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Abstract: Emotions expressed by humans can be identified from facial expressions, speech signals,
or physiological signals. Among them, the use of physiological signals for emotion classification is
a notable emerging area of research. In emotion recognition, a person’s electrocardiogram (ECG)
and galvanic skin response (GSR) signals cannot be manipulated, unlike facial and voice signals.
Moreover, wearables such as smartwatches and wristbands enable the detection of emotions in
people’s naturalistic environment. During the COVID-19 pandemic, it was necessary to detect
people’s emotions in order to ensure that appropriate actions were taken according to the prevailing
situation and achieve societal balance. Experimentally, the duration of the emotion stimulus period
and the social and non-social contexts of participants influence the emotion classification process.
Hence, classification of emotions when participants are exposed to the elicitation process for a
longer duration and taking into consideration the social context needs to be explored. This work
explores the classification of emotions using five pretrained convolutional neural network (CNN)
models: MobileNet, NASNetMobile, DenseNet 201, InceptionResnetV2, and EfficientNetB7. The
continuous wavelet transform (CWT) coefficients were detected from ECG and GSR recordings
from the AMIGOS database with suitable filtering. Scalograms of the sum of frequency coefficients
versus time were obtained and converted into images. Emotions were classified using the pre-trained
CNN models. The valence and arousal emotion classification accuracy obtained using ECG and
GSR data were, respectively, 91.27% and 91.45% using the InceptionResnetV2 CNN classifier and
99.19% and 98.39% using the MobileNet CNN classifier. Other studies have not explored the use of
scalograms to represent ECG and GSR CWT features for emotion classification using deep learning
models. Additionally, this study provides a novel classification of emotions built on individual and
group settings using ECG data. When the participants watched long-duration emotion elicitation
videos individually and in groups, the accuracy was around 99.8%. MobileNet had the highest
accuracy and shortest execution time. These subject-independent classification methods enable
emotion classification independent of varying human behavior.

Keywords: emotions; AMIGOS; ECG; GSR; CWT; scalogram; CNN

1. Introduction

Emotion intelligence is a trending area of research that explores the detection of emo-
tions using suitable machine-learning techniques. Emotion recognition based on facial
expressions and speech signals does not indicate genuine emotions, since people can misin-
terpret such signals. However, biological parameters such as ECG, electroencephalogram
(EEG), GSR, respiration rate, and skin temperature do not lead to false emotion recognition
since they cannot be misinterpreted. Much research is carried out on emotion classification
using EEG, but it is more suitable for clinical applications. Using ECG and GSR for emotion
classification is the most suitable for the naturalistic environment of participants. Emotion
elicitation can be done using pictures, sound, and videos, and virtual reality has become a
new technique.
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Self-assessment of emotions can be done by participants using a set of questionnaires
and self-assessment reports. Using Russell’s circumplex model, emotions can be separated
into two dimensions, valence and arousal [1], and four discrete classes: high valence, low
arousal (HVLA), low valence, high arousal (LVHA), high valence, high arousal (HVHA),
and low valence, low arousal (LVLA). Emotions such as happiness exhibit HVHA, anger
exhibits LVHA, sadness indicates LVLA, and calmness indicates HVLA [2–4]. The COVID-19
pandemic increased negative emotions such as fear, anxiety, and stress in people worldwide.
A study proved that the lockdown period increased the recognition of negative emotions and
decreased the identification of positive emotions, such as happiness [5]. It was necessary to
detect people’s emotions during the pandemic in order to trigger the necessary actions to
achieve a proper societal balance. ECG and GSR signals enable the classification of emotions
using deep learning or machine learning classifiers using non-intrusive techniques [6,7].
Moreover, databases are available for people to conduct research on emotion classification
based on physiological signals [8–11]. However, studies have yet to consider factors such as
ethnicity, age, the use of virtual reality to elicit emotions, and the naturalistic environment of
the subjects. A new database could be made available for research on emotion classification
using ECG and GSR data considering the following factors:

• Emotions can be elicited using virtual reality, which resembles the real environment.
• Participants with diverse cultural backgrounds and in different age groups who are

not familiar with one another can be evaluated.
• ECG and GSR recordings can be captured when participants are in a naturalistic

environment using smart bands.

