
Citation: Song, S.; Kim, J. Adapting

Geo-Indistinguishability for

Privacy-Preserving Collection of

Medical Microdata. Electronics 2023,

12, 2793. https://doi.org/10.3390/

electronics12132793

Academic Editor: Andrei Kelarev

Received: 22 May 2023

Revised: 20 June 2023

Accepted: 21 June 2023

Published: 24 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Adapting Geo-Indistinguishability for Privacy-Preserving
Collection of Medical Microdata
Seungmin Song and Jongwook Kim *

Department of Computer Science, Sangmyung University, Seoul 03016, Republic of Korea; ssmredssm@naver.com
* Correspondence: jkim@smu.ac.kr

Abstract: In the era of the Fourth Industrial Revolution, the increasing demand for data collection and
sharing for analysis purposes has raised concerns regarding privacy violations. Protecting individual
privacy during the collection and dissemination of sensitive information has emerged as a critical
concern. In this paper, we propose a privacy-preserving framework for collecting users’ medical
microdata, utilizing geo-indistinguishability (Geo-I), a concept based on well-known differential
privacy. We adapt Geo-I, originally designed for protecting location information privacy, to collect
medical microdata while minimizing the reduction in data utility. To mitigate the reduction in
data utility caused by the perturbation mechanism of Geo-I, we propose a novel data perturbation
technique that utilizes the prior distribution information of the data being collected. The proposed
framework enables the collection of perturbed microdata with a distribution similar to that of the
original dataset, even in scenarios that demand high levels of privacy protection, typically requiring
significant perturbations to the original data. We evaluate the performance of our proposed algorithms
using real-world data and demonstrate that our approach significantly outperforms existing methods,
ensuring user privacy while preserving data utility in medical data collection.

Keywords: medical microdata privacy; data collection; differential privacy; geo-indistinguishability

1. Introduction

With the advent of the Fourth Industrial Revolution, numerous fields are experiencing
significant changes. Among these changes, the most prominent is the massive generation
of data in diverse areas through intelligent information technologies. For example, each
mobile phone user generates a large amount of data through daily activities such as
messaging, making calls, taking photos, and conducting searches. According to projections,
by the end of 2028, the global monthly mobile data traffic is anticipated to reach an estimated
total of 453 exabytes [1].

Currently, personal data are viewed as valuable assets in the market. This is because
by analyzing individual data, companies can gain valuable insights that ultimately enhance
their competitiveness. Consequently, there has been a significant increase in the demand for
data collection and sharing for analysis purposes. This increase has been fueled by recent
advancements in data analytics methods, such as deep learning and machine learning,
which necessitate large quantities of training data. However, there are concerns that the
indiscriminate collection or distribution of user data may lead to privacy violations. Many
data analytics organizations collect extensive personal information and share it with exter-
nal parties, often without the user’s awareness, leading to serious privacy infringements.
For instance, Netflix released anonymized movie ratings data from 500,000 subscribers
during its Netflix Prize contest. Although the data were anonymized, it was still possible
to identify individual identities, leading to significant controversy [2].

A similar issue arises with medical data. In the age of data-driven decision making,
collecting and analyzing diverse medical information is crucial for modern healthcare
and medical research. By analyzing extensive medical datasets, researchers can identify
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patterns, trends, and associations that contribute to advancements in disease prevention,
diagnosis, treatment, and management [3]. Furthermore, the application of advanced
analytical methods, such as machine learning and deep learning, has accelerated the
potential for groundbreaking discoveries in medical research. These techniques can help
uncover previously unnoticed connections or patterns within vast amounts of data [4].

However, concerns have arisen regarding potential privacy violations due to the
indiscriminate collection or dissemination of users’ medical data. Especially since medical
data contain highly sensitive information, indiscriminately collecting and disseminating
such data can lead to serious societal issues and may even develop into legal issues.
For example, in 2019, Google collaborated with Ascension, the second-largest healthcare
system in the United States, on the Nightingale project, which collected patient data without
securing users’ consent [5]. The gathered data included sensitive details, such as diagnoses
and hospitalization records, sparking considerable controversy.

Over the past few decades, considerable efforts have been made to protect the privacy
of individuals when collecting and disseminating sensitive data. These efforts have pri-
marily focused on two areas. The first is the establishment of regulations for collecting and
sharing personal data. For instance, the European Union’s 2018 General Data Protection
Regulation (GDPR) [6] mandates companies to acquire explicit consent before collecting,
processing, or storing user data. The second area involves developing various methods for
protecting individuals’ privacy during data collection and sharing. Common approaches
include anonymization techniques [7,8] and cryptographic mechanisms [9,10]. Recently,
differential privacy (DP) [11] has emerged as the de facto standard for privacy-preserving
computations. DP is a mathematical framework that introduces a controlled amount of
noise to the data, making it probabilistically difficult to identify individual users. These
privacy-preserving methods not only protect user privacy during data collection and dis-
tribution but also ensure a certain degree of data utility. Consequently, data analysts can
conduct a range of analyses using privacy-protected data.

