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Abstract: The explosive growth of vulnerabilities poses a significant threat to the security of software
systems. While various deep-learning-based vulnerability detection methods have emerged, they
primarily rely on semantic features extracted from a single code representation structure, which
limits their ability to detect vulnerabilities hidden deep within the code. To address this limitation,
we propose S2FVD, short for Sequence and Structure Fusion-based Vulnerability Detector, which
fuses vulnerability-indicative features learned from the multiple views of the code for more accurate
vulnerability detection. Specifically, S2FVD employs either well-matched or carefully extended
neural network models to extract vulnerability-indicative semantic features from the token sequence,
attributed control flow graph (ACFG) and abstract syntax tree (AST) representations of a function,
respectively. These features capture different perspectives of the code, which are then fused to enable
S2FVD to accurately detect vulnerabilities that are well-hidden within a function. The experiments
conducted on two large vulnerability datasets demonstrated the superior performance of S2FVD
against state-of-the-art approaches, with its accuracy and F1 scores reaching 98.07% and 98.14%
respectively in detecting the presence of vulnerabilities, and 97.93% and 97.94%, respectively, in
pinpointing specific vulnerability types. Furthermore, with regard to the real-world dataset D2A,
S2FVD achieved average performance gains of 6.86% and 14.84% in terms of accuracy and F1 metrics,
respectively, over the state-of-the-art baselines. This ablation study also confirms the superiority
of fusing the semantics implied in multiple distinct code views to further enhance vulnerability
detection performance.

Keywords: vulnerability detection; representation fusion; attributed control flow graph

1. Introduction

In recent times, the incidence of network attacks has witnessed a significant upsurge.
These attacks are primarily driven by the ubiquitous presence of software vulnerabilities.
To date, over 200,000 such vulnerabilities have been recorded on the Common Vulnerabili-
ties and Exposures (CVE) website [1]. Given the pervasive exploitation of vulnerabilities
and the significant security threats they pose, it is critical for developers to proactively de-
tect vulnerabilities in their code. whether written by themselves or reused from open-source
software.

However, identifying multi-faceted vulnerabilities requires security-related domain
knowledge that goes beyond the expertise of most developers. This presents significant
challenges for vulnerability detection. In light of the ever-expanding scale and complexity
of modern software systems, it has become increasingly impractical, even for security
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professionals, to manually detect potential vulnerabilities within millions of lines of code,
given the tremendous efforts and time required.

Inspired by its impressive performance in diverse domains such as NLP [2] and
program analysis [3–6], deep learning has also been harnessed to develop a range of
approaches [7–9] for the detection of vulnerabilities. These approaches utilize labeled
training samples and extract semantic-aware features from them to construct classifiers
that map the target code snippets onto a class space that indicates the absence or presence
of vulnerabilities, or specific vulnerability types. Typically, prevailing deep-learning-
based vulnerability detection methods rely on a single code representation structure to
identify vulnerabilities, which, however, may fail to comprehensively capture vulnerability-
indicative patterns and detect those vulnerabilities that are well-hidden within the code.
This is due to the fact that these vulnerability-indicative patterns may require different
perspectives on the code reflected by different code representation structures.

To address the aforementioned limitation, we propose S2FVD, which entails a novel
approach that leverages fused semantic vectors that are learned from three essential code
representations, including token sequence, attribute control flow graph (ACFG), and ab-
stract syntax tree (AST). These code representations provide distinct perspectives on the
code, thereby allowing the model to more comprehensively capture vulnerability-indicative
features from the code. The main contributions of this paper are summarized as follows.

• A novel DL-based vulnerability detection method called S2FVD is presented. To ac-
commodate the distinct representations of the code, an adaptive learning model has
been devised to capture the multi-faceted aspects of function semantics and fuse them
together to ensure the extraction of comprehensive semantic features. This strategy
effectively prevents the loss of critical features that are indicative of vulnerability
patterns.

• An extended-tree-structured neural network called ERvNN has been designed, which
can effectively encode the semantics implied in the abstract syntax tree. With a GRU-
style aggregation optimization on the tree nodes, it supports the straightforward and
efficient encoding of multi-way tree structures, which otherwise should be firstly
converted to the binary tree form.

• Extensive experiments were conducted to evaluate the performance of S2FVD. The re-
sults demonstrated that S2FVD outperformed existing state-of-the-art DL-based meth-
ods in terms of accuracy, F1 score, precision, and recall when detecting the presence of
vulnerabilities and pinpointing the specific vulnerability types. Moreover, ablation
studies confirmed the effectiveness of the devised ERvNN for encoding AST and the
strategy of representation fusion for enhancing the performance of S2FVD.

• A new dataset has been constructed to facilitate vulnerability detection research.
The dataset consists of 25,333 C functions, each of which is well labeled with ei-
ther a specific CWE ID indicating a vulnerability or a non-vulnerable ground truth.
The source implementation of the S2FVD has also been made publicly available at
https://github.com/lv-jiajun/S2FVD (accessed on 22 May 2023) to facilitate future
benchmarking and comparisons.

The rest of this paper is structured as follows. Section 2 presents a review of closely
related works. Section 3 delves into the essential designs of the S2FVD by discussing the
specific encoding of each distinct raw code view and the fusion strategies. The experimen-
tal evaluation details regrading the experimental setup, the evaluation results, and the
observations of the S2FVD and the comparison methods are outlined in Section 4. Section 5
discusses possible threats to validity issues, the limitations, and some interesting future
works to extend. Finally, Section 6 concludes this work.

2. Related Work

The closely related vulnerability detection methods, which broadly fall into the fol-
lowing three categories, including code similarity-based methods [10,11], static-rule-based
methods [12], and learning-based methods [13,14], are mainly discussed. Also, in introduc-
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ing these methods, we focus more on the deep-learning-based ones. It should be noted
that this is not a survey paper. Thus, the other types of vulnerability detection methods,
which focus on binary code [15,16], examine executing dynamic analysis [17], or review
formal semantic analysis [18,19] (e.g., model checking and symbolic execution), are not
delved into.

2.1. Code-Similarity-Based Methods

Code-similarity-based vulnerability detection relies on the core idea that source code
exhibiting high similarity is likely to share vulnerabilities [20,21]. However, while this
approach can effectively identify vulnerabilities introduced through code cloning, it suffers
from high rates of false negatives when it is used to detect other types of vulnerabilities not
resulting from code cloning [22,23].