Biological signals such as ECG, GSR, and respiration rate aid in deriving information
about people’s emotions. ECG is the most commonly used approach since smart devices
can quickly obtain heartbeat information. Once emotions are detected, proper counsel-
ing can be recommended. ECG and GSR signals represent the time domain variation of
voltage [12,13]. The amplitude and time duration changes of ECG and GSR waveforms
enable us to discriminate among the various emotions [13]. Emotions depend on people’s
personality and moods. Subject-independent classification models can enable the detection
of emotions regardless of the subject [14]. Raw ECG and GSR signals are contaminated
with noise and need to be suitably filtered. Signal processing and feature extraction tech-
niques extract the appropriate data from ECG and GSR signals for emotion classification.
Continuous wavelet transform (CWT) analyzes the frequency content of these signals and
transforms time-domain signals into the time-frequency domain, and 1D signals can be
transformed into a 2D matrix [15]. Various researchers have used machine learning tech-
niques for emotion classification, but deep learning techniques can improve classification
accuracy. Various pretrained CNN models, such as MobileNet, NASNetMobile, DenseNet
201, InceptionResnetV2, and EfficientNetB7, can be used for emotion classification based
on the transfer learning approach.

The main research contributions of this work are described below.
The duration of the emotional stimulus period and the social and non-social context

of the participants influence the classification of emotions, hence these factors need to be
considered. Other studies on emotion classification using ECG signals focused on short-
duration emotion stimulus periods and participants experiencing emotions individually.
This work explores a novel classification of emotions considering the social context of
individuals, using deep learning techniques and a longer duration of emotional stimulus.
We also propose a filtering technique to eliminate the noise from ECG and GSR signals
and a continuous wavelet transform technique to convert the signals into time–frequency
scalograms, and further classify emotions using several pretrained CNN models: Mo-
bileNet, NASNetMobile, DenseNet 201, InceptionResnetV2, and EfficientNetB7. Deep
learning models with automatic feature extraction have proved to be effective at increasing
the accuracy of classification. The architectural advancements of the latest CNN models
considerably help to improve the accuracy. Other studies have extracted CWT coefficients
from ECG data and classified emotions using traditional machine learning techniques [16],
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but they have yet to explore deep learning techniques for classifying emotions. Thus, this
work proposes a novel algorithm for emotion classification in two cases:

• ECG and GSR recordings were obtained while participants watched short videos.
Emotions were classified using the novel approach of obtaining CWT coefficients and
classifying based on deep learning models.

• ECG recordings were obtained while participants watched long-duration videos indi-
vidually and in groups, and emotions were classified using the novel technique.

The primary objective of this study was to increase the accuracy of emotion classi-
fication based on ECG and GSR data, as well as to explore emotion classification based
on groups of participants undergoing longer-duration emotion elicitation using 2D CNN
models. However, challenges arose when using the 2D CNN models on the numerical ECG
and GSR recordings of the AMIGOS dataset. To address this problem, scalograms of CWT
coefficients of biosignals were derived and converted into images to enable classification
using the 2D CNN models. This research provides a valuable contribution to the field of
human–computer interaction based on emotional intelligence.

The paper is structured as follows: Section 2 provides a review of the literature.
Section 3 gives the methodology followed in this work and describes the various techniques
used. Section 4 presents the results, and Section 5 provides the conclusion.

2. Related Works

This section gives an overview of the work done by other researchers using ECG,
GSR, CWT, machine learning, and deep learning techniques. In some studies, the time and
frequency domain features were extracted from the signals, and machine learning classi-
fiers such as support vector machine (SVM), random forest (RF), and k-nearest neighbor
(KNN) were used for classifying emotions [17–19]. However, peaks from ECG and GSR
signals need to be detected from pre-processed signals, and handcrafted features need to be
extracted. Using a CNN-based deep learning approach with automatic feature extraction
simplifies the classification task. Dessai et al. analyzed studies on emotion classification
using ECG and GSR signals [20]. They concluded that deep learning techniques using auto-
matic extraction of features increased the classification accuracy compared to traditional
machine learning techniques.