Despite these efforts, privacy-preserving data collection still faces significant chal-
lenges, particularly in the context of collecting medical microdata, where ensuring user
privacy often compromises data utility. Thus, in this paper, we aim to develop a method
for collecting users’ medical microdata in a privacy-preserving manner. We utilize geo-
indistinguishability (Geo-I) [12–15], a concept based on the well-established DP and recently
recognized as the standard privacy definition for protecting location data in LBS (location-
based service), to ensure user privacy during the medical data collection process.

1.1. Motivation

Consider the motivational example depicted in Figure 1, where a data analytics
organization aims to collect patients’ medical microdata, such as each user’s disease, for
analytical purposes. However, as medical information is highly sensitive, users are hesitant
to share their disease information with the data analytics organization.

A possible solution is to utilize DP, which is widely considered as the standard for
privacy-preserving data collection. As shown in Figure 1, each user first perturbs their
medical information using the perturbation mechanism of DP and then provides the per-
turbed data to the data analytics organization. This process alleviates users’ concerns about
privacy breaches, as data perturbation is performed on the user’s end, guaranteeing that
the original medical data remain undisclosed to third parties. However, this solution also
reduces the data utility of the collected information due to the user-side data perturbation,
leading to decreased accuracy in the analysis results obtained from the perturbed datasets.
Consequently, there is a need for a mechanism that can protect user privacy during the
collection of medical microdata while minimizing the reduction in data utility.
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Figure 1. Motivational example in which disease information corresponds to sensitive information.

1.2. Contributions

The main contributions of this paper are summarized as follows:

• We develop a privacy-preserving framework to collect medical microdata from each
user while ensuring privacy. Specifically, we adapted Geo-I, which was originally
designed for protecting location information privacy to collect medical microdata,
which are a form of text data. In particular, this is the first attempt to utilize Geo-I for
the privacy-preserving collection of medical microdata.

• To address the reduced data utility of collected datasets caused by Geo-I’s perturbation
mechanism, we introduce a new data perturbation method for Geo-I that utilizes
prior distribution information of the data to be collected. The primary advantage of
leveraging a prior distribution of the collected data during the process of perturbing
the original microdata is that it enables the collection of perturbed microdata of which
distribution is similar with that of the original dataset.

• Furthermore, we evaluate the performance of our proposed algorithms using real-
world data. The results demonstrate that our approach significantly outperforms exist-
ing methods. Especially, the experiment results confirm that our proposed method can
maintain the data utility of the collected datasets, even in scenarios demanding high
levels of privacy protection, which typically necessitate considerable perturbations to
the original data.

The rest of this paper is structured as follows: Section 2 discusses related work, and
Section 3 provides background information. Section 4 describes the proposed method.
The performance of the proposed technique is evaluated in Section 5, and conclusions are
drawn in Section 6.

2. Related Work
2.1. Privacy-Preserving Text Analysis and Collection

Text data are frequently used as input for various data analysis tasks. However,
inappropriate utilization of these types of data could result in significant privacy concerns,
including the prediction of patients’ health conditions using their clinical records [16].
Consequently, it is essential to carefully manage sensitive information. Privacy preservation
in text analysis has been widely researched and explored in the literature [17]. One common
approach involves identifying sensitive terms, such as personally identifiable information,
within a document and replacing them with more generic terms [18–20].

Recently, various methods have been investigated to protect user text data by per-
turbing them during the data collection phase to ensure privacy preservation. Pretrained
contextualized language models have been shown to improve the efficiency of numerous
natural language processing tasks. However, the effectiveness of existing text sanitization
methods remains limited due to the complexity of high-dimensional text representation.
To address this issue, Yue et al. [21] developed a privacy-preserving natural language
processing pipeline that tackles privacy concerns by generating sanitized text documents
directly. They sanitize public data before training the model, as they enable the model to
work with sanitized queries more effectively, thus enhancing accuracy. Additionally, recent
studies have explored novel techniques for safeguarding text data privacy by manipulating
the data during the collection process [22–24].
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Feyisetan et al. [25] recently proposed a privacy-preserving mechanism for publishing
sensitive text data using Geo-I. In their approach, for a given word in the text data, they first
compute their vector representation in the embedding space, denoted as x. They then apply
a calibrated noise parameter, N, which is designed to be sensitive to the global metric. The
perturbed vector v is obtained by adding the noise parameter to x, resulting in v = x + N.
Finally, the original word is replaced with another word whose embedding is closest to
the perturbed vector v. Our proposed method has similarities with the approach in [25] in
its use of Geo-I. However, in contrast to [25], our method in this paper takes advantage of
prior distribution information of the data to be collected, aiming to improve the data utility
of the collected datasets.

