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Abstract: Dataset bias is a significant obstacle that negatively affects image classification performance,
especially in few-shot learning, where datasets have limited samples per class. However, few studies
have focused on this issue. To address this, we propose a bias prediction network that recovers
biases such as color from the extracted features of image data, resulting in performance improvement
in few-shot image classification. If the network can easily recover the bias, the extracted features
may contain the bias. Therefore, the whole framework is trained to extract features that are difficult
for the bias prediction network to recover. We evaluate our method by integrating it with several
existing few-shot learning models across multiple benchmark datasets. The results show that the
proposed network can improve the performance in different scenarios. The proposed approach
effectively reduces the negative effect of the dataset bias, resulting in the performance improvements
in few-shot image classification. The proposed bias prediction model is easily compatible with other
few-shot learning models, and applicable to various real-world applications where biased samples
are prevalent, such as VR/AR systems and computer vision applications.

Keywords: few-shot learning; bias mitigation; image classification

1. Introduction

Few-shot learning, which trains a model with only a few training samples, is a chal-
lenging area of machine learning. Numerous models have been proposed for few-shot
learning [1–14]. Generally, in few-shot learning, it is essential to quickly adapt to new
classes because there are a large number of classes to classify. To fulfill this requirement,
many recent works have utilized meta-learning as an effective technique for training and
classifying samples in few-shot learning [4–6,11,15].

Few-shot learning is an important technique for machine learning systems based on
VR (Virtual Reality) and AR (Augmented Reality), as these systems often rely on limited
or incomplete datasets. In this respect, few-shot learning methods allow for the rapid
adaptation of the system to new classes or objects, without requiring large amounts of
labeled data. However, one of the major challenges in few-shot learning is the problem of
dataset bias. This occurs when the distribution of the data used for training the model is
not representative of the real-world distribution of the data that the model will be applied
to. As a result, the model may perform poorly on unseen data. This is a particularly acute
problem in VR/AR applications, where the virtual environment may be vastly different
from the real-world environment, leading to a significant mismatch between the training
and testing data. Addressing this bias is critical to the success of few-shot learning in
VR/AR applications, and requires careful selection and curation of training data, as well
as robust evaluation metrics to ensure that the system is performing well on a wide range
of inputs.

Few-shot image classification is a subtopic of few-shot learning. In this type of
classification, only a few classes are provided for training, and each class has only a
few image samples. For a classification method to be practical, it needs to be able to classify
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many classes. Therefore, a few classes are randomly selected from a given dataset for each
task, and a few images are randomly chosen from each class. The selection of classes and
images is changed at the start of each task. At the beginning of the training stage, the
classification performance of the method is expected to be poor due to the small amount of
data. Nevertheless, as the training progresses, the performance of the method improves
gradually. This indicates that the method is capable of adapting to new classes and learning
new representations effectively, despite the limited amount of data available for training.

Similar to few-shot learning in VR/AR applications, dataset bias is a significant
obstacle that can degrade the performance in few-shot image classification. Dataset bias
occurs when some attributes of the training samples are not evenly distributed, leading the
model to learn these features in a biased manner. To illustrate this, we consider the example
of dataset bias in Figure 1, which contains images of faces of people with varying ages.
The images in the figure are from the Adience dataset [16]. Suppose the task is to classify
these images into two classes, young and old people, based on their facial features. Skin
color is one of the physical characteristics that could affect this classification. If the model is
trained using images of only white-skinned young people (represented as white circles) and
black-skinned old people (represented as black circles), both the solid and dotted classifiers
in the figure are adequate to solve the problem. However, if the test samples comprise only
black-skinned young people (represented as black squares) and white-skinned old people
(represented as white squares), the dotted classifier would be incorrect, while the solid line
would be correct.