Deep learning models such as CNN, long short-term memory (LSTM), and recurrent
neural network (RNN) are also used for classifying emotions [20]. Al Machot et al. obtained
classification accuracy of 78% using the MAHNOB database and 82% accuracy using the
DEAP database on GSR data using a CNN classifier [14]. Dar et al. used a CNN-LSTM
model to classify emotions based on ECG and GSR data from the DREAMER and AMIGOS
databases. They achieved accuracy of 98.73% for ECG data and 63.67% for GSR data from
the AMIGOS dataset [21]. Santamaria-Granados et al. pre-processed ECG signals from the
AMIGOS dataset and segmented them to a length of 200 R peaks, then used a 1D CNN for
classification. They obtained accuracy of 76% and 75%, respectively, for arousal and valence
using ECG data and 71% and 75% using GSR data [22]. After suitable pre-processing,
the 1D CNN was used to classify photoplethysmography (PPG) data from the DEAP
database, resulting in 75.3% and 76.2% accuracy for valence and arousal. A normalization
technique was used to normalize the data from PPG pulses to avoid variations in the
data from different people [2]. Hammad et al. extracted spatial and temporal features in
parallel. The features were fused, and the grid search technique was used for optimization
to achieve higher classification accuracy using CNN, resulting in accuracy of 97.56% for
valence and 96.34% for arousal [23]. Lee et al. used Pearson’s correlation method to select
statistical features combined with automatically mined features from CNN and improved
the classification accuracy [24]. Harper et al. used a probabilistic procedure to select
the output, and achieved peak classification accuracy of 90% [25]. Numerical ECG data
were converted into images, and supervised machine learning techniques were used to
classify emotions [26]. Sepúlveda et al. extracted features from ECG data of the AMIGOS
database using CWT and classified emotions using machine learning techniques. They
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determined that wavelet scattering with an ensemble resulted in accuracy of 89%, and the
KNN classifier attained 82.7% for valence and 81.2% for arousal [16].

Emotion classification has also been done by using textual data [27], speech signals [28],
and facial expressions [29–31]. However, physiological parameters cannot be falsified, and
this represents a new dimension for research in human–computer interaction. This is
mainly due to the development of advanced sensors [32]. Researchers have extracted CWT
coefficients of ECG data for applications such as arrhythmia and biometric classification.
Wang et al. extracted CWT coefficients from the MIT-BIH arrhythmia database to detect ar-
rhythmia based on ECG data. They attained accuracy of 98.74% using a CNN classifier [33].
Byeon et al. obtained CWT coefficients for classifying biometric parameters using ECG
data. Images based on scalograms were used as inputs for AlexNet, GoogLeNet, and
ResNet deep machine learning classifiers, and their performance was tested [34]. Mashrur
et al. carried out arrhythmia detection by obtaining CWT coefficients from ECG data using
the pre-trained AlexNet model for classification [35]. Aslan et al. converted electroen-
cephalogram (EEG) data from a database for emotion recognition based on EEG signals
and various computer games (GAMEEMO) into frequency domain features using CWT.
They plotted scalograms and converted them into images, used the pre-trained GoogLeNet
deep learning model to classify emotions, and achieved 93.31% accuracy [36]. Garg et al.
classified emotions based on EEG data using the SelectKBest feature selection technique
and traditional machine learning techniques [37]. Alsubai et.al.classified emotions using a
deep normalized attention-based neural network for feature extraction using EEG data [38].

The impact of user engagement on purchase intentions has also been analyzed based
on EEG data [39]. In addition, emotion classification based on the EEG data of participants
while listening to music is an emerging area of research [40].

We found that researchers have used various machine learning techniques for emotion
classification. Researchers have also used the scalogram method based on CWT coefficients
using ECG data for other applications, such as biometrics and arrhythmia classification, with
supervised and deep machine learning classifiers proving to be efficient tools for ECG data.
Moreover, studies in the literature explored emotion classification with a shorter duration of
emotion elicitation and when the emotions are experienced individually, using traditional
machine learning and 1 D CNN techniques. However, people experience emotions in groups
while watching movies or playing games, or in the classroom environment. Hence, the
emotions of participants need to be classified considering the group setting. This study
explored emotion classification considering the group setting using the proposed model.

3. Methodology

In this study, emotions are classified based on Russell’s two-dimensional circumplex
model, as illustrated in Figure 1. Valence indicates the pleasantness of emotions and arousal
indicates the intensity of emotions. For example, calmness indicates low arousal and high
valence [41].

The methodology for classifying emotions using the CWT and deep learning frame-
work is shown in Figure 2. ECG recordings corresponding to individuals and groups
watching short-duration and long-duration videos from the AMIGOS dataset were used
for emotion classification [11], and GSR recordings corresponding to short-duration videos
were used to classify emotions. The scalogram obtained from the CWT coefficients was
converted into an image and fed to the CNN classifier.

3.1. Data Description

The ECG signals were recorded using the Shimmer 2R5 platform by attaching the
electrodes to the person’s right and left arm and the reference electrode to the left ankle.
Signals were sampled at 256 Hz sampling frequency with 12-bit resolution [11]. Figure 3
indicates the ECG signal waveform [12].
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GSR signals were captured using the Shimmer 2R with a sampling frequency of 128 Hz
and 12-bit resolution, with two electrodes placed at the middle of the left middle and index
fingers, as indicated in Figure 4 [11,20].
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The AMIGOS database is a publicly available database that considers the individual
or group setting of participants and emotion elicitation for longer duration in classifying
emotions [11]. ECG and GSR recordings were acquired of 40 healthy participants aged
21 to 40 years (13 female) while watching 16 short videos (less than 250 s) and 4 long
videos (16 min) [11]. Studies on emotion classification are based on ECG recordings when
participants are watching short-duration videos for a few minutes, whereas emotions are
experienced mainly in groups. In addition, playing games, watching movies, and classroom
activities, among other activities, are also done in groups.

