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Abstract: Data-driven modeling methods have been widely used in many applications or studies of
traffic systems with complexity and chaos. The empirical mode decomposition (EMD) family provides
a lightweight analytical method for non-stationary and non-linear data. However, a large amount of
traffic data in practice are usually multidimensional, so the EMD family cannot be used directly for
those data. In this paper, a method to calculate the extremum point and the envelope-like function
(series) from the complex function (series) is proposed so that the EMD family can be applied to two-
variate traffic time-series data. Compared to the existing multivariate EMD, the proposed method
has advantages in computational burden, flexibility and adaptivity. Two-dimensional trajectory data
were used to test the method and its oscillatory characteristics were extracted. The decomposed
feature can be used for data-driven traffic analysis and modeling. The proposed method also extends
the utilization of EMD to multivariate traffic data for applications such as traffic data denoising,
pattern recognition, traffic flow dynamic evaluation, traffic prediction, etc.

Keywords: multivariate traffic data; complex-valued series; empirical mode decomposition; time
series mode analysis

1. Introduction

Because of the complexity and chaos of traffic systems, it is hard to investigate the
system state estimates or mode identification via the method of directly modeling. Thus,
data-driven modeling methods have been widely used in many applications or studies
concerning intelligent traffic, and the research regarding digital traffic has become a branch
of intelligent traffic, which includes traffic feature analysis, traffic flow estimate, bus arrival
estimate, traffic jam identification, traffic events and accident analysis. On the other hand,
the development of artificial intelligence empowers intelligent traffic and brings huge
benefits. As one of the three key elements of artificial intelligence, data play an important
role in applications and research.

A large number of studies of traffic modeling via time series have taken place. Chin
and Quddus [1] use the random-effect negative binomial (RENB) model to investigate the
elements appropriate for maintaining safety in road intersections. Brijs, Karlis and Wets [2]
and Quddus [3] used integer-valued autoregressive Poisson models to model data of
accidents and investigate the relation of accidents and some specific factors. Commandeur,
Bijleveld, Bergel-Hayat et al. [4] and Saar [5] used auto-regression and moving average
model to investigate the correlation of traffic accidents and some other factors. For panel
data analysis, F. Chen, Ma and S. Chen [6,7] introduced random-effect tobit models to
investigate the relationship between traffic crashes and several factors such as traffic states,
weather and surface conditions. Later, methods such as full Bayesian hierarchical approach
and multivariate Poisson lognormal models were used to investigate traffic crash modeling
and factors regarding traffic accidents [8–10]. In recent years, while regression models have
still been widely used as the foundation of time series data analysis, some machine learning
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methods have been introduced to improve the performance. Tuli, Mitra and Crews [11]
employed a random-effect negative binomial (RENB) model to investigate the demand
for shared bicycles. Barroso, Albuquerque-Oliveira and Oliveira-Neto [12] introduced
clustering methods to define traffic profiles and the daily traffic periods in trip analyses
based on OD data. Chang, Huang, Chan et al. [13] introduced long-memory properties to
investigate road fatality factors.

Traffic time series data contain multiple mode characteristics, so mode decomposi-
tion of such data is essential for better analysis and modeling. Commonly used modal
decomposition methods for time-series data include discrete wavelet transform (DWT),
empirical mode decomposition (EMD) and variational mode decomposition (VMD). EMD,
in particular, allows for adaptive decomposition of data and efficient handling of nonlinear
and non-smooth data without significant computational burden. EMD has been utilized in
many traffic and transportation applications such as traffic data denoising [14,15], traffic
infrastructure healthy monitoring [16], traffic flow evolving dynamic evaluation [17] and
time variant detection [18], as well as prediction of section traffic flow [19], traffic speed [20]
and metro passenger flow [21]. However, current empirical mode decomposition methods
such as EMD, EEMD, CEEMD and CEEMDAN are not equipped to handle multivariate
data directly. Since the traffic system generates many multivariate time series data, such as
trajectory data, there is a pressing need to extend classical empirical mode decomposition
methods to deal with multivariate time series.