Figure 1. An illustration of the impact of dataset bias on few-shot image classification. It depicts a
feature space with images of faces of people with varying ages. White and black circles indicate the
training samples, and white and black squares indicate the test samples. A model is trained to classify
whether each face is young or old. The solid line represents the desirable classifier. It indicates that
the classification performance will be poor if the model is trained to classify according to the dotted
line, which is biased.

Numerous studies have been proposed to address class imbalance or bias mitigation
in image classification tasks [17–19]. Traditional approaches, including those proposed in
studies [20,21], have primarily targeted problems related to data bias. There are also several
studies that proposed few-shot image classification models [22–24]. However, to the best
of our knowledge, there are only a handful of studies that have concurrently addressed
dataset bias within the framework of few-shot image classification. Our study presents
a novel approach by proposing an add-on network structure, which incorporates a bias
prediction (BP) network into existing few-shot learning models. The primary objective of
this integration is to significantly enhance the performance of these models by effectively
mitigating biases. Moreover, the proposed architecture allows for seamless integration with
various existing few-shot learning models, making it flexible for handling various issues in
few-shot learning tasks.
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In supervised learning, having a larger number of training samples typically results
in lower dataset bias. However, in few-shot image classification, where only five or
fewer training samples are available per task, the likelihood of dataset bias in the training
set significantly increases. This can lead to the model learning to incorporate the bias
as important information, which can negatively impact its performance on new data.
To alleviate this issue, the model requires an additional mechanism that can facilitate
embedding of features that exclude the bias. To address this, we propose a bias prediction
network, focusing particularly on color bias, as illustrated in Figure 1. Our approach can
be extended to other types of bias that can be represented as predictive targets. We train
the bias prediction network to recover the bias of the raw image, such as color, from the
embedded features. If the bias prediction network is able to almost fully recover the color
bias, the embedded features are assumed to be highly dependent on the color components
of the raw samples, indicating the presence of color bias in the features. Conversely, if
the model is trained to embed features that are difficult for the bias prediction network
to recover from, the bias in the embedded features can be reduced. This can result in a
performance improvement of few-shot image classification. It implies that incorporating
the bias prediction network into few-shot learning task can contribute to a performance
improvement in various real-world applications where biased datasets are prevalent,
including VR/AR systems and computer vision applications. This approach will not only
help improve model performance but will also ensure that the models are fair and unbiased
in their decision making, providing more reliable and trustworthy results.

The major contributions of this study are summarized as follows:

• We present a novel approach for few-shot image classification that utilizes adversarial
learning to train a bias prediction network. Since only a few samples are available for
each class, our approach accounts for the presence of color bias in each label, and aims
to minimize its impact on classification.

• The proposed network is compatible with other models and can be easily integrated
with them.

• Our experiments demonstrate that incorporating the bias prediction network into
few-shot learning model improves the performance, indicating the potential of our
proposed approach to enhance other few-shot learning tasks across various domains.

2. Related Works
2.1. Few-Shot Learning

Few-shot learning (FSL) is a challenging research area that focuses on training models
to learn new concepts or classes from only a few examples. One of the popular topics of
FSL is few-shot image classification (FSIC), which classify images using FSL methods.

Generally, FSIC is accomplished through meta-learning. The FSIC model is trained
using a chain of training tasks, with each task containing only a few data samples. The
FSIC problem is known as N-way K-shot problem, where N represents the number of
classes (labels), and K represents the number of data samples from each class. Each training
task consists of a support set and a query set. The support set is used to learn to classify
accurately and is formed by randomly selecting N classes and K data samples from each
class, resulting in an N×K support set. In addition, to form the query set, some data points
are randomly selected from the N classes, but none of these points should be identical to
any data in the support set. The query set is then used to evaluate the performance of the
model on the task.