In this work, we utilized ECG and GSR recordings from the AMIGOS database for
two cases, as follows:

3.1.1. Case 1: Valence and Arousal Classification with Short Videos

A multimodal emotion classification model based on ECG and GSR signals is more
reliable than a model based on a single sensor [42].

While subjects are watching short videos, the ECG and GSR recordings can be used to
classify their emotions based on the valence arousal scale. The ECG and GSR recordings of
40 participants watching short videos were obtained [11]. However, only the recordings of
the first 17 participants were selected in this work to establish a comparison with case 2
below. Table 1 shows details of the short-duration videos from the AMIGOS dataset.

Table 1. Short video details.

Video
Number Category Source

Dataset
Source
Movie

Video
Duration (Minutes)

1 HVLA DECAF August Rush 01:30
6 LVLA DECAF My Girl 01:00
8 LVHA MAHNOB Silent Hill 01:10
12 HVHA DECAF Airplane 01:25

The short-duration videos were selected to elicit particular affective states in the
subjects. In the table, the video number is listed in the first column, and the quadrant
of Russell’s model is given in the second column, indicating the emotional arousal and
valence levels. For ECG valence classification, data corresponding to videos 6 and 12 were
considered. For ECG arousal classification, data corresponding to videos 1 and 12 were
considered. For GSR arousal classification, recordings of 39 participants were considered.
For low arousal, data corresponding to videos 1 and 6 were considered, and for high
arousal, videos 8 and 12 were considered. Similarly, for GSR valence classification, low
valence data corresponding to videos 6 and 8, and high valence data corresponding to
videos 1 and 12 were considered.
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3.1.2. Case 2: Valence and Arousal Classification with Long Videos

ECG recordings of 17 participants watching long videos individually and in groups
were obtained. Table 2 shows details of the long-duration videos from the AMIGOS
dataset [11].

Table 2. Long video details.

Video Number Category

17 LVHA
18 HVLA
19 LVLA
20 LVLA

The long videos ran for more than 14 min, and they provoked emotions according
to the diverse quadrant of Russell’s model. The long-duration videos could elicit various
affective states over time, resulting in a context for the affective states [11]. For individ-
ual valence classification, data corresponding to videos 18 and 19 were considered. For
individual arousal classification, data corresponding to videos 17 and 20 were considered.

ECG recordings of participants watching long videos in groups were also captured.
Groups of people familiar with each other and with the same cultural background were
formed [11]. Five groups with four individuals each watched the long videos in order to
explore the group setting. ECG recordings of only 17 participants were taken to maintain
uniformity in the number of samples for both cases. For group arousal classification, data
corresponding to videos 17 and 20 were obtained. For group valence classification, data
corresponding to videos 18 and 19 were used.

3.2. Pre-Processing

The raw ECG signal amplitude measured from the electrodes on the right arm and left
leg versus time was plotted using MATLAB software, as shown in Figure 5.
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Similarly, the raw GSR signal amplitude measured from the electrodes placed on
fingers versus time was plotted using MATLAB software, as shown in Figure 6. Increased
sweat content results in a large flow of current, thus increasing the conductance [20].
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3.2.1. Filtering

Raw ECG and GSR signals are prone to various noises, such as the motion of the
electrodes, muscle artifacts, baseline drift, and power line interference, hence it becomes
necessary to eliminate such noises using suitable filtering techniques. Missing data of the
participants were eliminated, and the signals were suitably filtered with the sixth-order
low-pass Butterworth filter with 15 Hz cut-off frequency and high-pass filter with 0.5 Hz
cut-off frequency [13].

3.2.2. Segmentation

Each ECG recording used in our work had 16,200 sampling points. If a lengthy signal
is passed through the deep learning framework, it could result in degradation, hence
the ECG recording has to be suitably segmented. The segmentation requires extracting
a complete cycle of the ECG signal from the ECG waveform. In our study, no algorithm
was used for detecting the QRS complex; instead, the annotated R-peak location was the
reference point to segment the signal. As shown in Figure 5, R peaks are predominantly
noticed in the signal, separated by a duration of fewer than 200 sampling points. Hence,
the signal is segmented using a fixed window size of 200, which would generate around
81 segments per participant.