In this paper, a complex empirical mode decomposition operation was proposed to
extract intrinsic mode functions from multivariate traffic time series data. It provides
a tool to analyze multivariate temporal data which extends the application of intrinsic
mode extraction on multivariate traffic data. Complex extremum-like point and complex
envelope-like series were defined by introducing the “base angle” for sifting through the
intrinsic mode function. The proposed method avoided large computational burdens and
appeared to be more flexible and adaptive. The experiment showed that the proposed
method is able to extract oscillation mode and motion characteristics of moving trajectory.
Existing multivariant empirical mode decomposition methods are reviewed in Section 2.
The proposed complex empirical mode decomposition method is introduced in Section 3.
The trace mode decomposition is presented in Section 4. The conclusion is presented
in Section 5.

2. Related Work

Original empirical mode decomposition [22] provides a method to extract intrin-
sic mode functions from non-stationary time series signals. The conditions which the
IMF satisfies and the procedures to extract IMFs are closely related to the extremum
and envelope function. However, for multi-dimension signals, common extremum and
envelope functions do not exist. So, the original EMD cannot be applied directory to
multi-dimension signals.

Several researchers have proposed decomposition methods for complex-valued data.
Tanka and Mandic [23] decomposed complex-valued data into positive frequency com-
ponents and negative frequency components. A band-pass filter was used so that both
positive and negative frequency components are analytic signals, which means the real
part of those components contains complete information of the original signal. Then the
classical EMD was used to extract IMFs. This method made clever use of the band-pass
filter and the characteristic of analytic signal, but the two sets of IMFs from positive and
negative components cannot be linked intuitively to the original signal.

Another idea is to extend the definition of the envelope function or extremum point.
Bin Altaf, Gautama, Tanaka et al. [24] proposed a new definition of extremum of complex-
valued data series in which the extremum points were found according to whether the
first derivative changes its sign. Then the complex-valued envelope functions and the
average can be computed. This method decomposes the complex-valued signal directory
without separating the signal into two parts so that the results are more intuitive. Rilling,
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Flandrin, Goncalves et al. [25] extend the “oscillation” in two dimensions to the “rotation”
in three dimensions so the task is to decompose the rotation modes, such as “rapid” and
“slower” rotation, of complex-valued signals (data series). The extremum points were
defined as the tangent points to the top, bottom, left and right. Those points were linked
by a cubic spline to be the envelope functions. This method, from the perspective of
subsequent studies, uses a fixed projection to calculate the extrema points and the envelope
which may miss the combined effect of multiple variables.

Rehman and Mandic [26] proposed an extension of EMD for trivariate signals in which
projection directions were introduced to find the extrema points and calculate envelope
curves. To choose those directions, a sphere in signal space was built and multiple longitudi-
nal lines were uniformly chosen on that sphere. Then a series of equidistant points on each
longitudinal line was taken as the projection directions. Along those projection directions,
maximum points of the input signal were found and the envelope curves was obtained by
interpolating those maximum points (along each direction). After that, the two authors
proposed an advanced method for n-variate signals in which the projection directions were
chosen more uniformly [27]. For n-variate input, the low-discrepancy pointsets were used
to generate uniform points on the n-1 sphere as projection directions. This method was
widely used in many subsequent studies. However, the computational effort of this method
is very high. Inspired by some studies of non-temporal multidimensional empirical mode
decomposition. Thirumalaisamy and Ansell [28] proposed a fast and adaptive multivariate
EMD method in which order statistics filter was used to take the place of classical spline
interpretation so that the computational cost could be reduced and Delaunay triangulation
and sparable filters were used to reduce the computational cost of projection calculation.
However, even though the method proposed was an improvement, the algorithm of the
Multivariate EMD was still a bit complicated.

Fleureau, Kachenoura, Albera et al. [29,30] proposed a method to obtain a signal’s
mean trend by interpolating barycenter which was computed from identified elementary
oscillations. A D+1 dimension tangent vector of a D dimension signal was defined. The
oscillation extremum defined in this method was the point where the norm of the “tan-
gent” reaches the local minimum. Then, rather than calculating envelope curves to obtain
the mean curve, the concept oscillation barycenter was introduced to calculate the mean
curve directly. An oscillation barycenter was defined to be a point between two oscillation
extremum points. The time coordination of one barycenter point was set to the interme-
diate moment of its adjacent two extreme points. The variate values of the barycenter
were defined to be the average of the signal variate integrals between the two extreme
points. The authors improved this method later by changing the calculation of the mean
curve [31]. The envelope curves were reintroduced to calculate the mean curve. The even
oscillation extremum and odd oscillation extremum were interpolated separately to obtain
two envelope curves. This method extended the original EMD to a multidimensional signal.
However, the extremum identification algorithm may obtain false extremum points from
discrete time series, for the differences of the signals are not continuous. For example,
a one-dimension signal [0.1, 0.5, 0.7, 0.9, 0.7, 0.1] has minimum norm of “tangent” at the
third and fourth points but the fourth point is the extremum point.