2.2. Rule-Based Methods

The static-rule-based methods involve scanning the target source code using a multi-
tude of meticulously defined vulnerability rules or patterns. Prominent examples of typical
static analyzers in this category include Infer [24], CodeChecker [25], and Checkmarx [26].
One of the main issues is that the vulnerability rules defined by human experts are often
subjective, making it challenging to consider all possible scenarios that distinguish between
vulnerabilities and non-vulnerabilities [27,28]. As a result, this approach may lead to a high
rate of false positives and false negatives.

2.3. Learning-Based Methods

These methods can be broadly categorized as traditional machine- or deep-learning-
based, depending on whether expert-defined features are required.

2.3.1. Conventional Machine Learning-Based Methods

Early works [29,30] typically utilized traditional machine learning algorithms for
training detection models. These models rely on representative features that are engineered
by experts such as code complexity metrics, code churns, imports and calls, and developer
activities [31]. Nevertheless, these engineered features are often inadequate in indicating the
presence of vulnerabilities. Additionally, most existing methods are restricted to in-project
vulnerability detection, rather than providing general-purpose solutions.

2.3.2. Deep-Learning-Based Methods

Deep-learning-based methods, on the other hand, leverage the powerful feature
learning capabilities of deep neural networks to automatically extract vulnerability patterns
or features without requiring manual definition from experts [32]. The majority of deep-
learning-based detection research concentrates on sequence-based code representation
learning. For example, Russell et al. [7] developed a lexical analyzer to transform C/C++
functions into corresponding token sequences. These sequences were subsequently input
into CNN and RNN models for training and then applied to detect code vulnerability.
Li et al. created VulDeePecker [33], which is a vulnerability detection system based on
deep learning. This system generates code gadgets (i.e., sets of control or data-dependent
statements) that are lexically analyzed to establish token sequences, which are then fed into
neural networks for vulnerability detection purposes. Later, Li et al. proposed SySeVR [8],
which is a system framework for detecting vulnerabilities in C/C++ source code. This
framework is primarily focused on obtaining code sequences that capture both syntactic
and semantic information to achieve vulnerability detection.

Since sequence-based code representation overlooks the syntactic structure and control
flow information inherent in source code, some research on code vulnerability detection
has resorted to trees or graphs as code representations, as well as employing corresponding
neural network models to learn semantic information within the code. For instance,
Dam et al. [34] parsed a source code file into an abstract syntax tree and employed the
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Tree-LSTM model to detect vulnerabilities within files. Zhou et al. [9] introduced Devign,
which is a graph neural network (GNN) model that bases its composite code representation
on the abstract syntax tree. Devign encodes various data and control dependencies to create
a joint graph, which is subsequently input into GNNs to detect source code vulnerability.
Li et al. [35] deployed a program dependence graph as the code representation and used a
FA-GCN (graph convolution network with feature attention) to classify the graph, thereby
achieving the successful detection of code vulnerabilities.

However, the single-representation-based method has difficulty in capturing the
complete semantic information in the code, thus leading to higher rates of both false
positives and false negatives. To address this issue, multiple distinct code representations
are extracted, while adaptive deep neural network models are selected or devised to encode
the different aspects of the function semantics. By retrieving the deeply implied semantic
features and fusing them organically, more comprehensive vulnerability indicative features
are obtained that lead to enhanced code vulnerability detection performance.

3. The Approach

The structural overview of the proposed approach is illustrated in Figure 1, wherein a
function serves as the fundamental analysis unit, as opposed to an entire program, to assure
a moderate detection granularity. S2FVD first extracts and normalizes the token sequence,
the ACFG, and the AST of the function as three raw code views of the function by parsing
its lexical attributes and syntax. Next, word embedding is performed to derive initial vector
representations for the tokens in the token sequence, the nodes in the ACFG, and the nodes
in the AST. Subsequently, the vulnerability-indicative semantic features implied in each
code view are captured using carefully selected or improved neural networks. Specifically,
the token sequence is encoded using DPCNN, the ACFG is encoded using GAT, and the
AST is encoded using an improved RvNN that is extended to support multi-way tree
structures. Furthermore, these semantic features learned by these models are integrated in
various ways to facilitate fusion. Finally, the fused vectors are classified in the classification
layer to identify the presence of vulnerabilities or the specific vulnerability type.
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Figure 1. The overall architecture of S2FVD for vulnerability detection.

3.1. Semantic Encoding of Token Sequence

This section details the process of extracting semantic features from the token sequence.
It covers the extraction and normalization of the token sequence from a function, as well as
the specific neural network model employed to capture its semantics.
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3.1.1. Token Sequence Preparation

The token sequence is processed in a manner similar to that performed in natural
language processing. Such processing takes into account the natural order of the source
code and reflects the programming logic embodied within the code to a significant degree.

Figure 2 presents the process of transforming a function into a token sequence, which
entails the following operations. (1) Comment removal: Comments, being unrelated to
code vulnerability, are removed from the function. (2) Code normalization: this involves
screening self-defined variable and function names and replacing them with uniform names
to remove semantically irrelevant information. Variables and function names within a
function are mapped to corresponding symbol names in the order of their occurrence.
For example, “VAR1” and “VAR2” represent different variables within the same function,
and “FUN1” and “FUN2” represent different function names within the same program.
Literals in strings are also removed, leaving only quotation marks. (3) Finally, lexing is
performed to convert the pre-processed function into an ordered sequence of tokens, such
as identifiers, keywords, operators, and symbols.

5 西安邮电大学

研究内容--数据集处理

Mapping user-defined 

variables and functions
Output: token sequence

Input: source code Delete comment

void function(char * data)

{

char dataBuffer [100];

if ( data == NULL )

data = "lsls";

/* string copy*/

strcpy(dataBuffer, data); 

}

['void', 'FUN1', '(', 'char', '*', 

'VAR1', ')', '{', 'char', 'VAR2', 

'[', '100', ']', ';', 'if', '(', 'VAR1', 

'==', 'NULL', ')', 'VAR1', '=', 

'""', ';', strcpy ', '(', 'VAR2', ',', 

'VAR1', ')', ';', '}']

void function(char * data)

{

char dataBuffer [100];

if ( data == NULL )

data = "lsls";

strcpy(dataBuffer, data); 

}

void FUN1(char * VAR1)

{

char VAR2 [100];

if (VAR1 == NULL )

VAR1 = "";

strcpy(VAR2, VAR1);

}

Figure 2. The process of transforming a function into a token sequence.