GSR signals with 8096 sampling points were sampled at intervals of 2024 samples. The
peaks in the signal are the reference points, as observed in Figure 6. A total of 4 segments
per participant were obtained.

3.3. Continuous Wavelet Transform

ECG and GSR signals consist of various frequency components, hence CWT based
on a series of wavelets needs to be performed in order to convert the signals into the
time–frequency domain so that the appropriate features can be extracted. CWT of ECG
and GSR data was obtained, and the signal was compared with the shifted version of the
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wavelet. The CWT equation is given as Equation (1), where the inner products identify the
similarities between the waveform and the analyzing function ψ (mainly a wavelet):

C(a, b; f (t), ϕ(t)) =
∫
[ f (t).aϕ ∗ (t − ba)dt] (1)

We used the analytic Morlet (Gabor) wavelet with 12 wavelet bandpass filter banks,
called the Amor wavelet, with equal variance in time and frequency. Variations in scale
parameter a and position parameter b give CWT in time t; time, scale, and coefficients
define the wavelet. The fast-changing details of the signal are captured at a lower scale
since the wavelet is compressed and its frequency is high, and vice versa [15,34].

3.4. Scalogram

All CWT coefficients were arranged to form a scalogram. The scalogram was charac-
terized on a jet type color map with 128 colors and transformed into an image in RGB color
format, and the images were classified using the various CNN models (Figures 7 and 8).
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3.5. Convolutional Neural Network

A CNN model learns directly from the data without human intervention. The auto-
matic feature extraction technique in CNN models reduces the complexity of the task as
compared to traditional machine learning techniques.

The objective of this study was to classify emotions using 2D pretrained CNN models,
including MobileNet, which can be used on devices and in the naturalistic environment of
participants, where emotions can be detected easily using smart bands and mobile phones.

Other recent pretrained CNN models—DenseNet 201, NASNetMobile, Inception-
ResnetV2, and Efficient-NetB7—were chosen to validate the performance of MobileNet
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in terms of accuracy and speed compared to other models. Khan et al. used seven ma-
chine learning classifiers for emotion classification and proved that the performance of a
particular classifier will vary based on the dataset [43].

The CNN architectures of DenseNet 201, MobileNet, NASNetMobile, InceptionRes-
netV2, and EfficientNetB7 are explained in this section.

3.5.1. DenseNet CNN

In CNN architecture, the features of one layer act as the input to the next layer. The
output totally depends on the features of the last layer. Hence, as the path of information
increases, it can cause certain information to “vanish” or get lost, which reduces the
network’s ability to train effectively. However, in the DenseNet CNN, the features of one
layer act as the input to every other layer, hence the vanishing gradient problem does not
occur. Figure 9 shows the architecture of the DenseNet 121 CNN.
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In DenseNet 121, there 121 layers with 4 dense blocks, each with a different number of
convolutional layers. Dense block 1 has 6 convolutional layers, dense block 2 has 12 layers,
dense block 3 has 24 layers, and dense block 4 has 16 layers [44,45]. Input is given to the
CNN network with a filter size of 7 × 7 and a stride of 2, then it is given to a pooling layer
with a filter size of 3 × 3 and a stride of 2.

After every dense block, there is a transition layer. DenseNet overcomes the vanishing
gradient problem and provides high accuracy by connecting every layer directly. Hence,
each layer receives the feature maps from every other layer, which enables DenseNet to
strengthen the feature propagation. The features learned by layer 1 are directly accessible
by layers 2 to 5. One layer has already learned something, and all the other layers can
directly access the information through concatenation. Errors are calculated and passed to
all the layers, including the early layers of the network. The last layer is the fully connected
layer and uses the softmax activation function [44,45].

Similarly, the DenseNet 201 model has 201 layers, hence it is larger compared to
DenseNet 121, and can enhance the classification accuracy.
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3.5.2. MobileNet CNN

MobileNet uses depthwise separable convolution, in which an input image with three
dimensions is split into three channels. Each channel is separately convolved with a filter.
Finally, the output of all channels is combined to get the entire image. In a standard
CNN, a 3 × 3 layer is followed by batch normalization and the ReLU activation function.
MobileNet uses a depthwise separable convolutional layer comprising a 3 × 3 depthwise
convolution with batch normalization and ReLU followed by a 1 × 1 pointwise convolution
with batch normalization and ReLU, as shown in Figure 10 [46]. Owing to this architecture,
MobileNet is much smaller and faster than other CNN architectures, making it suitable for
implementation on mobile phones.
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3.5.3. NASNet Mobile CNN