2.2. Geo-Indistinguishability and Its Applications

Geo-I has gained significant attention in various LBS applications due to its ability
to protect location privacy. In mobile crowdsourcing, where workers must share their
locations with mobile crowdsourcing servers to allocate sensing tasks to the nearest workers,
Geo-I is employed to obfuscate workers’ true locations, thereby protecting their location
privacy [26–29]. Location-based social networking platforms assist people in connecting
with each other, but they also pose a threat to location privacy. Therefore, various studies
have suggested using Geo-I to protect the privacy of users in such platforms [30,31]. To
mitigate the risk of exposing sensitive location data in ride-sharing services such as Uber,
Waze, and Lyft, several studies have proposed scheduling schemes that utilize Geo-I to
protect the location information of ride-sharing users who are required to share their current
and destination locations with the service providers [32,33]. Geo-I has been utilized in
estimating density distribution. One example of this is EGeoIndis [34], which is a vehicle-
location privacy protection framework that utilizes Geo-I to estimate traffic density and
to protect vehicle location privacy. Chen et al. [35] relied on Geo-I to collect the locations
of voluntary participants with COVID-19 symptoms in a privacy-preserving manner. The
location data collected under Geo-I were used to construct a COVID-19 vulnerability map.

3. Background
3.1. Differential Privacy

DP is based on the assumption that there is a trusted aggregator or curator who serves
as a central intermediary between data contributors (i.e., data owners) and data users [11].
DP is commonly used in two different contexts: non-interactive and interactive settings. In
the non-interactive setting, the trusted aggregator collects raw data from individual data
owners, computes aggregate statistics based on the collected data, introduces random noise
to the true aggregate statistics to produce perturbed aggregate statistics, and then publishes
these perturbed statistics to data users [36,37]. In the interactive setting, when using DP,
the trusted curator receives a query from a data user, computes the true result of the query
using the original database, adds random noise to the true result to generate a perturbed
result, and then returns this perturbed result to the data user [38,39]. DP can be formally
defined as follows:

Definition 1. (ε-DP) A randomized algorithm A satisfies ε-DP, if and only if for (1) any two
neighboring datasets, D1 and D2, and (2) any output O of A , the following is satisfied:

Pr[A(D1) = O] ≤ eε × Pr[A(D2) = O].

Two datasets, D1 and D2, are considered neighboring if they differ by only one record.
Here, Pr represents the probability, with its probability space defined by the random
outputs generated by the mechanism A. This definition indicates that, given any output
of A, an adversary with arbitrary background knowledge cannot confidently determine
whether the input of A is D1 or D2. Here, the parameter ε acts as a privacy budget,
controlling the level of privacy. In other words, smaller values of ε provide stronger privacy
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protection with more noise, while larger values of ε result in weaker privacy guarantees
with less noise in the true result.

3.2. Geo-Indistinguishability

As DP has emerged as a widely recognized standard for privacy-preserving computa-
tion, many approaches try to apply the concept of DP for protecting location data. Among
these, Geo-I has recently emerged as the de facto privacy definition for protecting location
data. Geo-I can provide strong location privacy protection against adversaries with arbi-
trary background knowledge, leading to its extensive adoption in various location-based
applications [12–15]. Geo-I can be formally defined as follows:

Definition 2. (ε-Geo-I) Assume that X represents a set of possible user locations. Let K be a
randomized mechanism that probabilistically generates a perturbed location from a user’s true
location. Then, a randomized mechanism, K, satisfies ε-Geo-I, if and only if for (1) all x, x′ ∈ X
and (2) any output location, y ∈ X , the following is satisfied:

K(x)(y) ≤ eε·d(x,x′) × K(x′)(y). (1)

Here, d(x, x′) is the distance metric, such as Euclidean or Manhattan distance between x and x′.

There are two primary methods for implementing Geo-I. The first approach is the
Laplace mechanism, which involves adding Laplace-distributed noise to the user’s actual
data. While this method is simple, it may introduce a large amount of noise during the
perturbation process, which leads to reduced data utility. Alternatively, the optimization
mechanism is a more effective technique, as it results in less perturbation to the user’s
actual location data compared to the Laplace method, leading to higher data utility.

In the optimization mechanism, the LBS server first calculates the obfuscation matrix,
M, by solving the following linear programming problem.

min : ∑
x,y∈X

πX ·M[x, y] · d(x, y)

s.t. : M[x, y] ≤ eε·d(x,x′) ×M[x′, y] x, x′, y ∈ X
∑

y∈X
M[x, y] = 1 x ∈ X

M[x, y] > 0 x, y ∈ X

(2)

Here, π represents the prior probability distribution of user locations, which can be
obtained using the existing historical data. M[x, y] represents the probability of a true
location x randomly generating a perturbed location y (i.e., M[x, y] = K(x)(y)). Once M is
computed, it is disseminated to LBS users. Upon receipt of M, each user perturbs their true
location based on the probabilities contained in M and sends the perturbed location along
with a service request to the LBS server. Throughout this process, the true location of each
user remains undisclosed, as the perturbation of location data is performed within his/her
mobile device.