During the training process, the FSIC model extracts features from the support set and
generates classifiers. The model evaluates its performance on the query set and updates its
parameters accordingly. In the next task, the model randomly selects N new classes, and
the evaluation and updating process is repeated. Finally, the model is tested on data from
classes that were not included in the training set. Despite not having learned these new
classes before, the model can accurately classify the data.
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The FSIC models can be categorized into two groups: distance-based methods and
graph-based methods. Distance-based methods compare two feature vectors using metrics
such as the L1 distance. One example is the Siamese network [1], which extracts feature
vectors from pairs of images randomly selected from the support set and then compares
them using a trainable L1 distance. On the other hand, matching networks [25] learn
the distance function between the support vectors and the query vector. Prototypical
networks [2] embed images to extract feature vectors and calculate the prototype vector
for each class. Then, when a feature vector is extracted from a query image, the image is
classified as belonging to the class whose prototype vector is the closest.

Graph-based methods, such as the Graph Neural Network (GNN) model [26], repre-
sent each image as a node, with edges connecting nodes based on the similarities between
their corresponding feature vectors. The edge weights are employed to compute the
weighted average vector of the neighboring nodes along with their respective features. This
weighted average vector is then aggregated with the node feature vector. EGNN [27] also
utilizes the GNN architectures, where each edge between two nodes has the value of the
similarity between the two nodes, and predicts whether the two images belong to the same
class. Recently, methods focusing on classifiers have also been studied. MetaOptNet [6]
utilizes linear classifiers trained using a linear support vector machine (SVM).

2.2. Bias Prediction

Dataset bias refers to a situation where the data are not a true representation of the real-
world situation or phenomenon that the model is intended to learn from, which can lead
to biased predictions or incorrect inferences. Dataset bias can occur due to many reasons,
such as the way the data was collected, the characteristics of the study population, or the
limitations of the measurement tools. For example, a facial analysis dataset that is largely
composed of lighter-skinned subjects may cause errors when analyzing darker-skinned
subjects [28]. It is important to identify and minimize dataset bias to ensure that machine
learning models are fair, accurate, and reliable.

Bias prediction is a method used to predict bias in a dataset and mitigate the impact
of bias in a dataset. One approach to bias prediction utilized generative adversarial net-
works [29], as demonstrated in a previous study [30]. If dataset bias exists, the labels can be
predicted based on the biased samples. This means that the mutual information between
the bias of the training samples and labels will be high, indicating that the corresponding
labels are closely related to the dataset bias. For instance, if the dataset bias is a biased color
distribution (e.g., human face skins in samples are all white or black), we can calculate
the entropy of the embedded features from the feature embedding networks. If the bias
prediction results reveal a clear color distribution of the training samples, the entropy will
be low. Conversely, if a clear color distribution cannot be found, the entropy will be high.
Therefore, the networks are trained to maximize entropy resulting in reducing the effects of
color bias. Another approach, Just Train Twice (JTT) [20], is also a straightforward method
that mitigates the dataset bias. The algorithm of JTT consists of two stages: identification
and upweighting. In the first stage, the framework collects misclassified data from its
identification model and makes an error set. Then, in the second stage, the framework up-
weights the error set and trains the final model using the training data with the upweighted
error set. Data augmentation could be a solution for dataset bias. The method proposed
in [21] attempts to weaken the correlations among two or more attributes. For example,
in the human face dataset, a person wearing a hat tends to also wear glasses. Thus, the
method generates images with persons only wearing either a hat or glasses. In this way,
the dataset bias in the attributes can be mitigated.

Overall, the few-shot image classification model is able to classify unseen classes,
making it beneficial in many practical scenarios where acquiring a large amount of labeled
data is not feasible. However, the common issue of dataset bias is required to be addressed
to ensure generalization to diverse data domains. Our approach aims to improve the
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performance of few-shot classification tasks, despite the presence of biased samples in
the dataset.