3.1.2. Sequence Encoding Network

The DPCNN [36] is well-known for its capability of capturing the long-range asso-
ciations in sequences by augmenting the network depth. Given the fact that the token
sequence of a function can be lengthy, the DPCNN model was adopted for extracting
vulnerability-indicative features from the token sequence.

To detect whether a function is vulnerable using a learning model, it is necessary to
convert the token sequence into a numerical vector. This facilitates the processing of the
input for subsequent classifiers. In this regard, we employed the word2vec algorithm [37],
which is a popular choice for producing high-quality token embeddings to convert these
tokens into vectors, which are then fed into subsequent models for learning [38].

Figure 3 depicts the feature extraction of the token sequence through the DPCNN.
On the basis of the token embedding obtained, each token sequence can be initially con-
verted into a feature matrix A.

A = [e1, e2, . . . , ei, . . . , el ]
T ∈ Rl×d, (1)

where eiεRd is the corresponding embedding of the ith token in the input sequence, l is the
length of the token sequence, and d is the dimension of the token embedding. Specifically,
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in the implementation, the dimensions of the token embedding and length are set to 100
and 500, respectively.
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Figure 3. DPCNN-based semantics feature extraction from token sequences.

Subsequently, the region embedding operation is executed, where the token embed-
ding matrix undergoes convolution processing using m filters with the dimensional size
of n× d. This generates a regional embedding capable of spanning multiple tokens. In
the network implementation, n was set at 3 and m was set at 250. Two convolutional
layers are then designated as convolutional blocks to conduct equal-length convolution
operations, with the number of convolution filters and the size of the convolution kernels
being fixed at 250 and 3, respectively. Following each convolutional block, a max pooling
operation is performed with a stride size of two to compress the internal representation
size of each function by half, thereby reducing the computational time for the subsequent
convolution computations.

In addition, when initializing the DPCNN model, the initial weight values of each
layer are typically small, which can impede the propagation of gradients. To address
this issue, shortcut connections [39] were utilized, where the output obtained after the
region embedding was added directly to the output obtained after the two equal-length
convolution operations. The aggregated result is then passed as input to the subsequent
layer of the network. Such connections help mitigate the impacts of small initial weights
on each layer and prevent gradient vanishing. Formally, the shortcut optimization is
defined as:

y = x + f (x), (2)

where y denotes the output derived from two equal-length convolutions, and f (x) is the
input for the subsequent network layer.

Finally, the equal-length convolution and pooling operation are performed repeatedly
to yield a single vector, which is then fed into a fully connected layer to obtain the feature
vector Vtoken of the corresponding token sequence after undergoing linear transformation.

3.2. Semantic Encoding of ACFG

This section outlines the process of extracting semantic features from the ACFG. It
includes the ACFG extraction process, as well as the graph neural network model used to
encode its semantics.

3.2.1. ACFG Preparation

The control flow graph (CFG) is a commonly used code representation structure in the
field of program analysis that implies semantic information regarding control dependencies
between code elements. Additionally, the program statements within the control flow nodes
are abstracted to assign attribute information to the nodes, thus enabling the construction of
an attributed control flow graph (ACFG). This alternative code view of functions is able to
capture not only the dependencies of control flow nodes, but also the attribute information
associated with program statements.
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The ACFG is a directed graph that can be represented as G = (V, E, A), where V and
E denote sets of vertices and edges, respectively, and A represents the set of attributes
associated with each vertex in the graph. In the context of code vulnerability detection,
each vertex corresponds to a node in the control flow graph, and each edge represents the
control flow of the code. The attributes assigned to each node in the ACFG consist of both
the node type and the specific program statement it represents. For instance, the node
shown in Figure 4 with the “<operator>.equals” type signifies a logical operation, while
the string “data==null” corresponds to the detailed program statement within the node.

(METHOD, function)

(<operator>.equals, data == NULL)

(<operator>. assignment, 

data = “lsls”)

(strcpy, strcpy(dataBuffer, data)

(METHOD_RETURN, void)

Figure 4. An illustrative example of the attributed control flow graph.

Similarly, to facilitate the handling of node attributes in the subsequent encoder
network, a lexical analysis is conducted to convert node attributes into token sequences.
For instance, the node attributes “strcpy, strcpy (dataBuffer, data)” can be represented as a
sequence of eight tokens, i.e., “strcpy”, “,”, “strcpy”, “(”, “dataBuffer”, “,”, “data”, and “)”.
Specifically, to extract the attributed control flow graph from the source code of C functions,
the widely used open-source tool Joern [40] is utilized.

3.2.2. Graph Encoding Network

To deal with the ACFG, either a graph attention network (GAT) [41] or a graph convo-
lutional network (GCN) [42] can be leveraged for its representation learning. The essence of
both GAT and GCN is to generate more expressive representations for nodes by aggregating
features from their own nodes alongside their neighboring nodes. Different from GCN,
the GAT model assigns different weights to different nodes in the same neighborhood,
which is believed to promote more effective integration of the inter-node feature corre-
lations and ultimately enhances overall feature extraction performance. Therefore, GAT
was selected as the base neural network structure for extracting semantic features from
the ACFG.

In order to effectively extract the semantic information contained in the individual
nodes, the TextCNN model, which is particularly well-suited for capturing the distinct
features of tokens by applying different convolution kernels, is used to extract the initial
features of the nodes in the ACFG. Specifically, the token sequence that corresponds to
the attributes of each node is transformed into a feature matrix N ∈ Rw×k, where w
is the token embedding dimension, and k represents the length of the token sequence.
Thereafter, feature extraction is carried out via convolution kernels of sizes two, three,
and four, respectively. Since the feature maps obtained from convolution kernels of different
sizes may have different dimensions, a pooling function is employed to standardize their
dimensions. Finally, the resulting representations are concatenated and transformed into
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output features through a fully connected layer. These features serve as the initial features
for the nodes in the graph, which are then processed by the GAT model.