In the Neural Architecture Search Network (NASNet) CNN, the blocks are not pre-
defined but are detected using the reinforcement learning search method. The NAS has
three basic strategies: search space, search strategy, and performance estimation strategy
(Figure 11).
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The search space looks for the best possible architecture based on the type of applica-
tion. The global search space allows any architecture the freedom to set hyperparameters,
and the cell-based search space searches a particular architecture based on the cells. Archi-
tectures built on the cell-based search space are smaller and more effective and can be built
into larger networks. The recurrent neural network controller searches within normal and
reduction cells, thus the best combinations to form the cells are searched to improve the
performance. The search strategy helps to find the best architecture for a given performance.
The estimation strategy searches the architecture based on the best performance, such as
the accuracy of the model [47,48].

3.5.4. InceptionResnetV2 CNN

The multiple-sized convolutional filters in the inception architecture are combined
with the residual connections. This helps avoid the degradation problem due to the deep
architecture and reduces the training time [49,50].
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3.5.5. EfficientNetB7 CNN

This network was introduced in 2021 to optimize both parameter efficiency and
training speed. The model was developed using a training-aware neural architecture search
and scaling. A combination of scaling in width, depth, resolution, and neural architecture
search was used to improve its performance [51].

Table 3 lists the architectural details of the pretrained CNN models. Depth refers to
the number of layers in the model, excluding the input layer.

Table 3. Comparison of model architectures.

CNN MODEL Architectural
Specifications Size Depth Total

Parameters
Trainable
Parameters

Non-Trainable
Parameters

MobileNet Depthwise separable
convolution; smaller and faster 16 Mb 88 3,228,864 3,206,976 21,888

NASNetMobile

Blocks are not predefined but
are detected using
reinforcement learning search
method

23 Mb _ 4,269,716 4,232,978 36,738

DenseNet201

Features of one layer act as
input to every other layer;
resolves vanishing gradient
problem

80 Mb 201 18,321,984 18,092,928 229,056

InceptionResnetV2

Multiple-sized convolutional
filters in inception architecture
are combined with residual
connections

215 Mb 572 54,336,736 54,276,192 60,544

EfficientNetB7
Uses a combination of
training-aware neural
architecture search and scaling

813 64,097,687 63,786,960 310,727

Table 3 also shows a comparison of total parameters of the CNN models and the
number of trainable and non-trainable parameters. The total parameters are obtained
by adding the parameters from all layers. The number of weights that get optimized
indicates the trainable parameters. The weights that are not updated during training
with backpropagation indicate the non-trainable parameters. MobileNet has the smallest
number of parameters and EfficientNetB7 has the highest. MobileNet has the smallest size
and depth.

In this work, CWT- and scalogram-based images were obtained using the MATLAB
tool, and Python software on the Google Colab platform was used for CNN classification.
The training used 70% of images from the dataset, validation used 20%, and testing used
the remaining 10%. For ECG data, of the 2754 samples, 1926 samples were used for training,
550 samples for validation, and 278 for testing. For the GSR data, of the 624 samples,
436 samples were used for training, 124 samples for validation, and 64 for testing. The
accuracy of valence and arousal classification was obtained.

4. Results and Discussion

The results obtained in the two cases described above are presented below. The
model’s performance was evaluated based on accuracy, precision, recall, F1 score, and
confusion matrix parameters. Accuracy is calculated by the ratio of the number of correct
predictions over the total number of predictions. Precision indicates the correctness of the
number of optimistic predictions. Recall or sensitivity indicates the number of positive
cases predicted correctly out of all positive cases. F1 score is the harmonic mean of precision
and recall [52].
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4.1. Case 1: Arousal and Valence Classification Using ECG and GSR Data while Participants
Watched Short Videos

ECG and GSR recordings of the 17 participants watching short videos were cap-
tured [11], and arousal and valence classification was performed. The results obtained are
described below.

4.1.1. ECG Arousal Classification

Accuracy, F1 score, precision, and recall for arousal classification were obtained using
the pretrained CNN models based on the transfer learning approach. Table 4 compares
these parameters using ECG data when participants were watching short-duration videos
using MobileNet, NASNetMobile, DenseNet 201, InceptionResnetV2, and EfficientNetB7.
The time for data execution by each CNN is also indicated in Table 4.

Table 4. Performance evaluation of arousal classification using ECG data.