3. Algorithm
3.1. The Bias Prediction Network

Consider a given training set X = {xi, yi}N
i=1, where xi ∈ Rd represents the i-th image

in the set, and yi ∈ Y is the corresponding label associated with the image. Few-shot image
classification models typically consist of two deep neural networks: a feature embedding
network and a classifier. The feature embedding network, denoted as φ f extracts features
from the raw image. The classifier, denoted as φc, takes the extracted features as input and
outputs the classification result. The output of the feature embedding network for a raw
image data x is denoted as φ f (x). The classification result can be expressed as φc

(
φ f (x)

)
.

Here, we detail the incorporation of our novel bias prediction network into the orig-
inal networks φ f and φc, as well as its role within the overall model. We note that the
original networks φ f and φc represent the few-shot image classification model. The overall
architecture is illustrated in Figure 2, and the pseudo code is described in Algorithm 1.
Our proposed bias prediction network, denoted as φb, is designed to take the embedded
features generated by φ f as input. The output from the bias prediction network, φb

(
φ f (x)

)
,

is subsequently passed through a softmax function. We define the output before the softmax
function as Z, and the output after the softmax as σ(Z) = σ

(
φb

(
φ f (x)

))
, where σ signifies

the softmax function.

Algorithm 1: Networks optimization with the bias prediction network

Input: Training set X = {(xi, yi)} for i = 1 to N, with the i-th image xi ∈ Rd and
the corresponding label yi ∈ Y

Output: Optimized weights of the feature extraction network φ f , the classification
network φc, and the bias prediction networkφb

1 for epoch = 1 to E do
2 for each (xi, yi) in X do
3 Extract features from xi: φ f (xi)

4 Calculate classification loss from the classifier φc

(
φ f (x)

)
: Lclass

5 Output the bias prediction network result: Z = φb(φ f (xi))

6 Calculate the total loss using Equation (1): Ltotal ← Lclass − λH(σ(Z))
7 Update φ f and φc by minimizing Ltotal

8 Extract the true color labels from xi: C
9 Calculate the bias prediction loss using Equation (2): Lbias ← H(C, Z)

10 Update φb by minimizing Lbias

We are particularly focused on color bias and prioritize the independence between
the color distribution of the input and the corresponding features. Therefore, the bias
prediction network is designed to evaluate the dependency between the color distribution
and the features and this evaluation is achieved by computing cross-entropy between
the color distribution and the output of the bias prediction network, which is described
in Section 3.3. If the cross-entropy is low, the distribution and the output are correlated,
which means that the distribution and the features are dependent. On the other hand,
if the cross-entropy is high, it can be assumed that the distribution and the features are
barely dependent.

Although we utilize the bias prediction network architecture proposed in [30], we
specifically target color bias within the context of few-shot image classification. Our
network predicts color bias and is designed to be compatible with various existing few-shot
image classification models. This aligns with our belief that color distribution in a dataset,
including attributes such as skin or hair color, represents a prevalent form of dataset bias.
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In scenarios where the attribute we aim to classify has minimal connection with colors,
the features extracted by φ f show no correlation with colors. As such, our bias prediction
network is tasked with not only predicting but also alleviating this color bias. Furthermore,
our proposed network is compatible with various existing few-shot image classification
models, allowing for broad applicability.

The algorithm introduces two main loss functions: the total loss Ltotal and the bias
prediction loss Lbias. The classification loss, denoted as Lclass, is computed from the
classifier φc

(
φ f (x)

)
, which signifies the result of few-shot image classification and is used

to compute the total loss Ltotal . First, we calculate Ltotal and update the original model
(φ f and φc). Subsequently, we calculate Lbias and update φb. These loss functions are
interactively updated during the training procedure.

Figure 2. The overall architecture comprises a feature embedding network φ f , a classification network
φc, and a bias prediction network φb followed by φ f . We note that φ f represents a CNN architecture
and the features embedded by φ f are fed as an input to the bias prediction network, which outputs
the bias prediction result. Based on the result, the bias prediction loss Lbias is obtained by computing
the cross-entropy between the resized raw image and the bias prediction result. Meanwhile, the
classification loss Lclass is calculated by the original model and is used to compute the total loss Ltotal .
The image samples used in this architecture are from the Adience dataset.