4. Privacy-Preserving Framework for Collecting Medical Microdata

In this section, we introduce our privacy-preserving framework to collect users’ medi-
cal microdata. The proposed framework, illustrated in Figure 2, consists of two parties: a
data-collection server and individual users:

• Data-collection server: The data-collection server generates an obfuscation matrix
designed for perturbing actual medical microdata under the ε-Geo-I and distributes
them to each user. During the generation of this obfuscation matrix, the server utilizes
prior distribution information derived from the available historical data.
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• Individual user: When users receive the obfuscation matrix, they first perturb their
own medical microdata based on the probabilities embedded in the obfuscation matrix
and then send the perturbed data to the data-collection server.

During this entire process, each user’s sensitive medical microdata remain confidential,
as the process of perturbing the data is conducted within their own device. In the following
subsections, we explain each step in detail.

Figure 2. Overview of the proposed privacy-preserving framework for collecting medical microdata.

4.1. Preliminary

In this subsection, we introduce the notation necessary to explain our proposed
method. Let U = {u1, u2, · · · , un} be a set of users who agree to share their sensitive
medical microdata with a data aggregator for analytical purposes. Here, ui ∈ U represents
the i-th user. However, due to a lack of complete trust with the data aggregator, users
instead provide perturbed data obtained using ε-Geo-I.

Let S = {s1, s2, · · · , sm} denote the set of distinct medical microdata. Furthermore, let
sui ∈ S represent the medical microdata of the i-th user, ui ∈ U. For the sake of simplicity,
we consider a scenario in which the data aggregator collects a single microdatum from each
user. However, we note that the approach proposed in this paper is equally applied to the
situation where several microdata are collected from individual users.

4.2. Data-Collection Server

The data-collection server side processing consists of two phases. The first phase
utilizes a word embedding to represent each microdatum as a vector in a high-dimensional
space. In the second phase, an obfuscation matrix, which will be distributed to each user in
order to perturb their original microdata, is generated. This subsection provides a detailed
explanation of these two phases.

4.2.1. Vector Space Representation of Medical Microdata

Originally, Geo-I was designed to protect users’ location information in a two-dimensional
space for LBSs. Consequently, this is not directly applicable to medical microdata, which are
a type of text data. To address this, we first need to represent each microdatum as a vector
in a high-dimensional space. Word embedding, such as Word2Vec [40], BERT [41], and
GloVe [42], is a natural language processing technique that aims to represent words, phrases,
or other text-based data as continuous vectors in a high-dimensional space. The primary
objective of word embeddings is to capture the semantic meaning of words, making them
easily understandable and processable for machine learning algorithms. In this paper, we
employ Word2Vec to represent medical microdata as a vector in a high-dimensional space.
Formally, given si ∈ S, let vi be the corresponding t-dimensional vector representation
obtained using Word2Vec.
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4.2.2. Computation of Obfuscation Matrix

There are two approaches to achieve ε-Geo-I: the Laplace mechanism [12] and the
optimization mechanism [13,14]. Although the Laplace mechanism is straightforward,
it is well known for introducing significant noise into the original data, which leads to
perturbed locations with reduced utility. In contrast, the optimization mechanism can
produce perturbed locations with higher utility compared to the Laplace mechanism, as it
takes advantage of a prior data distribution. However, the optimization mechanism is often
regarded as inefficient due to the need to solve an expensive linear program. This issue is
further magnified in our case, as unlike location data represented in a two-dimensional
space, vectors derived from word embedding techniques usually are represented in a
significantly high-dimensional space. As a result, directly applying the optimization
mechanism to our problem is impractical.

One potential solution is to utilize dimensionality reduction techniques, such as
principal component analysis [43], to transform the vector generated with word embedding
techniques into a two-dimensional representation, followed by the application of the
optimization technique. However, as will be shown in the experiment section, this method
results in perturbed microdata with lower utility due to the accuracy loss caused by the
reduction in dimensionality from a high-dimensional to a two-dimensional space.

In this paper, we introduce a novel perturbation mechanism to achieve ε-Geo-I that
can be efficiently applied to vectors represented in a high-dimensional space. The proposed
method is inspired by the perturbation mechanism in [29]. However, unlike the mechanism
in [29], which does not use prior data distribution, our approach utilizes a prior data
distribution to generate perturbed data with higher utility, similar to the optimization
mechanism. Given a set of all medical microdata, S = {s1, s2, · · · , sm}, that the data aggre-
gator aims to collect from users, let V = {v1, v2, · · · , vm} represent the set of corresponding
vectors obtained using Word2Vec in the previous phase. The obfuscation matrix is then
defined as an m×m matrix, O, where O[i, j] represents the probability that a perturbed
microdatum sj is randomly generated from the true microdatum si. Here, O[i, j] is defined
as follows:

O[i, j] = Pr(sj|si) =
ψ(psj) · e

− ε
2 ·d(vi ,vj)

∑sk∈S ψ(psk ) · e−
ε
2 ·d(vi ,vk)

(3)

Here, d(vi, vj) represents the distance between two vectors, vi and vj. Moreover, psj

denotes the prior distribution information regarding the likelihood that microdatum sj
appears in the entire dataset, and ψ represents an arbitrary monotone increasing function
that accepts sj as input. According to Equation (3), by using the monotone increasing
function that takes sj as input, if microdatum si occurs more frequently than microdatum
sj in the original dataset, then si will also appear more frequently than sj in the perturbed
dataset. Once computing the obfuscation matrix O, the server disseminates it to all users.