Figure 5 illustrates the ACFG feature extraction structure built on the GAT. The vector
VECi produced by TextCNN served as the initial hidden state of node Bi. These initial
hidden states were organized into an n × m-dimensional feature matrix X, while the
connections between nodes constituted an n × n-dimensional matrix A, known as an
adjacency matrix. Here, n denotes the number of nodes, and m denotes the dimension
of each node’s initial hidden state. X and A were fed as inputs into the GAT model for
attention-enhanced hidden feature aggregation, which can be formally expressed as follows:

X(l+1) = f (X(l), A) (3)

x(l+1)
i = ||Kk=1σ(∑

jεNi

ak
ijW

kx(l)j ) (4)

where Xl is the hidden state of the nodes at layer l, x(l+1)
i is the hidden state of node i at

layer l + 1, x(l)j is the hidden state of all the neighboring nodes of node i at layer l, Wk

denotes the corresponding linear transformation matrix for input features, and ak
ij denotes

the weights for the kth group of attention mechanisms.

𝐵𝑖

ACFG

𝑥𝑖
0 = 𝑉𝐸𝐶𝑖

…

…

𝑥𝑖
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𝑁
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Readout

Vector representation 

of the ACFG

𝑉𝑎𝑐𝑓𝑔

Figure 5. GAT-based semantic feature extraction from ACFG.

In the specific implementation, S2FVD features a two-layer GAT structure. The first
layer consists of multi-head attention, and the second layer consists of single-head attention.
The utilization of multiple attention layers facilitates effective learning of the deep semantic
features. As such, three independent groups of attention mechanisms are employed in the
first layer, and their outputs are subsequently concatenated to obtain x1

i . For the readout
operation, the graph representation Vac f g is computed by taking the mean of the node
representations as follows:

xg =
1
N

N

∑
i=1

xi (5)

where N denotes the number of nodes in the ACFG, and xi is the feature vector of node i.

3.3. Semantic Encoding of AST

This section presents the details for extracting semantic features from the AST. This
encompasses the AST preparation phase and the proposed extended tree-structured neural
network, which endorses the direct encoding of multi-way tree structures through a GRU-
style aggregation optimization for the tree nodes.

3.3.1. AST Preparation

The Abstract Syntax Tree [43] is another widely used code representation in program
analysis, where the primary code elements (e.g., variable types, symbols, and operators)
constitute its leaves, and the defined set of code structures (e.g., expressions and loops)
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constitutes its non-leaf nodes. The AST depicts both the lexical information and the syntactic
structures of the source code [44].

Other code representations such as a program dependency graph (PDG) are artificially
constructed and tend to emphasize specific facets of the code (e.g., dependencies between
statements), which may suffer from semantic distortion or loss when representing incom-
plete or non-compilable code fragments. By contrast, the AST stands out as a lossless code
representation that preserves the naturalness of the code, thereby yielding more compre-
hensive and precise semantics than these other representations. Furthermore, a previous
investigation [45] has suggested that the AST is a superior code representation for detecting
vulnerabilities. Specifically, to acquire the ASTs for functions, the well-established C
parsing library Pycparser [46] is utilized. Figure 6 illustrates an instance of the parsed AST.

FuncDef

Decl Compound

FuncDecl

function ParamList

data char

void

Decl

ArrayDecl

dataBuffer char 100

…………

…………

…………

PtrDecl

Figure 6. An illustrative example of AST.

3.3.2. Tree Encoding Network

Recursive neural networks (RvNNs) were adopted to extract features from tree-
structured data. Their core idea is to recursively generate feature vectors for each node in
the tree by aggregating the features of its child nodes. However, a standard tree-structured
RvNN [47] only deals with binary trees and cannot directly handle the typical multi-way
tree structure of ASTs. Thus, this work extended the aggregation operation to support
multiple child nodes as inputs, which we referred to as the Extended Recursive Neural
Network (ERvNN). The ERvNN served as the neural network model for encoding the
semantics from ASTs.

Let us consider an abstract syntax tree T = {V, E}, where V and E denote its node
and edge sets, respectively. For a given node vi ∈ V, let Si denote its immediate child
nodes. Then, the hidden state of the node vi is computed through a GRU-style neural unit
by integrating the semantic information of both the child nodes and the node vi itself. This
computation can be formulated as:

ri = σ(WrhS + Urei + br), (6)

zi = σ(WzhS + Uzei + bz), (7)

h̃i = tanh(Wh(ri � hS ) + Uhei + bh), (8)

hi = zi � hS + (1− zi)� h̃i, (9)

where hS signifies the semantics aggregated from the children by max pooling the hidden
states of all the nodes in Si; σ represents the sigmoid activation function; � denotes the
element-wise product operation, Ws, Us, and bs are the weights and biases that need to
be learned during the model training process, respectively; ei is the embedding vector
that corresponds to the token in node vi, which can be obtained via looking up the token
embeddings that have been pre-trained with the word2vec algorithm.

After iteratively calculating the hidden state of each node in the AST using ERvNN
in a bottom-up way, the hidden state of its root node is taken as the AST’s final semantic
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vector representation. In this regard, given an AST, its semantic encoding can be denoted
as Vast = hv0 , where hv0 is the hidden state of the AST’s root node. Figure 7 illustrates the
layer-by-layer semantic aggregation process for encoding the entire tree.

Vdata Vchar

……… ………

VPtrDecl

VFuncDef

hi hi+1

hn

hroot

Figure 7. ERvNN-based semantic feature extraction from AST.

3.4. Multi-View Fusion

To capture more comprehensive semantic information from the program code—the se-
mantic vector Vac f g that is obtained using the GAT on the attributed control flow graph—
the semantic vector Vtoken that is obtained using the DPCNN on the function token sequence,
and the semantic vector Vast that is obtained using the proposed ERvNN on the abstract
syntax tree, are further fused.