3. The Complex Empirical Mode Decomposition
3.1. The Complex Time Series

Original EMD deals with one-dimensional signals. However, in practice, multi-
dimensional signals are more common, for example, tracks of moving objects. To de-
compose such a signal, the two-dimensional time series can be transformed into a complex
time series.

Let sn = (xn, yn), for n = 0, 1, 2, . . . be the two-dimensional time series. zn =
xn + iyn = rneiθn is the complex form of the series, where rn =

√
x2

n + y2
n and θn = Arg(zn).
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3.2. The Complex Extremum-Like Point

Similar to the original intrinsic mode function, the complex intrinsic mode function
has two conditions: (1) The phase difference of two adjacent extremum points should be
between π

2 and 3π
2 . (2) At each time, the mean value of the upper envelope function and

the lower envelope function should be zero. Let ∆θ be the phrase difference, U(t) be the
upper envelope function and L(t) be the lower envelope function. The conditions could be
described as: {

ε(cos∆θ) = 0
L(t) + U(t) = 0

(1)

where ε(x) is the stage function and was set to 1 when x = 0.
Typical extremum points do not exist in complex functions, nor in upper or lower

envelope functions A definition of extremum-like points including maximum-like and
minimum-like points, therefore, was proposed.

Let Bn and En be the intermediate series For n = m,

Bm = θm +
π

2
× (1− Em) (2)

Em = sign[cos (θm − Bm−1)] (3)

where sign(x) = ε(x)− ε(−x) and for n = −1, B−1 = 0. Additionally, ε(x) was also set to
1 where x = 1.

Let Mn be the forward differential of Bn × rn:

Mn= En+1 × rn+1 − En × rn (4)

For n = t, zt is a maximum-like point if the conditions{
Mt × Mt−1< 0
Mt − Mt−1< 0

(5)

were satisfied, and is a minimum-like point if the conditions{
Mt × Mt−1< 0
Mt − Mt−1> 0

(6)

were satisfied.
The intermediate series Bn records the base angles of the data series. Suppose each

element of the data series in chronological order is on a curved surface in the complex-time
coordinate system. The base angles are the positive direction of the surface. The initial
base angle was set to be 0. If the difference between the argument of one datum and
the base angle corresponding to the previous datum was within

[
−π

2 , π
2
]
, the base angle

corresponding to this datum was set to be the argument of this datum. Otherwise, if the
difference was within

[
−π,−π

2
)
∪
(

π
2 , π

)
, the base angle was set to be the argument plus

π. If the curved surface was flattened into a plane, the condition to find the extremum-like
point is the same as the condition to determine the maximum and minimum points in
real series.

Figure 1 shows an example of two-dimensional series. Figure 2 illustrates the curve
surface made of base angle series and the red part is the positive direction while the blue
part is the negative direction. In fact, only those base angle series corresponding to the
points on the black line were meaningful. For a better display, the angle series between
the real base angle series was obtained via spline interpolation. Figure 3 illustrates the
“flattened” surface and the signal. At time period of 7 to 15 s (the time difference for each
point on the black line is one second), although the “trend” of the curve was “downward”
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according to Figure 1, the change rate of phase of those points was not steep so that those
points remained in positive direction in Figure 3.

Figure 1. Original two-dimensional series.

Figure 2. Original series and curve surface of base angle: The red part is the positive direction while
the blue part is the negative direction.

Figure 3. Flattened series from curve surface: The red part is the positive direction while the blue
part is the negative direction.