No. CNN Model Accuracy (%) Precision Recall F1 Score Data Execution Time (s)

1 InceptionResNetV2 91.45 0.91 0.90 0.90 920.778
2 MobileNet 90.55 0.90 0.90 0.90 215.212
3 DenseNet201 90.55 0.92 0.92 0.92 850.947
4 NASNetMobile 89.27 0.90 0.90 0.90 297.214
5 EfficientNetB7 80.18 0.82 0.80 0.80 1743.611

Figure 12 shows a comparison of the accuracy of these CNN models. Inception-
ResnetV2 had the highest classification accuracy of 91.45%. In this CNN, multiple-sized
convolutional filters in the inception architecture are combined with residual connections,
which improves accuracy. MobileNet had the shortest execution time of 215.212 s owing to
its smaller size and depth, as indicated in Figure 13. EfficientNetB7 had the lowest accuracy
and longest execution time owing to its greater size and depth.
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The precision, recall, and F1 score were the highest for the DenseNet201 CNN model,
as shown in Figure 14.

4.1.2. ECG Valence Classification

ECG recordings of the 17 participants while watching short videos were captured for va-
lence classification. Accuracy, F1 score, precision, and recall were obtained using the pretrained
CNN models. Table 5 shows a comparison of these parameters for valence classification of
participants watching short-duration videos based on the transfer learning approach using
MobileNet, NASNetMobile, DenseNet201, InceptionResNetV2, and EfficientNetB7.
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Figure 14. Precision, recall, and F1 score for short video arousal classification using ECG.

Table 5. Performance evaluation of valence classification using ECG data.

No. CNN Model Accuracy (%) Precision Recall F1 Score Data Execution Time (s)

1 InceptionResNetV2 91.27 0.9 0.9 0.9 892.63
2 MobileNet 90.55 0.93 0.93 0.93 183.081
3 DenseNet201 92 0.93 0.93 0.93 895.516
4 NASNetMobile 89.09 0.92 0.92 0.92 303.057
5 EfficientNetB7 71.64 0.78 0.72 0.70 17,772.865

DenseNet201 had the highest classification accuracy of 92%. Figure 15 shows the clas-
sification accuracy and loss plots for DenseNet201 in ECG valence classification. MobileNet
had the shortest execution time owing to its smaller size and depth. DenseNet201 had
better accuracy since it resolves the vanishing gradient problem. EfficientNetB7 had the
lowest accuracy, precision, recall, and F1 score and the longest execution time owing to its
greater depth.
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The training and validation accuracy and loss do not deviate much below 90% accuracy,
indicating better model performance. In total, 126 samples were correctly classified as high
valence, and 133 samples as low valence.

4.1.3. GSR Arousal Classification

GSR recordings of the 17 participants watching short videos were captured, and
arousal and valence classification were carried out. The results obtained are presented
below. Table 6 shows a comparison of accuracy, precision, recall, and F1 score for arousal
classification using GSR data.

Table 6. Performance evaluation of arousal classification using GSR data.

No. CNN Model Accuracy (%) Precision Recall F1 Score Data Execution Time (s)

1 InceptionResNetV2 97.58 0.98 0.98 0.98 205.267
2 MobileNet 98.39 0.98 0.98 0.98 62.214
3 DenseNet201 99.19 0.98 0.98 0.98 163.155
4 NASNetMobile 96.77 0.97 0.97 0.97 76.611
5 EfficientNetB7 76.61 0.75 0.75 0.75 486.086

DenseNet201 had the highest classification accuracy. Figure 16 shows the confusion
matrix for the arousal classification of DenseNet201 using GSR data. In total, 32 samples
were correctly classified as high arousal and 31 samples as low arousal.
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Figure 17 shows the training and validation classification accuracy and loss for the
MobileNet CNN classifier with GSR data.
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The training and validation accuracy and loss do not deviate much, indicating better
model performance.

4.1.4. GSR Valence Classification

Table 7 shows a comparison of the accuracy, precision, recall, and F1 score for valence
classification using GSR data.

Table 7. Performance evaluation of valence classification using GSR data.

No. CNN Model Accuracy (%) Precision Recall F1 Score Data Execution Time (s)

1 InceptionResNetV2 91.13 0.95 0.95 0.95 202.349
2 MobileNet 99.19 0.97 0.97 0.97 43.428
3 DenseNet201 96.77 0.97 0.97 0.97 186.739
4 NASNetMobile 95.97 0.93 0.92 0.92 79.452
5 EfficientNetB7 79.84 0.79 0.78 0.78 479.478

MobileNet had the highest valence classification accuracy.
We also compared the accuracy of the models using the ECG and GSR recordings of

participants. Table 8 shows the arousal and valence classification using the ECG and GSR
data of the participants while watching short videos.

Table 8. Arousal and valence classification using ECG and GSR data.

