Initial learning rate | 0.0001 |
Batch-size | 4 |
Momentum setting | 0.9 |
Regularization coefficient | 0.0001 |
Network Model (Year) | Basic Network | Recall | AP |
---|---|---|---|
Faster-RCNN (NeurIPS2015) | ResNet50 | 83.3 | 75.3 |
SSD (ECCV2016) | VGG16 | 80.4 | 73.7 |
YOLOv3 (CVPR2018) | DarkNet53 | 72.9 | 70.1 |
FoveaBox (TIP2020) | ResNet50 | 82.4 | 77.2 |
ATSS (CVPR2020) | ResNet50 | 80.2 | 78.3 |
YOLOF (CVPR2021) | ResNet50 | 81.5 | 78.0 |
YOLOv6 (arXiv2022) | EfficientRep | 80.5 | 73.6 |
Ours | ResNet50 | 86.9 | 79.1 |
Experiment | P2 | P3 | Recall | AP |
---|---|---|---|---|
Original settings (base network) | √ | 82.4 | 77.1 | |
Split prediction output | √ | √ | 83.2 | 78.0 |
Experiment | P2 | P3 | P4 | P5 | P6 | P7 | Recall | AP |
---|---|---|---|---|---|---|---|---|
0 (Base network) | 32 | 64 | 128 | 256 | 512 | 82.4 | 77.1 | |
1 | 8 | 32 | 64 | 128 | 256 | 512 | 83.4 | 77.4 |
2 | 12 | 32 | 64 | 128 | 256 | 512 | 83.6 | 77.8 |
3 | 16 | 32 | 64 | 128 | 256 | 512 | 83.2 | 78.0 |
4 | 8 | 36 | 78 | 140 | 85.2 | 77.5 | ||
5 | 12 | 36 | 78 | 140 | 85.1 | 78.1 | ||
6 (Ours) | 16 | 36 | 78 | 140 | 85.4 | 78.4 |
Experiment | λ | MLP (Dimension Compression) | Conv 1 × 1 (1D Convolution) | AP | |
---|---|---|---|---|---|
Base network | 77.1 | ||||
0 (ECA) | 0 | 1 | √ | 77.8 | |
1 | 0 | 1 | √ | 77.3 | |
2 | 1 | 0 | √ | 77.9 | |
3 (CBAM) | 1 | 1 | √ | 77.4 | |
4 | 1 | 1 | √ | 77.6 | |
5 | 0.5 | 0.5 | √ | 77.5 | |
6 | 0.5 | 1.5 | √ | 77.3 | |
7 (PWCA) | 1.5 | 0.5 | √ | 78.2 |
Number | Anchor Setting | PWCA | STE | Recall | AP |
---|---|---|---|---|---|
1 | 82.4 | 77.1 | |||
2 | √ | 85.4 | 78.4 | ||
3 | √ | 84.3 | 78.2 | ||
4 | √ | √ | 86.0 | 78.8 | |
5 | √ | 85.5 | 77.7 | ||
6 (ours) | √ | √ | √ | 86.9 | 79.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Ye, S.; Zheng, Y.; Jiang, Y.; Peng, Y.; Sheng, Y.; Huang, C.; Sun, H. A Shallow Pooled Weighted Feature Enhancement Network for Small-Sized Pine Wilt Diseased Tree Detection. Electronics 2023, 12, 2463. https://doi.org/10.3390/electronics12112463
Yu M, Ye S, Zheng Y, Jiang Y, Peng Y, Sheng Y, Huang C, Sun H. A Shallow Pooled Weighted Feature Enhancement Network for Small-Sized Pine Wilt Diseased Tree Detection. Electronics. 2023; 12(11):2463. https://doi.org/10.3390/electronics12112463
Chicago/Turabian StyleYu, Mei, Sha Ye, Yuelin Zheng, Yanjing Jiang, Yisheng Peng, Yuyang Sheng, Chongjing Huang, and Hang Sun. 2023. "A Shallow Pooled Weighted Feature Enhancement Network for Small-Sized Pine Wilt Diseased Tree Detection" Electronics 12, no. 11: 2463. https://doi.org/10.3390/electronics12112463
APA StyleYu, M., Ye, S., Zheng, Y., Jiang, Y., Peng, Y., Sheng, Y., Huang, C., & Sun, H. (2023). A Shallow Pooled Weighted Feature Enhancement Network for Small-Sized Pine Wilt Diseased Tree Detection. Electronics, 12(11), 2463. https://doi.org/10.3390/electronics12112463