3.3. Complex Envelope-like Series and Sifting Process

Given the definition of extremum-like points of complex series, the upper and lower
envelope-like series of signals could be computed. Specifically, link the series composed
of a real part of the maximum-like series and the series composed of an imaginary part
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separately via cubic spline line (blue line in Figure 4), then combine the two series as
the upper envelope-like series, and the same for the lower envelope-like series (red line
in Figure 4). The pseudocode for computing complex envelope-like series is shown in
Algorithm 1.

Figure 4. Upper and lower envelope-like series: The yellow line is the original series which is
generated randomly; the blue line and red line are the envelope-like series of the yellow series.

Algorithm 1: Complex envelope-like series.
Input: Complex Series Z
Output: Upper and lower envelope-like series U, D
r ← abs(Z);
θ ← ang(Z);
B(0)← θ(0);
for m ∈ length(Z) do

E(m)← sign(cos (θ(m)− B(m− 1)));
B(m)← θ(m) + π

2 ∗ (1− E(m));
end
for m ∈ (length(Z)− 1) do

∆(m)← E(m + 1) ∗ r(m + 1)− E(m) ∗ r(m); // Forward differential
end
for m ∈ (length(Z)− 2) do

if ∆(m + 1) ∗ ∆(m) < 0 then // Extremum point condition
if ∆(m + 1)− ∆(m) < 0 then

MA← [MA, Z(m + 1)]; // Maximum-like point condition
else if ∆(m + 1)− ∆(m) > 0 then

MI ← [MI, Z(m + 1)]; // Minimum-like point condition
end

end
end
Ure ← spline(Re(MA), length(Z));
Uim ← spline(Im(MA), length(Z));
Dre ← spline(Re(MI), length(Z));
Dim ← spline(Im(MI), length(Z));
U ← complex(Ure, Uim);
D ← complex(Dre, Dim);
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As for the first sifting process, let m1
n be the mean series of upper and lower envelope-

like series (blue line in Figure 5) and the minus between the signal series zn and m1
n is the

first component series h1
n. The same process was repeated on h1

n to obtain h2
n. For the kth

sifting process, the mean value series of envelope-like series was mk
n, the component series

was hk
n. Let SD be the standard deviation as

SD = ∑
n

∣∣∣hk
n − hk−1

n

∣∣∣2∣∣∣hk−1
n

∣∣∣2 (7)

when SD < σ, σ was a predetermined value, the component series hk
n was the first IMF c1

n.
The same as the original EMD, ck

n, k = 1, 2, 3, . . . and rn was calculated. The signal series
was composed of those IMFs and the residual was

zn = ∑
k

ck
n + rn (8)

Figure 5. Mean value series of upper and lower envelope-like series: The yellow line is the original
series; the blue line is the mean value series which was the average of the upper and lower envelope-
series shown in Figure 4.

4. Trajectory Data Mode Decomposition

In order to test the proposed decomposition method, two sets of trajectory series were
collected. One was collected indoors, which included frequent direction changes, while the
other set was collected outdoors and consisted of several different motion modes.

4.1. Indoor Trajectory Decomposition Experiment

A walking trajectory was used to test the complex empirical mode decomposition.
The data were collected in an about 25 m2 room and the direction of the trajectory changed
frequently. In the experiment, the tester held a device combination with mounted camera
and single board computer and walked freely in the room. In the meantime, the trajectory
of the tester was computed via ORB-SLAM. Each point of the trajectory includes the
timestamps, x coordinate and y coordinate. The original signal was formed by linking the
points of the trajectory in time order and was shown in Figure 6.

Figure 7 demonstrates the decomposition results of the indoor trajectory. Blue lines
illustrate the original series in time-x-y coordinates, orange lines illustrate the IMFs and
residual. The left column is the axonometric projection graph of the original series, the IMF
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series and the residual series. Each sub-figure in the right column is the vertical view of the
original series, the IMF series or the residual series.

Figure 6. Original indoor trajectory.

Figure 7. Indoor trajectory decomposition: Blue lines illustrate the original series, orange lines
illustrate the IMFs and residual. The left column is the axonometric projection graph of the original
series, the IMF series and the residual series. Each sub-figure in the right column is the vertical view.