There are various strategies for fusing the vectors, and, in this work, five widely-used
approaches were considered, including point-by-point addition, concatenation, average
pooling, max pooling, and non-linear fusion with a multiple layer perceptron (MLP). These
strategies were empirically evaluated to determine the best one for our task. Formally,
the fused representations can be computed as:

Vadd = {vi|vi = Vi
token + Vi

ac f g + Vi
ast, i = 1, 2, . . . , n} (10)

Vavg = {vi|vi = avg(Vi
token, Vi

ac f g, Vi
ast), i = 1, 2, . . . , n} (11)

Vmax = {vi|vi = max(Vi
token, Vi

ac f g, Vi
ast), i = 1, 2, . . . , n} (12)

Vcon = [Vtoken; Vac f g; Vast] (13)

Vmlp = MLPθ [Vtoken; Vac f g; Vast] (14)

where Vadd, Vavg, Vmax, Vcon, and Vmlp denote the fused vector obtained with the point-by-
point addition strategy, the average pooling, the max pooling, the concatenation strategy,
and the MLP, respectively. It is worth emphasizing that the addition, average, and max pool-
ing operations between the participant vectors require the same dimensionality. In the spe-
cific implementation, the dimensions of the extracted feature vectors Vtoken, Vac f g, and Vast
were all equal to 192, which otherwise should be padded to the same length accordingly.

4. Experiments and Evaluations

To evaluate the effectiveness of S2FVD, the following research questions were explored:

• RQ1: Impacts of the Fusion Strategies—which fusion strategy, as discussed in Section 3.4,
most effectively blends the semantic features collected from the distinct code perspec-
tives for S2FVD to deliver its best vulnerability detection performance?

• RQ2: Performance Comparison with Baseline Methods—how does the performance
of S2FVD compare to the baseline methods in detecting the presence of vulnerabilities,
as well as pinpointing the specific vulnerability types?



Electronics 2023, 12, 2495 11 of 20

• RQ3: Substitutional Study—how does S2FVD behave when its constituent neural
network structures are substituted with other typical neural networks?

• RQ4: Ablation Study—does fusing multiple semantic features captured from distinct
code views help boost the vulnerability detection performance compared with using
part of them?

4.1. Experimental Setup

The datesets used for the evaluation, the experiment settings regarding the model
training and testing, the baseline methods against which S2FVD were compared against,
as well as the evaluation metrics, are described in this section.

4.1.1. Datasets

To evaluate the proposed method, we constructed a dataset consisting of C functions on
the basis of the Software Assurance Reference Dataset (SARD) [48], which is a vulnerability
database that is widely used as a source for producing experimental samples. The programs
in SARD consist of a blend of academic, production, and synthetic code, with each program
categorized as “bad”, “good”, or “mixed”. Typically, each “bad” program contains one
vulnerable function, while each “good” program comprises fixed or patched non-vulnerable
functions. A “mixed” program contains both a vulnerable function and its patched versions
within a single program.

The C source file is typically composed of a header file, macro definition statements,
and multiple functions. To generate the function samples, the ANTLR tool [49] was used
to parse the raw C source files. Initially, the source file is read, and macro expansion is
performed during preprocessing to replace macro names with strings, as macros may
contain vulnerability-related information. Subsequently, the source file is transformed into
the ANTLR file stream format, which serves as input for the subsequent lexical analysis
phase. Given that C programs were being dealt with, CPP14Lexer was used for lexing,
thereby producing a sequence of matching tokens. The token sequence was then passed to
the parser for syntactic analysis, which converts the program into a syntax tree to facilitate
the extraction of the hierarchical structure of the program. During the syntax tree traversal,
each node was examined, and an instance with the type of “FunctionDefinitionContext”
was marked as the root node of a function subtree. By traversing the subtree in a depth-first
manner, the specific source code regarding the function within the source file could be
extracted.

Finally, a total of 13,541 non-vulnerable functions and 11,792 vulnerable functions
were gathered, which are scattered in 26 distinct types of vulnerabilities. Table 1 presents
in detail the number of functions that locates in each vulnerability type, along with their
corresponding labels, from the set of 11,792 vulnerable functions.

Table 1. The number of vulnerable functions corresponding to different vulnerability types.

CWE ID Number Label CWE ID Number Label

CWE78 1243 0 CWE197 231 13
CWE90 142 1 CWE252 205 14

CWE114 166 2 CWE253 329 15
CWE121 1599 3 CWE369 233 16
CWE122 1135 4 CWE400 195 17
CWE124 485 5 CWE401 361 18
CWE126 407 6 CWE427 136 19
CWE127 485 7 CWE457 259 20
CWE134 530 8 CWE590 233 21
CWE190 1138 9 CWE606 160 22
CWE191 881 10 CWE690 320 23
CWE194 297 11 CWE761 190 24
CWE195 297 12 CWE789 135 25
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Since the programs in SARD are basically synthetic, we also evaluated S2FVD and
the comparison works against a real-world vulnerability dataset called D2A [50]. This
dataset was curated by the IBM research team from multiple popular open-source software
projects, including FFmpeg, httpd, Libav, LibTIFF, Nginx, and OpenSSL.

4.1.2. Experiment Settings

To conduct the experiments, both datasets were partitioned into the training, valida-
tion, and testing sets using an 8:1:1 proportion. The models were then trained with an
initial learning rate of 1× 10−3, which was reduced by 0.8 after every 10 epochs using
the Adam optimizer and a batch size of 16. In each epoch, the training set was shuffled,
and accuracy on the validation set was computed. The early stopping mechanism was
used to halt the training when the validation accuracy did not improve after 5 epochs.
The model that achieved the best accuracy was then selected as the final detection model,
which was used to evaluate the performance on the testing set. All the experiments were
conducted on two Linux servers, each equipped with two 2.1 GHz Intel Xeon Silver-4310
CPUs, 128 GB RAM, and two NVIDIA RTX3090 GPUs.

4.1.3. Baseline Methods

Three state-of-the-art deep-learning-based vulnerability detection methods, includ-
ing VulDeePecker, SySeVR, and Reveal, were used as the comparison baselines. A brief
overview of them is presented below:

• VulDeePecker proposes to extract code gadgets, which are comprised of code state-
ments that exhibit control dependency relationships with respect to certain code
elements of interest (such as library/API calls and array usage), to represent programs.
Recurrent neural networks are then trained on these gadgets to detect vulnerabilities.

• SySeVR further enriches the concept of code gadgets. It proposes SeVCs (semantic-
based vulnerability candidates) to represent the code by taking into account the data
dependencies among the code statements in addition to the control dependencies.