3.2. The Total Loss

The total loss function is defined as:

Ltotal = Lclass − λH(σ(Z)), (1)

where Lclass is the classification loss, H(·) is the entropy function, and λ is the hyperparam-
eter for entropy regularization. We note that the classification loss, Lclass, is pre-defined by
the original few-shot classification model and is typically represented as a cross-entropy
function. The goal of this loss function is to encourage the feature embedding network φ f
to generate features that are less dependent on the color distribution of the input image.
Specifically, the output of the bias prediction network φb, denoted as σ(Z), represents the
color labels of a resized image that the network recovers from the embedded features. If
the entropy of the output σ(Z) is low, it means that the bias prediction network can easily
predict the colors of the resized image from the embedded feature, indicating that the
features highly depend on the color distribution of the input image. By maximizing the
entropy of the output of the bias prediction network H(σ(Z)), we can encourage the feature
embedding network to generate features that are less dependent on the color distribution
of the input image, resulting in a more robust and generalizable model.

3.3. The Bias Prediction Loss

Predicting dataset bias is critical when the features of a dataset fail to accurately
represent the corresponding class labels. An example is a dataset where most cats have
white hair, and most dogs have black hair. In such cases, the model’s performance would
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be poor when predicting the colors of cats and dogs with other hair colors. This is because
hair color alone is not sufficient to represent cats and dogs. Consequently, when the
features of a dataset are not representative of the classes, it can lead to incorrect and
unreliable predictions.

In this study, we aim to predict color bias in raw images. Due to the limited number of
training samples, it is challenging to represent all possible colors for each object. Therefore,
we assume that a color bias exists for each label and design the bias prediction network
φb to recover the color components of the input image from the embedded features. To
evaluate the performance of the bias prediction network, we compare the color labels of the
resized raw image and the output σ(Z) of the network. The bias prediction loss is defined
using a cross-entropy function:

Lbias = H(C, Z), (2)

where H(·, ·) denotes a cross-entropy function and C is a matrix of true color labels.
Figure 3 presents the detailed architecture of the bias prediction network and how the

network trained with respect to the color bias. Assuming that the output of the feature
embedding network is 128× 21× 21, the features are passed through two CNN layers to
obtain the bias prediction results with a size of 8× 21× 21. To compare the predicted color
bias with the true color labels, the sizes of both are matched. Consequently, both the height
and the width of the predicted results are resized to 21 pixels. To accommodate the range
of values of the red, green, and blue channels, a color binning technique is applied to split
the range into eight equal intervals ([0, 31], [32, 63], . . . , [224, 255]). The compressed data of
the raw images are represented by C.

Figure 3. The detailed architecture of the bias prediction network φb for predicting color bias involves
several steps. First, a raw input image is resized and split into three color channels. Next, the
pixel values of each channel are grouped into eight intervals to match the size of the output of the
bias prediction network. Then, the bias prediction loss is calculated by computing the negative
cross-entropy between the output generated by the network and the true color labels of the resized
image. A higher bias prediction loss indicates that the model is less successful in predicting the
color bias, which leads to a higher total loss. The bias prediction loss encourages the model to learn
features that are less dependent on the color distribution of the input image.

The bias prediction loss in Equation (2) is calculated using the following equation:

Lbias =
L(red)

bias + L(green)
bias + L(blue)

bias
3

(3)

L(·)bias = −
1

8 · 21 · 21

8

∑
i=1

21

∑
j=1

21

∑
k=1

cijk log zijk, (4)



Electronics 2023, 12, 2470 8 of 14

where L(red)
bias , L(green)

bias , and L(blue)
bias represent the color bias prediction losses for the red, green,

and blue channels, respectively, and cijk and zijk(i = 1, . . . , 8, j = 1, . . . , 21, k = 1, . . . , 21)
are elements of C and Z, respectively. The bias prediction loss is calculated as the average
of the losses across the three color channels. Each of these losses is determined by the
cross-entropy between C for each respective channel and Z.