The residual series is close to the original series while IMFs extract the oscillation
modes of the original series which indicate the characters of the trajectory. The oscillation
amplitude of IMF1 and IMF2 were relatively significant. In IMF1, the oscillations mainly
occurred when the trajectory’s direction changed rapidly. In IMF2, the oscillations ap-
peared at the edge of significant changes in the trajectory direction and at the beginning of
trajectories with mild direction changes. The oscillations of IMF3 indicate that the right
edge of the trajectory segment with rapid direction change has a different intrinsic mode
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compared to the left edge. The oscillations of IMF4 mainly appeared at the beginning and
ending segments of the trajectory.

4.2. Outdoor Trajectory Decomposition Experiment

Another walking trajectory of a participant was used to test the performance of the
CEMD. In the experiment, the tester walked in the campus of Tongji University and held a
mobile GPS receive device to collect the GPS log data. The latitude, the longitude and the
timestamps of the GPS logs were used and linked in time order to form the original signal.
The GPS devices recorded 827 points in 15 min and 36 s and the trajectory is 1.3 km
long. In the recorded trajectory (Figure 8), there were longer straight sections, some turns
and occasional back-and-forth movements at certain locations.

Figure 8. Outdoor walking GPS trajectory.

Figure 9 demonstrates the decomposition results of the outdoor trajectory. The blue
lines illustrate the original series and the orange lines illustrate the IMFs and the residual.
The left column is the axonometric projection graph and the right column is the vertical view.
In the left column, the amplitudes of the IMFs in the left column of the figure were 15 times
larger than the actual values because the actual amplitudes were too small compared to the
original series and the residual, making them not clearly visible in the figure.

The IMFs in Figure 9 show that the oscillation modes occurred in some particular
time period and the oscillations were very distinct. The oscillations (especially in IMF1)
related to the moments when the tester was lingering in a certain spot while the smoother
parts of the IMF1 correspond to the times when the tester was walking at a steady pace.
The oscillations of IMF2 were also related to the most significant direction changes in
the trajectory. The oscillations of IMF3 were related to the first right-angle turn of the
original trajectory. The oscillations of IMF4 were related to almost every significant turn
of the original trajectory. That may indicate that all of them have similar intrinsic mode
components.

The decomposition results of the outdoor trajectory contain two major problems.
First, the effects of small-scale directional oscillations of the trajectory were ignored by the
decomposition algorithm due to the spatial scale discrepancy with the trajectory. Even
though the IMFs in the left column of Figure 9 were 15 times larger than the actual values,
the oscillations were still not apparent. Second, it can be found that several distinct
intrinsic modes appeared in the same IMF and that was not just a typical modal mixing
phenomenon. To analyze it theoretically, the mean series obtained from the envelope series
does not always have the same phase angle as the series being decomposed at each moment.
Therefore, subtracting the mean series from the series may introduce new oscillations.

One possible solution to the first problem is to have the original data be differentiated
before decomposition, inspired by a similar operation used in the classical Empirical Mode
Decomposition algorithm when dealing with the problem of insufficient extrema points in
the original signals. Regarding the second issue, an informal solution was proposed.

Figure 10 demonstrates the shifting self-correlation analysis of IMF1 of the outdoor
trajectory. A sliding window with a fixed width is used to move forward with a step size
of 1 on the IMF1 series so that several subunits were obtained. The matrix was formed
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by calculating the cross-correlation coefficients between those subunits. There are several
vertical (or horizontal) boundary lines present on the heatmap of the matrix. By examining
the correlation coefficients near the diagonal of the heatmap, it can be observed that there is a
high level of correlation within the IMF segment between each boundary line. By summing
up all the elements in each column of the matrix, a comprehensive correlation index vector
can be obtained. As shown in Figure 11, it can be used to measure the uniqueness of each
segment compared to the rest of the series. Those “unique segments” can be selected as an
intrinsic mode of the original series. In Figure 11, the segment where the most significant
oscillations occurs could be considered as such an intrinsic mode. In fact, this segment also
corresponded to the most significant directional changes in the trajectory.

Figure 9. Outdoor trajectory decomposition: Blue lines illustrate the original series, orange lines
illustrate the IMFs and residual. The left column is the axonometric projection graph of the original
series, the IMF series and the residual series. Each sub-figure in the right column is the vertical view.
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Figure 10. Shifting self-correlation analysis of IMF1 from outdoor trajectory decomposition: the
orange line illustrates the IMF1 of the outdoor trajectory from a vertical view; the heatmap illustrates
the shifting self-relation matrix.