• Reveal is an approach that operates on the graph-based representation of code known
as the code property graph (CPG). It uses a GGNN (gated graph neural network) to
extract features that are indicative of vulnerabilities present in the code.

4.1.4. Evaluation Metrics

As with most existing learning-based methods for vulnerability detection, the widely
used metrics of accuracy, precision, recall, and F1-score were adopted to evaluate the
performance of S2FVD and the comparison methods. It should be noted that “Accuracy”
denotes the overall accuracy, while “Precision”, “Recall”, and “F1-score” correspond to
the weighted-averages of precision, recall, and F1-score, respectively, in the experiments
involving the detection of vulnerability types.

To be specific, let k denote the class label, let {c1, c2, · · · , ck} denote the number of
function samples for each class, and let

{
c′1, c′2, · · · , c′k

}
be the number of functions whose

corresponding class was accurately classified by the classifier. The accuracy can be defined
as follows:

Accuracy =
∑k

i=1 c′i
∑k

i=1 ci
(15)

Let {p1, p2, · · · , pk}, {r1, r2, · · · , rk}, and { f1, f2, · · · , fk} be the precision, recall, and
F1-score values computed with respect to the k classes, respectively. The weighted-average
precision, recall, and F1-score can be defined as:

Precision =
k

∑
i=1

ci

∑k
j=1 cj

pi, Recall =
k

∑
i=1

ci

∑k
j=1 cj

ri, F1 =
k

∑
i=1

ci

∑k
j=1 cj

fi (16)
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4.2. Experimental Results

The subsequent sections cover the experimental findings pertaining to the research
questions as discussed at the beginning of Section 4.

4.2.1. RQ1: Impacts of the Fusion Strategies

To identify the most effective fusion strategy that best enhanced the vulnerability
detection capability of S2FVD, its performances under different fusion strategies were
evaluated in this experiment.

As summarized in Table 2, the values of the performance metrics, S2FVDmlp, which
resorted to a MLP for feature fusion, outperformed the alternative models that adopted the
other fusion strategies, in both the vulnerability presence detection and in the vulnerability
type detection task. This can be attributed to several reasons: Firstly, the concatenation of
the feature vectors preserved more semantic information than straightforwardly averaging
or adding them in a point-by-point manner, as the extracted code representations provided
complementary descriptions of the functions from both the sequence and structure per-
spectives; Additionally, the non-linear fusion capability provided by the MLP empowered
S2FVD to pay more attention to the vulnerability indicative features from the concatenated
vectors, which, therefore, made it more advantageous for vulnerability detection.

Table 2. Impacts of the fusion strategies on the vulnerability detection capability of S2FVD.

(a) Performance on Vulnerability Presence Detection

Method Dataset Accuracy F1 Precision Recall

S2FVDadd

SARD

96.04 96.11 96.34 95.88
S2FVDcon 96.58 96.58 96.99 96.17
S2FVDavg 96.30 96.30 96.63 95.98
S2FVDmax 97.28 97.28 97.63 96.93
S2FVDmlp 98.07 98.14 98.41 97.88

S2FVDadd

D2A

58.97 58.12 56.46 59.88
S2FVDcon 58.87 61.04 60.00 62.12
S2FVDavg 58.10 55.99 52.85 59.53
S2FVDmax 60.69 66.17 71.61 61.50
S2FVDmlp 63.02 68.99 76.30 62.95

(b) Performance on Vulnerability Type Detection

Method Dataset Accuracy Weighted F1 Weighted Precision Weighted Recall

S2FVDadd

SARD

95.19 95.04 95.26 95.19
S2FVDcon 96.49 96.49 96.54 96.49
S2FVDavg 96.02 96.02 96.19 96.02
S2FVDmax 97.11 97.11 97.15 97.11
S2FVDmlp 97.93 97.94 97.97 97.93

As one may have noticed, the fusion process utilizing the MLP can alter the dimen-
sionality of the semantic encoding vectors. Intuitively speaking, the output vector with
an improperly small size could lead to the loss of subtle code semantics. On the other
hand, retaining an approximate dimension as the input vector does not necessarily improve
the fusion effect, but it does increase the computational costs. Therefore, in order to gain
insight into the effects of this hyper-parameter on the fusion process, the detection perfor-
mances of S2FVDmlp parameters were evaluated by varying the dimensionality of the fused
semantic vectors. As illustrated in Figure 8, S2FVDmlp exhibited optimal performance
at a dimensionality of 192. Thus, for the sake of simplicity, in the following experiments,
unless explicitly stated, S2FVD will always refer to S2FVDmlp, with the fused vector’s
dimensionality set to 192.
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Figure 8. Dimensionality impacts of the fused vector on the detection performance.

4.2.2. RQ2: Performance Comparison with Baseline Methods

In this experiment, the efficacy of S2FVD in either detecting the presence of vulnerabil-
ities or in pinpointing the specific vulnerability types was assessed and compared with the
SOTA baseline approaches, as discussed in Section 4.1.3. The evaluation results are pre-
sented in Table 3. As the metric values show, S2FVD demonstrated a performance that was
superiority regarding both the vulnerability detection tasks and in terms of all the metrics.
This indicates S2FVD’s ability to effectively capture the significant vulnerability features
encoded in the fused semantic vectors in a more comprehensive and precise manner.

Table 3. Performance comparison with the DL-based baseline methods.