3.4. Training Procedure

The original networks φ f and φc are trained to minimize Ltotal , whereas the additional
bias prediction network φb is trained to minimize Lbias. The classification loss Lclass
depends on the loss function of the original networks, while H(σ(Z)) is related to φb.
Meanwhile, Lbias is evaluated when φb predicts the color labels of the raw image from the
embedded features.

In Equation (1), Ltotal becomes smaller if the entropy H(σ(Z)) is higher. Therefore,
φ f attempts to embed features that φb can hardly infer the color component of the raw
image. After φ f is updated, φb tries to recover the color components of the raw image from
the embedded features to minimize Lbias. Subsequently, φb is updated. This procedure
is repeated for another training sample. The corresponding pseudo code is shown in
Algorithm 1.

4. Results
4.1. Experimental Setup

Our study aims to enhance the performance of existing few-shot classification models
by mitigating color bias. To demonstrate the effectiveness of our proposed bias prediction
(BP) network, we compare the performances of multiple existing models both with and
without integrating the BP network. We evaluated the performance of existing few-shot
classification models, such as EGNN [27], MetaOptNet [6], DeepEMD [9], and SetFeat [31],
using four benchmark datasets as follows:

• miniImageNet [25] is the most general few-shot learning dataset. This is derived from
the ILSVRC-12 dataset [32]. All images have a size of 84× 84 pixels. The dataset has
100 classes, and each class has 600 image samples.

• CIFAR100 Few-Shots (CIFAR-FS) [33] is randomly split from CIFAR-100 [34] dataset.
It consists of 64 training classes, 16 validation classes, and 20 test classes. The classes
contain 600 images per class. Each image has a resolution of 32× 32 pixels.

• Fewshot-CIFAR100 (FC-100) [35] is another split dataset from CIFAR-100 for few-
shot learning. It contains 12 categories for training, 4 categories for validation, and 4
categories for tests. Furthermore, there are 60, 20, and 20 low-level classes, respectively,
and each class has 600 images of size 32× 32 pixels.

• Adience [16] contains about 20,000 human face images with various genders, ages,
and races. All images are aligned, and have a size of 84× 84 pixels. To perform more
difficult classification tasks, we divide the data into two or four age groups: Infant
(approximately 0–2 years old), Juvenile (8–12 years old), Young (25–32 years old), and
Old (60–100 years old).

4.2. Effectiveness of BP on Multiple Few-Shot Learning Models and Datasets

In this section, we present the experimental results obtained from our study where
we applied the BP network to several existing few-shot classification models, which are
mentioned above. The study evaluated the effectiveness of the bias prediction network
across multiple benchmark datasets, including miniImageNet, CIFAR-FS, FC-100, and
Adience , employing five-way one-shot and five-way five-shot learning settings.

The performance (accuracy) of each dataset and model was evaluated with and without
the integration of the bias prediction network. Results presented in Tables 1–3 demonstrate that
the bias prediction network effectively enhances the performance of most original few-shot
learning models in our study. Overall, our study highlights the potential of the bias prediction
network as a tool for improving the performance of few-shot classification models where
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biased samples are prevalent. The results show the importance of considering and addressing
bias in the development of few-shot learning models to ensure fairness and accuracy in
their predictions.

In order to confirm the statistical significance of performance improvements, we
performed a paired t-test comparing the models’ performance between with and without
the integration of the Bias Prediction (BP) network. We found that the integration of the BP
network substantially improved the performance of few-shot image classification models,
yielding statistically significant results (p-value < 0.05). However, we observed an exception
with the EGNN model under the miniImageNet dataset in a five-way five-shot learning
scenario, where the improvement was not statistically significant (p-value = 0.1872). Despite
this, in the five-way one-shot learning on the same dataset, and across all learning tasks in
other datasets, the EGNN model showed significant improvements with the integration
of the BP network. Therefore, we can conclude that the integration of the BP network
generally enhances the performance of few-shot image classification models, including
EGNN, under varying conditions and datasets.