Figure 11. Comprehensive correlation analysis of the segments of the IMF1 from outdoor trajectory
decomposition: the blue line illustrates the original trajectory from a vertical view, the orange line
illustrates the IMF1 from a vertical view, the heatmap illustrates the comprehensive correlation
index vector.

5. Discussion and Conclusions

To achieve the empirical mode decomposition of multivariate data, a complex EMD
method was proposed in which an intermediate variable and a base angle were introduced.
Then the multivariatetemporal series, represented as a complex number, could be mapped
onto a curved surface generated by the base angle series. The envelope-like function of
the complex series is obtained by determining the extremum-like point of the series on
the surface. Then, following the sifting step of the classic empirical mode decomposition
method, the intrinsic mode functions of the complex series are obtained. Compared to the
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existing multivariate EMD method that requires generating too many projection directions,
the proposed method avoided significant computational burden and appeared to be more
flexible and adaptive.

However, the experiment showed that the method does not effectively extract a small
spatial-scale oscillation mode from large spatial-scale data such as traffic trajectory and the
algorithm itself might cause additional oscillations that are difficult to eliminate completely.
Regarding the first problem, the differencing operation could be applied to the raw data as
preprocessing. An informal solution to the second problem was introduced in Section 4.2.

The application of the complex EMD on trajectory data indicates that the extracted
IMFs can help to distinguish time series segments with different motion characteristics. In
addition, the proposed method has potential with respect to decomposition of multivariate
traffic and transportation data for the application such as traffic data denoising, pattern
recognition, traffic flow dynamics evaluation, traffic prediction, etc.

Author Contributions: Conceptualization, L.Z. and G.S.; methodology, G.S. and L.Z.; software, G.S.;
validation, G.S.; formal analysis, G.S.; investigation, G.S.; resources, L.Z. and G.S.; data curation, G.S.;
writing—original draft preparation, G.S.; writing—review and editing, L.Z. and G.S.; visualization,
G.S.; supervision, L.Z.; project administration, L.Z.; funding acquisition, L.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: The work was sponsored by the Key R&D Program of Zhejiang Province, China (No.
2021C01011).

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We apprecappreciate the other members in our group for their help to this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chin, H.C.; Quddus, M.A. Applying the random effect negative binomial model to examine traffic accident occurrence at

signalized intersections. Accid. Anal. Prev. 2003, 35, 253–259. [CrossRef] [PubMed]
2. Brijs, T.; Karlis, D.; Wets, G. Studying the effect of weather conditions on daily crash counts using a discrete time-series model.

Accid. Anal. Prev. 2008, 40, 1180–1190. [CrossRef] [PubMed]
3. Quddus, M.A. Time series count data models: An empirical application to traffic accidents. Accid. Anal. Prev. 2008, 40, 1732–1741.

[CrossRef] [PubMed]
4. Commandeur, J.J.F.; Bijleveld, F.D.; Bergel-Hayat, R.; Antoniou, C.; Yannis, G.; Papadimitriou, E. On statistical inference in time

series analysis of the evolution of road safety. Accid. Anal. Prev. 2013, 60, 424–434. [CrossRef]
5. Saar, I. Do Alcohol Excise Taxes Affect Traffic Accidents? Evidence From Estonia. Traffic Inj. Prev. 2015, 16, 213–218. [CrossRef]
6. Chen, F.; Ma, X.; Chen, S. Refined-scale panel data crash rate analysis using random-effects tobit model. Accid. Anal. Prev. 2014,

73, 323–332. [CrossRef]
7. Ma, X.; Chen, F.; Chen, S. Modeling Crash Rates for a Mountainous Highway by Using Refined-Scale Panel Data. Transp. Res.