We note that our approach shares similarities with the optimization mechanism in
the way it relies on the obfuscation matrix to perturb sensitive data of users. Moreover,
a prior data distribution is utilized when generating this obfuscation matrix. However,
it is widely known that, as explained in Section 3.2, the optimization mechanism can be
highly inefficient, as it requires solving a costly linear programming problem to generate
the obfuscation matrix [44]. This issue is further magnified in our case, as unlike location
data represented in a two-dimensional space, medical microdata are represented in a signif-
icantly high-dimensional space due to the word-embedding techniques. Yet, our proposed
approach is highly efficient, as it eliminates the need for solving an expensive linear pro-
gramming problem, making it suitable for collecting data that need to be represented in a
significantly high-dimensional space.

4.2.3. Estimation of Prior Distribution

The perturbation mechanism proposed in Section 4.2.2 utilizes prior information
about the probability of each microdatum appearing in the entire dataset. This prior
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information can be derived from a collection of historical data. However, in our case, we
collect perturbed microdata from users instead of the true data, which makes it challenging
to accurately compute the prior information from the perturbed microdata collection.
Therefore, in this subsection, we present a method for effectively estimating the prior
distribution using the collection of perturbed microdata.

Let DB represent the collection of historical perturbed microdata collected and main-
tained by the data-collection server. Additionally, for a given medical microdatum si ∈ S,
let us assume that cnt(si, DB) represents the number of occurrences of si in DB. Then, psi ,
denoting the probability of microdatum si occurring in the dataset to be collected, can be
estimated as cnt(si ,DB)

|DB| . However, this straightforward approach cannot accurately estimate
psi because it does not consider the effect of the Geo-I perturbation mechanism.

A more effective solution is to leverage the probabilistic mapping information between
the true and perturbed microdata encoded in the obfuscation matrix O. According to the
definition of the obfuscation matrix O, for all sj ∈ S, O[si, sj] represents the probability
that a perturbed microdatum sj (corresponding to the microdata received by the server
from a user) is randomly generated from the user’s actual microdatum si. Hence, by
utilizing the mapping probability information between perturbed and true microdata, psi

are estimated as

psi =
∑sj∈S

(
O[si, sj]× cnt(sj, DB)

)
|DB| (4)

In other words, when computing psi , this approach takes into account the probabilities
encoded in the perturbation matrix O that the perturbed microdata sj ∈ S are randomly
generated from the true location si.

4.3. User-Side Processing

After receiving the obfuscation matrix from the server, each user perturbs their actual
microdata according to the probabilities contained within the matrix. To be more precise,
let us assume that the true microdata of user ui are sk ∈ S. User ui randomly generates
the perturbed microdata in S, based on the probabilities in the k-th row of the obfuscation
matrix (i.e., O[k, j] where 1 ≤ j ≤ m). Note that, according to Equation (3), the sum of
each row in the obfuscation matrix equals 1 (i.e., ∑1≤j≤m O[k, j] = 1). Users then send
the perturbed microdata to the data-collection server. We note that the data perturbation
process occurs on the user side, guaranteeing that users’ true microdata are not exposed to
external parties, thereby protecting the privacy of the user’s medical microdata.

4.4. Privacy Analysis

In this subsection, we perform a privacy analysis of the proposed method.

Theorem 1. Given the privacy budget ε, the proposed method satisfies ε-Geo-I.

Proof. By the definition of ε-Geo-I, given si, sj, sx ∈ S and their corresponding vector
representations vi, vj and vx, we need to prove the following:

Pr(sj|si) ≤ eε·d(si ,sx) × Pr(sj|sx)⇐⇒ Pr(vj|vi) ≤ eε·d(vi ,vx) × Pr(vj|vx) (5)

Here, Pr(vj|vi) represents the probability that a user sends the perturbed microdatum
sj to the data-collection server when their actual microdatum is si.