(a) Performance regarding vulnerability presence detection

Method Dataset Accuracy F1 Precision Recall

VulDeePecker

SARD

95.06 95.01 95.41 94.62
SySeVR 96.57 96.67 96.88 96.46
Reveal 96.55 96.42 96.64 96.21
S2FVD 98.07 98.14 98.41 97.88

VulDeePecker

D2A

56.47 60.86 66.11 56.39
SySeVR 60.50 60.76 59.74 61.82
Reveal 60.12 58.65 55.24 62.50
S2FVD 63.02 68.99 76.30 62.95

(b) Performance on Vulnerability Type Detection

Method Dataset Accuracy Weighted F1 Weighted Precision Weighted Recall

VulDeePecker

SARD

95.38 95.34 95.60 95.38
SySeVR 96.20 96.08 96.34 96.20
Reveal 95.79 95.69 95.97 95.79
S2FVD 97.93 97.94 97.97 97.93

Specifically, regarding vulnerability presence detection, S2FVD achieved a leading
accuracy of 98.07% and an F1-score of 98.14% for the SARD dataset, as well as an accuracy
of 63.02% and and F1-score of 68.99% for the D2A dataset. For the vulnerability type
detection task, where the methods are required to identify the specific vulnerability type
present in the vulnerable code, S2FVD again demonstrated the best performance among the
comparison methods, with an accuracy of 97.93% and an F1-score of 97.94%. In addition,
it can be observed that the performance results of the DL-based approaches on the D2A
dataset were much lower than on the synthetic dataset, thereby suggesting that detecting
vulnerabilities in real-world programs is still challenging, due to the more intricate and
varied code contexts that vulnerabilities reside in. However, S2FVD exhibited promising
performance gains compared to other DL-based methods, with an average improvement in
detection accuracy and F1-score of 6.86% and 14.84%, respectively. This emphasizes the
potential of S2FVD in detecting vulnerabilities, even in much more complex code contexts.
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Table 3 shows that S2FVD exhibited generally superior performance compared to the
baseline methods, as evidenced by the metric values. To further verify whether this perfor-
mance difference was statistically significant, the Wilcoxon rank sum test and t-test were
enforced between S2FVD and each of the baseline methods using 5 × 2 cross-validation.
The p-values for accuracy and the comprehensive metric F1-score are presented in Table 4.
It can be observed that none of the p-values exceeded 0.05 for either test, thereby indicat-
ing that there was a statistically significant difference between S2FVD and the baseline
methods.

Table 4. Statistical significance testing between S2FVD and the baseline methods.

(a) Results for vulnerability presence detection

Dataset Method Pair Wilcoxon Random-sum t-test
Acc. p-value F1 p-value Acc. p-value F1 p-value

SARD
S2FVD vs. VulDeePecker 0.0090 0.0090 0.0003 0.0008

S2FVD vs. SySeVR 0.0163 0.0163 0.0123 0.0139
S2FVD vs Reveal 0.0090 0.0090 0.0002 0.0004

D2A
S2FVD vs. VulDeePecker 0.0090 0.0162 0.0001 0.0308

S2FVD vs. SySeVR 0.0090 0.0472 0.0001 0.0280
S2FVD vs. Reveal 0.0090 0.0125 0.0004 0.0362

(b) Results on Vulnerability Type Detection

SARD
S2FVD vs. VulDeePecker 0.0090 0.0090 0.0002 0.0002

S2FVD vs. SySeVR 0.0080 0.0080 0.0004 0.0003
S2FVD vs. Reveal 0.0090 0.0090 0.0002 0.0002

4.2.3. RQ3: Substitutional Analysis

In this section, we conducted substitutional experiments by replacing the constituent
neural network structures used in S2FVD to extract semantic features from the different code
views with other typical neural networks. Specifically, we selected three other sequence-
oriented models, including TextCNN, TextRNN, and Transformer [51], to encode the token
sequences, in addition to the originally adopted DPCNN in S2FVD. These models are well-
known for their superior feature capturing capability in handling sequences. For extracting
features from the ACFG, a graph convolution neural network (GCN) was regarded as the
substitute of the GAT for performance comparison. For extracting features from the AST,
TBCNN [52] was selected as the substitute of the original ERvNN for comparison.

The results obtained on the vulnerability datasets, as shown in Table 5, indicate that
the combination of the encoding models utilized in S2FVD resulted in the best performing
vulnerability detection model, and substituting different parts of it with the listed alterna-
tives led to varying degrees of performance degradation. Additionally, the metric values of
S2FVDTBCNN , where TBCNN was substituted for ERvNN to encode the AST, suggest that
our designed ERvNN can capture the semantics implied in the AST more effectively.

4.2.4. RQ4: Ablation Study

To ascertain whether the fusion of multiple semantic vectors encoded from the distinct
code views contributes to the enhanced performance of S2FVD in detecting vulnerabilities
compared to utilizing only a subset of them (i.e., utilizing a single vector or the vector fused
from any two code views), an ablation study was conducted in this experiment.

In Table 6, the experimental results show that the overall performance of S2FVD sur-
passed the alternative models that only fuse semantic vectors extracted from two types
of code views. Moreover, these alternative models outperform the ones that solely utilize
the semantic vector obtained from a single code view. The progressive improvement in
performance as the number of distinct code views was increased indicates the effectiveness
of the fusion strategy in combining the semantic features extracted from diverse aspects of
the code. These findings also suggest that, when the model is trained with fewer represen-
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tations, it may struggle to fully comprehend the semantic information implied in the code,
thereby resulting in inferior detection outcomes. It can also be inferred that there may be
some degree of semantic overlap between the features extracted from the token sequence,
the attributed control flow graph, and the abstract syntax tree. However, by additionally
identifying and fusing the disjointed parts of these features, the vulnerability detection
capability of the model was substantively enhanced.

Table 5. Substitutional analysis of the constituent neural network structures in S2FVD.

(a) Performance for vulnerability presence detection

Method Dataset Accuracy F1 Precision Recall

S2FVDTextCNN

SARD

96.53 96.61 96.79 96.44
S2FVDTextRNN 96.96 96.69 97.03 96.35
S2FVDTrans f ormer 97.18 97.04 97.26 96.82
S2FVDGCN 96.26 96.35 96.69 96.02
S2FVDTBCNN 97.58 97.78 97.94 97.62
S2FVD 98.07 98.14 98.41 97.88

S2FVDTextCNN

D2A

60.57 63.73 67.56 60.31
S2FVDTextRNN 60.41 63.96 67.97 60.40
S2FVDTrans f ormer 61.05 64.13 66.07 62.31
S2FVDGCN 61.00 62.92 64.09 61.79
S2FVDTBCNN 62.15 63.15 63.90 62.42
S2FVD 63.02 68.99 76.30 62.95

(b) Performance for vulnerability type detection

Method Dataset Accuracy Weighted F1 Weighted Prec. Weighted Rec.

S2FVDTextCNN

SARD

96.20 96.24 96.39 96.20
S2FVDTextRNN 95.94 95.99 96.16 95.94
S2FVDTrans f ormer 96.32 96.35 96.53 96.32
S2FVDGCN 96.09 96.14 96.29 96.09
S2FVDTBCNN 96.24 96.25 96.48 96.24
S2FVD 97.93 97.94 97.97 97.93

Table 6. Ablation study of the semantic vectors encoded from the distinct code views.