Rec. J. Transp. Res. Board 2015, 2515, 10–16. [CrossRef]
8. Ma, X.X.; Chen, S.R.; Chen, F. Correlated Random-Effects Bivariate Poisson Lognormal Model to Study Single-Vehicle and

Multivehicle Crashes. J. Transp. Eng. 2016, 142, 04016049. [CrossRef]
9. Gill, G.S.; Cheng, W.; Xie, M.; Vo, T.; Jia, X.; Zhou, J. Evaluating Influence of Neighboring Structures on Spatial Crash Frequency

Modeling and Site-Ranking Performance. Transp. Res. Rec. J. Transp. Res. Board 2017, 2659, 117–126. [CrossRef]
10. Cheng, W.; Gill, G.S.; Sakrani, T.; Dasu, M.; Zhou, J. Predicting motorcycle crash injury severity using weather data and alternative

Bayesian multivariate crash frequency models. Accid. Anal. Prev. 2017, 108, 172–180. [CrossRef]
11. Tuli, F.M.; Mitra, S.; Crews, M.B. Factors influencing the usage of shared E-scooters in Chicago. Transp. Res. Part Policy Pract.

2021, 154, 164–185. [CrossRef]
12. Barroso, J.M.F.; Albuquerque-Oliveira, J.L.; Oliveira-Neto, F.M. Correlation analysis of day-to-day origin-destination flows and

traffic volumes in urban networks. J. Transp. Geogr. 2020, 89, 102899. [CrossRef]
13. Chang, F.; Huang, H.; Chan, A.H.S.; Shing Man, S.; Gong, Y.; Zhou, H. Capturing long-memory properties in road fatality

rate series by an autoregressive fractionally integrated moving average model with generalized autoregressive conditional
heteroscedasticity: A case study of Florida, the United States, 1975–2018. J. Saf. Res. 2022, 81, 216–224. [CrossRef] [PubMed]

14. Chen, X.; Chen, H.; Yang, Y.; Wu, H.; Zhang, W.; Zhao, J.; Xiong, Y. Traffic flow prediction by an ensemble framework with data
denoising and deep learning model. Phys. A-Stat. Mech. Appl. 2021, 565. [CrossRef]

15. Xu, L.; Wei, C.; Chingyao, C.; Bin, L.; Xianghui, S. Multi-sensor fusion methodology for enhanced land vehicle positioning. Inf.
Fusion 2019, 46, 51–62. [CrossRef]

http://doi.org/10.1016/S0001-4575(02)00003-9
http://www.ncbi.nlm.nih.gov/pubmed/12504146
http://dx.doi.org/10.1016/j.aap.2008.01.001
http://www.ncbi.nlm.nih.gov/pubmed/18460387
http://dx.doi.org/10.1016/j.aap.2008.06.011
http://www.ncbi.nlm.nih.gov/pubmed/18760102
http://dx.doi.org/10.1016/j.aap.2012.11.006
http://dx.doi.org/10.1080/15389588.2014.933817
http://dx.doi.org/10.1016/j.aap.2014.09.025
http://dx.doi.org/10.3141/2515-02
http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000882
http://dx.doi.org/10.3141/2659-13
http://dx.doi.org/10.1016/j.aap.2017.08.032
http://dx.doi.org/10.1016/j.tra.2021.10.008
http://dx.doi.org/10.1016/j.jtrangeo.2020.102899
http://dx.doi.org/10.1016/j.jsr.2022.02.013
http://www.ncbi.nlm.nih.gov/pubmed/35589293
http://dx.doi.org/10.1016/j.physa.2020.125574
http://dx.doi.org/10.1016/j.inffus.2018.04.006


Electronics 2023, 12, 2476 13 of 13

16. Aied, H.; Gonzalez, A.; Cantero, D. Identification of sudden stiffness changes in the acceleration response of a bridge to moving
loads using ensemble empirical mode decomposition. Mech. Syst. Signal Process. 2016, 66-67, 314–338. [CrossRef]

17. Xiong, H.; Shang, P.; Bian, S. Detecting intrinsic dynamics of traffic flow with recurrence analysis and empirical mode decomposi-
tion. Phys. A-Stat. Mech. Appl. 2017, 474, 70–84. [CrossRef]

18. Chen, M.C.; Wei, Y. Exploring time variants for short-term passenger flow. J. Transp. Geogr. 2011, 19, 488–498. [CrossRef]
19. Pholsena, K.; Pan, L.; Zheng, Z. Mode decomposition based deep learning model for multi-section traffic prediction. World

Wide-Web-Internet Web Inf. Syst. 2020, 23, 2513–2527. [CrossRef]
20. Wang, H.; Liu, L.; Dong, S.; Qian, Z.; Wei, H. A novel work zone short-term vehicle-type specific traffic speed prediction model

through the hybrid EMD-ARIMA framework. Transp.-Transp. Dyn. 2016, 4, 159–186. [CrossRef]
21. Wei, Y.; Chen, M.C. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks.