By Equation (3), Pr(vj|vi) is computed as

Pr(vj|vi) =
ψ(psj) · e

− ε
2 ·d(vi ,vj)

∑sk∈S ψ(psk ) · e−
ε
2 ·d(vi ,vk)

(6)
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Using the triangular inequality, we obtain d(vi, vj) + d(vi, vx) ≥ d(vx, vj) and thus
−d(vi, vj) ≤ d(vi, vx)− d(vx, vj). From this, we derive:

Pr(vj|vi) =
ψ(psj) · e

− ε
2 ·d(vi ,vj)

∑sk∈S ψ(psk ) · e−
ε
2 ·d(vi ,vk)

≤
ψ(psj) · e

ε
2 ·(d(vi ,vx)−d(vx ,vj))

∑sk∈S ψ(psk ) · e−
ε
2 ·d(vi ,vk)

(7)

Similarly, using the triangular inequality, we have d(vi, vk) ≤ d(vi, vx) + d(vx, vk) and
thus −d(vi, vk) ≥ −d(vi, vx)− d(vx, vk). From this, we obtain:

Pr(vj|vi) ≤
ψ(psj) · e

ε
2 ·(d(vi ,vx)−d(vx ,vj))

∑sk∈S ψ(psk ) · e−
ε
2 ·d(vi ,vk)

≤
ψ(psj) · e

ε
2 ·(d(vi ,vx)−d(vx ,vj))

∑sk∈S ψ(psk ) · e
ε
2 ·(−d(vi ,vx)−d(vx ,vk))

(8)

Therefore, we have:

Pr(vj|vi) ≤ eε·d(vi ,vx) ·
ψ(psj) · e

− ε
2 ·d(vx ,vj)

∑sk∈S ψ(psk ) · e−
ε
2 ·d(vx ,vk)

= eε·d(vi ,vx) · Pr(vj|vx) (9)

According to Equation (9), the proposed method satisfies ε-Geo-I.

4.5. Limitations

In this subsection, we discuss the limitations of the proposed approach, particularly in
comparison with Laplace mechanism-based methods such as [25]. The method proposed
in this paper necessitates the generation of an obfuscation matrix of size m×m, where m
represents the number of elements in the medical microdata set, S. Consequently, a large m
could impose substantial overhead in terms of matrix generation and distribution to each
individual user. Additionally, it is essential to identify and define all elements in S prior
to generating the obfuscation matrix. These constraints imply that our proposed method
is better suited to collect microdata specific to a particular domain rather than collecting
general text data, which might include every word in a dictionary and thereby lead to an
enormous word count. On the other hand, the method based on the Laplace mechanism
does not rely on an obfuscation matrix, thereby enabling it to collect a wide range of data,
even when the domain size is extensive.

5. Experiment

In this section, we present the experimental evaluation of the proposed method using
real-world datasets. First, we describe the experimental setup, and then, we discuss the
results obtained from the experiments.

5.1. Experimental Setup

We report the results for the following alternative methods:

• The Laplace mechanism-based approach, which corresponds to the method proposed
in [25] adapted to our problem (LM);

• The approach discussed in Section 4.2.2 that utilizes dimensionality reduction tech-
niques to convert the vector generated with word-embedding techniques into a two-
dimensional representation, followed by the application of the optimization mecha-
nism (OM);

• The approach that utilizes the perturbation mechanism proposed in [29], which does
not use a prior distribution (NP);

• The proposed method that leverages prior distribution information of the data being
collected (PM).

In the case of PM, we employ a linear function with its slope set to 1 as the monotone
increasing function ψ(·) in Equation (3). For each approach, we use Word2Vec to represent
microdata as a vector in a 300-dimensional space for the word-embedding process. In
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particular, we leverage word vectors from a pretrained Word2Vec model that was trained
on Wikipedia data using fastText. These 300-dimensional vectors were created using the
skip-gram model, as described in [45].

The following two datasets are used for our evaluation:

• MIMIC-III: The first dataset is the MIMIC-III database [46]. This open-source database
contains anonymized health data from more than 46,000 patients who were admitted
to intensive care units (ICUs) in the United States from 2001 to 2012. We specifically
use the admission data from this database, which consist of 58,976 records.

• Wikipedia Disease: For the second dataset, we first collect disease data from the
“Lists of diseases” page on Wikipedia. These data are arranged in a tree structure with
a maximum depth of 4. The names of the diseases utilized in the experiments are
located at the leaf nodes of this tree, which altogether account for 61 nodes. Then, we
randomly generate datum for 61,000 patients, each associated with one disease from
the list of 61 diseases.

In the experiment, we compare the four alternative approaches using the average
distance between the true and perturbed microdata:

Dist =
1
n
×

n

∑
i=1

d(sui , s′ui
) (10)

Here, sui ∈ S denotes the true microdatum of the i-th user, ui, while s′ui
∈ S represents

the perturbed microdatum of the same user. As defined in Section 4.1, n is the number of
users. Additionally, d(sui , s′ui

) denotes the distance between sui and s′ui
. In the experiment,

we employ two different methods to measure the distance between sui and s′ui
. In the

first method, we first represent the microdatum in vector space using Word2Vec and then
measure the Euclidean distance between the vectors, denoted as Disted. In the second
method, we calculate the tree distance between two microdatum, sui and s′ui

, using the
disease tree obtained from the “Lists of diseases” page on Wikipedia, represented as Disttree.