(a) Performance for vulnerability presence detection.

Method Dataset Accuracy F1 Precision Recall

S2FVDDPCNN

SARD

87.95 89.15 92.31 86.20
S2FVDGAT 88.60 88.58 90.65 86.60
S2FVDERvNN 89.06 90.35 97.01 84.55
S2FVDDPCNN+GAT 92.12 91.99 91.66 92.33
S2FVDDPCNN+ERvNN 92.67 92.47 92.21 92.74
S2FVDGAT+ERvNN 94.33 94.20 93.88 94.53
S2FVD 98.07 98.14 98.41 97.88

S2FVDDPCNN

D2A

56.95 49.94 42.59 60.38
S2FVDGAT 57.62 58.22 58.56 57.90
S2FVDERvNN 57.24 60.04 63.69 56.78
S2FVDDPCNN+GAT 58.20 59.70 57.68 61.88
S2FVDDPCNN+ERvNN 59.25 65.08 74.16 57.98
S2FVDGAT+ERvNN 60.11 61.27 61.61 60.93
S2FVD 63.02 68.99 76.30 62.95

(b) Performance for vulnerability type detection.

Method Dataset Accuracy Weighted F1 Weighted Prec. Weighted Rec.

S2FVDDPCNN

SARD

87.56 86.82 89.78 87.56
S2FVDGAT 88.25 88.40 88.76 88.25
S2FVDERvNN 91.74 91.77 91.91 91.74
S2FVDDPCNN+GAT 93.31 93.31 93.40 93.31
S2FVDDPCNN+ERvNN 92.41 92.18 92.82 92.41
S2FVDGAT+ERvNN 94.78 94.79 94.86 94.78
S2FVD 97.93 97.94 97.97 97.93
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5. Discussion
5.1. Threats to Validity

As highlighted in previous studies [53,54], the prevalence of mislabelling in vulnerabil-
ity datasets has yet to be resolved. However, in the datasets employed in our experiments,
the incidence of mislabelling was relatively low, as the samples had been annotated either
by security experts or through a meticulously designed differential analysis technique [50].
Therefore, as a deep-learning-based approach, S2FVD should exhibit resistance to occa-
sional label noise during model training, with any effect on testing performance stemming
from the low-ratio noise being negligible.

Deep and machine learning models have been demonstrated to be vulnerable to adver-
sarial attacks across multiple domains [55–57]. It is common knowledge that programmers
use semantic-preserving code obfuscations or transformations to safeguard their code,
which can potentially undermine the detection capability of DL-based methods, including
the proposed S2FVD. To address this issue, one potential approach is to enforce adversarial
training [58] by augmenting the training data with obfuscated or transformed adversarial
samples. The investigation into how S2FVD can be affected by code obfuscations and other
potential adversarial attacks, as well as the possible strategies to mitigate these effects,
would be taken as one of the interesting further works.

It should be note that S2FVD has not undergone a systematic hyper-parameter tuning
process currently. Instead, either the default or commonly used empirical values for the
hyper-parameters were utilized. Despite this, the evaluation results indicate that S2FVD,
trained with the current hyper-parameter settings, exhibited highly impressive vulnerability
detection capability. While a systematic or exhaustive grid-search-based hyper-parameter
tuning could potentially further improve S2FVD’s detection performance, such a process
would require significantly more computing resources and time. As a result, we leave it for
future work as well.

5.2. Limitations

As a learning-based approach, S2FVD faces the challenge of only issuing black-box de-
tection results. This means that, unlike the rule-based methods that furnish supplementary
information that hints at possible bug-trigging paths of the detected vulnerabilities [59], it
provides only a vulnerable/non-vulnerable prediction or a specific vulnerability type with-
out explanations. As part of future work, explainable AI techniques will be combined to
highlight the statements or paths with significant contributions to the prediction outcomes.

In contrast to the conventional rule-based detection methods, as well as the other
deep-learning-based vulnerability detection methods that operate solely on a single code
view, S2FVD’s approach of extracting and combining semantic features from multiple views
inevitably incurs a heavier overhead runtime. Although we acknowledge the significance
of both the detection efficacy and efficiency, it is believed that the former carries greater
importance in the realm of vulnerability detection. Moreover, as the computing power
from both CPUs and GPUs continues to advance, achieving a moderately fast detection
speed will become more feasible.

Similar to most existing works, the dataset we have primarily used is labeled at
the function level. However, vulnerabilities can cross function boundaries. Therefore,
designating a function as vulnerable solely because the vulnerability is revealed within it
might not always be correct. Unfortunately, establishing such datasets of precisely labeled
bug-triggering code contexts remains a challenging task that necessitates continuous and
arduous effort from domain experts. In addition, S2FVD’s assessment was limited to
code written in C and C++, which are among the languages that have been hit hard by
vulnerabilities. Hence, its capability in detecting vulnerabilities that transcend function
boundaries, as well as its applicability to other programming languages, deserve further
investigation.
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6. Conclusions

Aiming at the problem that existing vulnerability detection methods that operate on a
single code view are limited in detecting deep vulnerabilities, this work presents S2FVD,
which adopts a strategy of learning vulnerable indicative features from different code
perspectives and fusing them to enhance the detection capability. In particular, to make
the semantics implied within the AST be effectively encoded, an extended tree-structured
neural network called ERvNN was devised. It supports the direct encoding of multi-way
tree structures by implementing a GRU-style aggregation optimization for the nodes within
the tree. Through the extensive experiments conducted on two large datasets consisting of
both synthetic and real-world samples, a superior vulnerability detection capability of the
S2FVD was observed against SOTA approaches. Notably, a performance improvement of
6.86% and 14.84% regarding the accuracy and F1 metrics, respectively, was achieved for the
real-world dataset D2A, thus indicating S2FVD’s potential in detecting vulnerabilities in
more complex code contexts. Additionally, ablation studies confirmed the effectiveness
of the ERvNN in encoding semantics from the AST and the superiority of the adopted
multi-representation fusion strategy for boosted vulnerability detection capability.
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