Transp. Res. Part -Emerg. Technol. 2012, 21, 148–162. [CrossRef]
22. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode

decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Math. Phys. Eng. Sci.
1998, 454, 903–995. [CrossRef]

23. Tanaka, T.; Mandic, D.P. Complex Empirical Mode Decomposition. IEEE Signal Process. Lett. 2007, 14, 101–104. [CrossRef]
24. Bin Altaf, M.U.; Gautama, T.; Tanaka, T.; Mandic, D.P. Rotation Invariant Complex Empirical Mode Decomposition. In

Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP ’07, Honolulu, HI,
USA, 15–20 April 2007; Volume 3, pp. III-1009–III-1012. [CrossRef]

25. Rilling, G.; Flandrin, P.; Goncalves, P.; Lilly, J.M. Bivariate empirical mode decomposition. IEEE Signal Process. Lett. 2007,
14, 936–939. [CrossRef]

26. Rehman, N.; Mandic, D.P. Empirical Mode Decomposition for Trivariate Signals. IEEE Trans. Signal Process. 2010, 58, 1059–1068.
[CrossRef]

27. Rehman, N.; Mandic, D.P. Multivariate empirical mode decomposition. Proc. R. Soc.-Math. Phys. Eng. Sci. 2010, 466, 1291–1302.
[CrossRef]

28. Thirumalaisamy, M.R.; Ansell, P.J. Fast and Adaptive Empirical Mode Decomposition for Multidimensional, Multivariate Signals.
IEEE Signal Process. Lett. 2018, 25, 1550–1554. [CrossRef]

29. Fleureau, J.; Nunes, J.C.; Kachenoura, A.; Albera, L.; Senhadji, L. Turning Tangent Empirical Mode Decomposition: A Framework
for Mono- and Multivariate Signals. IEEE Trans. Signal Process. 2011, 59, 1309–1316. [CrossRef]

30. Fleureau, J.; Kachenoura, A.; Nunes, J.C.; Albera, L.; Senhadji, L. 3A-EMD: A generalized approach for monovariate and
multivariate EMD. In Proceedings of the 10th International Conference on Information Science, Signal Processing and their
Applications (ISSPA 2010), Kuala Lumpur, Malaysia, 10–13 May 2010; pp. 300–303. [CrossRef]

31. Fleureau, J.; Kachenoura, A.; Albera, L.; Nunes, J.C.; Senhadji, L. Multivariate empirical mode decomposition and application to
multichannel filtering. Signal Process. 2011, 91, 2783–2792. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ymssp.2015.05.027
http://dx.doi.org/10.1016/j.physa.2017.01.060
http://dx.doi.org/10.1016/j.jtrangeo.2010.04.003
http://dx.doi.org/10.1007/s11280-020-00791-1
http://dx.doi.org/10.1080/21680566.2015.1060582
http://dx.doi.org/10.1016/j.trc.2011.06.009
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1109/LSP.2006.882107
http://dx.doi.org/10.1109/ICASSP.2007.366853
http://dx.doi.org/10.1109/LSP.2007.904710
http://dx.doi.org/10.1109/TSP.2009.2033730
http://dx.doi.org/10.1098/rspa.2009.0502
http://dx.doi.org/10.1109/LSP.2018.2867335
http://dx.doi.org/10.1109/TSP.2010.2097254
http://dx.doi.org/10.1109/ISSPA.2010.5605465
http://dx.doi.org/10.1016/j.sigpro.2011.01.018

	Introduction
	Related Work
	The Complex Empirical Mode Decomposition
	The Complex Time Series
	The Complex Extremum-Like Point
	Complex Envelope-like Series and Sifting Process

	Trajectory Data Mode Decomposition
	Indoor Trajectory Decomposition Experiment
	Outdoor Trajectory Decomposition Experiment

	Discussion and Conclusions
	References