Table 1. Performance comparison of few-shot classification models with and without the bias
prediction network on miniImageNet datasets.

Five-Way One-Shot Five-Way Five-Shot
Models Original BP Added Original BP Added

EGNN 46.68± 0.28% 47.14± 0.22% 61.50± 0.09% 61.24± 0.10%
MetaOptNet 54.68± 0.10% 56.06± 0.20% 71.07± 0.07% 71.19± 0.13%
DeepEMD 63.77± 0.12% 64.57± 0.24% 79.43± 0.09% 79.99± 0.27%

SetFeat 67.33± 0.29% 68.75± 0.39% 82.61± 0.55% 83.08± 0.74%

Table 2. Performance comparison of few-shot classification models with and without the bias
prediction network on CIFAR-FS datasets.

Five-Way One-Shot Five-Way Five-Shot
Models Original BP Added Original BP Added

EGNN 51.69± 0.13% 52.89± 0.25% 64.86± 0.24% 65.23± 0.36%
MetaOptNet 59.58± 0.20% 61.10± 0.40% 73.61± 0.26% 73.87± 0.71%
DeepEMD 64.41± 0.23% 65.88± 0.35% 80.05± 0.27% 80.42± 0.54%

SetFeat 68.12± 0.18% 69.05± 0.34% 82.92± 0.34% 83.23± 0.72%

Table 3. Performance comparison of few-shot classification models with and without the bias
prediction network on FC-100 datasets.

Five-Way One-Shot Five-Way Five-Shot
Models Original BP Added Original BP Added

EGNN 32.19± 0.08% 33.55± 0.15% 43.79± 0.09% 44.07± 0.18%
MetaOptNet 34.02± 0.10% 34.72± 0.25% 47.60± 0.57% 47.93± 0.82%
DeepEMD 41.23± 0.09% 42.75± 0.15% 53.43± 0.23% 53.99± 0.59%

SetFeat 42.84± 0.20% 43.64± 0.31% 55.76± 0.43% 55.95± 0.52%

4.3. Effectiveness of BP on Skin Color Biased Dataset

We conducted an additional experiment using the Adience dataset to evaluate the
effectiveness of our bias prediction network when the training and test sets were biased by
the color of human skin. As illustrated in Figure 1, the training set comprised of young
white individuals (white circles) and old black individuals (black circles), while the test
set consisted of young black individuals (black squares) and old white individuals (white
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squares). The task is a two-way five-shot learning problem for classifying young (approxi-
mately 25–32 years old) vs. old (approximately 60–100 years old) groups using EGNN as a
few-shot learning model. The left part of Figure 4 presents the results, which demonstrate
integrating the bias prediction network enhances the performance of EGNN model.

Figure 4. The effectiveness of the bias prediction network on the biased Adience dataset with the
EGNN model. We evaluated the performance of the few-shot classification model EGNN with and
without the bias prediction network on the Adience dataset containing biased data. The classification
performance (accuracy) is represented on the vertical axis and the number of classes on the horizontal
axis. The results showed the addition of bias prediction network improved the performance of the
original EGNN across different number of classes. This result highlights the effectiveness of the bias
prediction network in addressing color bias in a few-shot classification task.

To further investigate the effectiveness of the bias prediction network with more
than two classes, we tested with two additional biased classes: Juvenile (approximately
8–12 years old) and Infant (approximately 0–2 years old). We trained the model with the
black-skinned Juvenile class and the white-skinned Infant class and tested it with the white-
skinned Juvenile class and the black-skinned Infant class, resulting in a four-way five-shot
learning task. The right part of Figure 4 shows the results, demonstrating the effectiveness
of the bias prediction network in enhancing the original EGNN model’s performance.