5.2. Results and Discussion

Figure 3 illustrates the impact of varying privacy budgets, ε, on the average distance
between true and perturbed microdata. In the experiments, ε varies from 0.5 to 2.0, and
the Wikipeida Disease dataset is used. Across all methods, the average distance reduces as
the privacy budget increases from 0.5 to 2.0. This occurs because a lower ε value in Geo-I
provides more robust privacy protection by introducing larger perturbations to the true
microdata, consequently reducing the utility of the collected data. In contrast, a higher
ε value results in smaller perturbations to the actual microdata, offering weaker privacy
protection but maintaining a higher data utility.
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Figure 3. The average distance between the true and perturbed microdatum for varying ε.
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Figure 3 indicates that the Laplace mechanism-based method, LM, shows the lowest
performance in terms of data utility when compared to other techniques. This is attributed
to the fact that the Laplace mechanism-based method is known for introducing signif-
icant noise during the perturbation phase, consequently leading to a decrease in data
utility. Among the three alternatives, OM, NP, and PM, that utilize the server-generated
obfuscation matrix to perturb user microdata, NP and PM significantly outperform OM.
This is because OM generates perturbed microdata with decreased utility, as it experi-
ences accuracy loss when dimensions are reduced from a high-dimensional space to a
two-dimensional one. The figure also demonstrates that the proposed method, PM, which
utilizes prior distribution information of the data collected, surpasses all other methods
across all privacy levels. These experimental results verify that the proposed method, PM,
effectively leverages the prior distribution information of the collected data.

In Figure 4, we make a comparison between the distribution of the true microdata
collection and that of the perturbed microdata collection obtained using the three alternative
methods LM, NP, and PM. We note that the OM results are absent from the figure
because it shows the worst performance among the methods utilizing the server-generated
obfuscation matrix. In Figure 4, OG stands for the results derived from the original dataset.
In the figure, the x-axis indicates the index number for each disease, while the y-axis
denotes the number of datum associated with each disease. As can be seen in the figure,
the proposed method, PM, shows a distribution most similar to that of the original dataset.
The reason for this is that PM utilizes a prior distribution of the collected data during the
perturbation of the original microdata, which enables the collection of perturbed microdata
whose distribution is highly similar to that of the original dataset.
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Figure 4. A comparison between the distribution of the true microdata collection and that of the
perturbed microdata collection.
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To further investigate the performance gap between the proposed method PM and the
Laplace mechanism-based approach LM, we plotted the Euclidean distance between true
and perturbed microdata for each individual data point in Figure 5. For visual clarity, the
Euclidean distances of a subset of 6000 individual data points, extracted from the total pool
of 61,000, are shown in this figure. In the figures, the x-axis denotes the index number for
each sampled microdatum, while the y-axis represents the Euclidean distance between the
true and perturbed microdata. Moreover, the red dots correspond to the results obtained
using the proposed PM, while the blue dots represent the results obtained using LM. As
shown in the figure, for the majority of cases, PM achieves better results compared to LM,
which is in line with earlier results presented in Figure 3.

0 1000 2000 3000 4000 5000 6000

Index Number of Data

0

1

2

3

4

5

6

7

8

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e

LM PM

0 1000 2000 3000 4000 5000 6000

Index Number of Data

0

1

2

3

4

5

6

7

8

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e

LM PM

0 1000 2000 3000 4000 5000 6000

Index Number of Data

0

1

2

3

4

5

6

7

8

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e

LM PM

(a) ε = 0.1 (b) ε = 1.0 (c) ε = 2.0

Figure 5. The Euclidean distance between each true and perturbed microdatum.

In order to evaluate the data utility of the collected microdata, we present the results
of a data analysis task carried out using the collection of perturbed microdata collected
through different methods. In the experiment, the MIMIC-III dataset was used. The
analysis query used in this experiment is the following aggregation query:

SELECT month, count(*) FROM mimic WHERE comments such as ’%newborn%’ GROUP BY month

This query aims to calculate the number of patients admitted to ICUs on account of
being newborns. In Figure 6, we report the results obtained using LM, NP, and PM. We
note that the results of OM are not included in the figure, as it exhibits the worst perfor-
mance among the methods utilizing the server-generated obfuscation matrix. Additionally,
for comparative purposes, we also plot the results derived from the collection of true
microdata, referred to as OG. In Figure 6, the x-axis corresponds to the month, while the
y-axis represents the count of newborn patients admitted to ICUs. As the privacy budget
increases, the results derived from the perturbed datasets become increasingly similar to
the actual results obtained using the true datasets. Furthermore, the results computed using
the data collected using our proposed technique, PM, exhibit a pattern most similar to
those obtained from the original data. This validates that our proposed method is capable
of enhancing the data utility of the collected datasets, while also protecting user privacy.