4.4. Effectiveness of BP on Color-Filtered Datasets

In this experiment, we demonstrated the effectiveness of the bias prediction network
on different color-filtered versions of the miniImageNet dataset. We generated grayscale,
red channel, green channel, and blue channel versions of the original dataset, as shown
in Figure 5a, and used them during the training stage. The test set consisted of samples
from the original dataset, and we evaluated the image classification results on each color-
filtered dataset. Some examples of the color-filtered miniImageNet dataset are displayed in
Figure 5a. We conducted a few-shot image classification using MetaOptNet as a base model,
under the five-way five-shot learning task. The results, presented in Figure 5b, demonstrate
that the proposed model with the bias prediction network improved the performance of the
model without it (λ = 0) on the red, green, and blue datasets. However, the bias prediction
network did not improve the performance on the grayscaled dataset since the color bias
of the dataset is significantly reduced when images are grayscaled and all channels have
the same value. In most cases, our experiments demonstrated that integrating the bias
prediction network resulted in improved performance for various few-shot learning models
across multiple datasets, in different scenarios. Overall, our results showed the positive
impact of bias prediction network in enhancing the performances of few-shot classification
models where biased samples are present.
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(a) (b)

Figure 5. The examples of the color-filtered miniImageNet datasets and the experimental results
for each dataset. (a) Examples of the color-filtered versions of miniImageNet dataset. The first row
displays the grayscaled version of the original examples, and the second, third, and fourth rows
show the red, green, and blue channel images of the examples, respectively. (b) Performance of the
bias prediction network on the color-filtered miniImageNet dataset. MetaOptNet was used as the
base model. The horizontal axis represents the bias prediction coefficient λ in Equation (1), while the
vertical axis represents the improvement in performance by the bias prediction network.

4.5. Impact of Different Dataset Sizes

In this experiment, we investigated the impact of dataset size on the effectiveness of the
bias prediction network in few-shot learning. Since smaller datasets tend to exhibit larger
biases, we evaluated the performance of the bias prediction network on the miniImageNet
dataset with varying numbers of samples per class: 600, 300, and 100. We experimented
with the five-way five-shot learning task and evaluated the performance of EGNN model
with and without the bias prediction network. The results presented in Figure 6 indicate
that the performance improvement achieved by the bias prediction network was most
significant when the number of samples per class was smallest (100 samples). Our findings
suggest that datasets with fewer samples per class have a higher likelihood of exhibiting
color bias, and the integration of the bias prediction network can be especially effective in
mitigating such bias, even in datasets with significant bias.

Figure 6. Performance of the bias prediction network with varying number of samples per class in
the miniImageNet dataset. We evaluated the prediction performance using EGNN. The horizontal
axis represents the number of the samples of each class. The vertical axis represents accuracy with
and without the bias prediction network. The results indicate that the bias prediction network had
the greatest impact on datasets with a smaller number of samples per class.
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5. Conclusions

In this work, we addressed the challenge of reducing bias for few-shot learning. To
tackle this problem, we proposed a bias prediction network model with the application
of few-shot image classification, focusing on color bias. Our approach utilizes adversarial
learning to train a bias prediction network that the feature embedding network generate
features from input images, which are then fed into the bias prediction network to recover
the color labels of the original image. If the training set is color biased, the feature em-
beddings are likely to be highly dependent on the color values of the training samples,
making it easy for the bias prediction network to recover the original image. Accordingly,
we introduced a loss function that encourages the feature embedding network to produce
embeddings that are less dependent on the color values. Our experimental results demon-
strate that the proposed bias prediction network is effective in improving the performance
of various existing few-shot learning models across multiple benchmark datasets. The
findings suggest that the proposed model has the potential to enhance other few-shot
learning tasks across various domains where the number of samples is limited, and biased
datasets are prevalent.
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