When the level of privacy protection decreases (represented by an increasing value of
ε), the performance gap between PM and NP similarly reduces. This is because a decrease
in privacy protection level induces smaller perturbations to the original microdata. As a
result, the impact of employing a prior distribution in the process of perturbing the original
microdata becomes less significant compared to scenarios with higher privacy protection
levels. On the other hand, as the level of privacy protection increases (represented by
a decreasing value of ε), the performance gap between PM and NP also increases. The
primary reason is that PM employs a prior distribution of the collected data during the
process of perturbing the original microdata. As a result, despite the large perturbations to
the original microdata induced by a high level of privacy protection, the distribution of
the perturbed dataset remains similar to the original dataset’s distribution. In contrast, NP
does not utilize a prior distribution when perturbing the original microdata. Hence, as the
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level of privacy protection increases, leading to larger perturbations to the original data,
the distribution of the perturbed dataset becomes significantly different from the original
data’s distribution. This confirms that our proposed method can improve the data utility
of the collected datasets, even in circumstances where a high degree of privacy protection
is necessary.

Table 1 presents the results of additional aggregation queries, which are of the same
type as the query used in Figure 6. For these experiments, in addition to the query that
computes the monthly count of newborn patients admitted to the ICU, we also include four
additional aggregation queries. These queries calculate the monthly number of patients
admitted to ICUs due to bleed, coronary conditions, pneumonia, and sepsis, respectively.
In the experiments, we calculate the absolute error, which is defined as |cnt− cnt′|. Here,
cnt represents the query result derived from the collection of true microdata, whereas cnt′

refers to the query result generated from the collection of perturbed microdata that are
collected using the privacy-preserving methods LM, NP, and PM. In the experiments, ε is
set to 2.0.
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Figure 6. A comparison of aggregation query results computed from the perturbed dataset collected
using LM, NP, and PM.

Table 1. A comparison of the absolute error of aggregation queries among LM, NP, and PM (ε = 2.0).

Diagnosis Method
Month

Average
1 2 3 4 5 6 7 8 9 10 11 12

newborn

LM 517 427 499 489 520 530 490 550 512 483 545 537 508.25

NP 289 230 230 263 276 264 274 293 272 250 264 269 264.50

PM 49 51 50 50 62 35 43 41 53 54 46 43 48.08

bleed

LM 184 187 175 190 188 148 206 194 198 205 179 175 185.75

NP 116 126 113 128 115 107 133 144 135 152 132 119 126.67

PM 61 65 81 37 57 81 71 64 72 66 59 58 64.33

coronary

LM 268 236 291 256 290 272 250 277 261 299 263 269 269.33

NP 198 167 209 196 215 204 189 212 199 246 207 186 202.33

PM 109 110 100 125 108 117 152 156 120 109 105 130 120.08

pneumonia

LM 206 208 216 181 177 168 156 149 150 155 177 214 179.75

NP 162 158 151 133 125 111 98 127 104 117 136 158 131.67

PM 50 45 19 58 42 56 93 53 62 78 33 15 50.33

sepsis

LM 149 115 163 144 143 163 153 159 130 141 147 160 147.25

NP 104 70 114 89 102 105 93 104 85 91 91 107 96.25

PM 54 85 72 56 63 67 40 49 86 56 50 43 60.08
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As can be seen in Table 1, the proposed method PM performs better than other
approaches across all aggregation queries. This is due to the fact that the method proposed
in this paper enables the collection of perturbed microdata with a distribution that is more
similar to that of the original dataset, compared with other approaches LM and NP. As a
result, the aggregation query results obtained from the collection of perturbed microdata
using the proposed approach exhibit a higher level of similarity with the true results
compared to other approaches LM and NP.

6. Conclusions

In the era of the Fourth Industrial Revolution, the collection and analysis of large
amounts of personal data, especially in sensitive fields such as healthcare, is inevitable.
However, it is equally important to ensure that such endeavors respect individual privacy
rights and do not lead to any inadvertent data breaches or misuse. This paper aimed
to address this crucial challenge by proposing a new framework for collecting medical
microdata in a privacy-preserving manner while maintaining data utility. We adapted
the concept of Geo-I, a privacy-preserving method originally designed for LBSs, to the
context of medical microdata. We introduced a novel data perturbation method for Geo-
I that leverages prior distribution information of the data to be collected, in order to
address the issue of reduced data utility that often arises from the use of privacy-preserving
methods. Through comprehensive experiments conducted with real-world datasets, we
demonstrated that our proposed method significantly outperforms existing ones in terms
of maintaining data utility while ensuring privacy.

The findings of this paper have significant implications, especially in sensitive areas
such as healthcare. It underscores the importance of privacy-preserving techniques that
maintain data utility, as the healthcare sector increasingly depends on data-driven insights.
The method proposed in this paper demonstrates outstanding performance in preserving
privacy while maintaining data utility. This progress enables the use of sensitive medical
data for analysis and predictions without compromising privacy or risking data breaches.
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