No. CNN Model ECG Arousal
Accuracy (%)

GSR Arousal
Accuracy (%)

ECG Valence
Accuracy (%)

GSR Valence
Accuracy (%)

1 InceptionResNetV2 91.45 97.58 91.27 91.13
2 MobileNet 90.55 98.39 90.55 99.19
3 DenseNet201 90.55 99.19 92 96.77
4 NASNetMobile 89.27 96.77 89.09 95.97
5 EfficientNetB7 80.18 76.61 71.64 79.84

Table 8 shows that using GSR data led to better model performance than ECG data based
on short videos in arousal and valence classification. Hence, GSR is a more suitable modality
for emotion classification using data corresponding to short-duration emotion elicitation.

Filtering and CWT were used to pre-process and extract the relevant features from
the data before emotion classification. Time–frequency scalograms were obtained and
converted to images, enabling the use of deep learning architectures such as 2D CNN
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for emotion classification. The performance was validated using the diverse pretrained
CNN models.

Researchers have used various deep-learning models for emotion classification based
on short-duration emotion elicitation. Sepulveda et al. used traditional machine learning
techniques on CWT coefficients obtained from ECG data and reported a classification
accuracy of 90.2% for arousal and 88.8% for valence using short video data from the
AMIGOS database [17]. Table 9 lists the work done by other researchers using deep
learning models for emotion classification using ECG and GSR data.

Table 9. Comparison with other related works.

Ref. No. Databases Biosignals Methods Accuracy

[2] DEAP ECG 1D CNN Valence: 75.3%; arousal: 76.2%

[14] DEAP,
MAHNOB GSR 1D CNN MAHNOB: valence and arousal: 78%

DEAP: valence and arousal: 82%

[21] DREAMER,
AMIGOS ECG, GSR 1D CNN, LSTM

DREAMER: valence and arousal: 89.25%
AMIGOS ECG valence and arousal: 98.73%;

GSR valence and arousal: 63.67%

[22] AMIGOS ECG, GSR 1D CNN ECG valence: 75%; arousal: 76%
GSR valence: 75%; arousal: 71%

[24] DEAP PPG 1D CNN Valence: 82.1%; arousal: 80.9%

[25] DREAMER,
AMIGOS ECG CNN-LSTM (Bayseian)

DREAMER: valence: 86%;
arousal: 83%

AMIGOS: valence: 90%;
arousal: 88%

[53] DREAMER ECG 1D CNN

Self-supervised CNN:
valence: 85%; arousal: 85.9%

Fully supervised CNN: valence: 66.6%;
arousal: 70.7%

Proposed Work AMIGOS
ECG (short video data) InceptionResNetV2 CNN Valence: 91.27%

Arousal: 91.45%

GSR (short video data) MobileNet CNN Valence: 99.19%
Arousal: 98.39%

It can be seen that other researchers specifically used 1D CNN models on numerical ECG
and GSR datasets. In our work, we used 2D CNN models to improve classification accuracy.

4.2. Case 2: Arousal and Valence Classification of Participants while Watching Long Videos in
Individual and Group Settings

In this work, we carried out a novel classification of emotions using deep learning
techniques to explore the social context of participants using ECG data corresponding to
long videos. The ECG recordings of the 17 participants watching long videos individually
and in groups were captured and classified using the arousal and valence dimensions. The
model performance was evaluated using classification accuracy, F1 score, precision, and
recall, as described below.

4.2.1. Individual Arousal Classification

For the arousal classification, ECG recordings of the 17 participants watching long
videos individually were captured [11]. Table 10 compares the accuracy, precision, recall,
and F1 score for arousal classification of participants while watching long-duration videos
individually based on the transfer learning approach using the pretrained MobileNet,
NASNetMobile, DenseNet 201, and InceptionResnetV2 deep learning CNN classifiers. All
models had similar accuracy, precision, recall, and F1 score. MobileNet had the shortest
execution time owing to its smaller size and depth. Figure 18 shows classification accuracy
and loss plots.
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Table 10. Performance evaluation of individual arousal classification.

No. CNN Model Accuracy (%) Precision Recall F1 Score Data Execution Time (s)

1 InceptionResNetV2 99.8 1 1 1 857.976
2 MobileNet 99.8 1 1 1 211.122
3 DenseNet201 99.8 1 1 1 881.271
4 NASNetMobile 99.8 1 1 1 300.944
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The training and validation accuracy plots do not indicate any discrepancy, hence the
model is the most suitable for classification.

4.2.2. Individual Valence Classification

For the valence classification, ECG recordings of the 17 participants watching long
videos individually were captured [11]. Accuracy, F1 score, precision, and recall were ob-
tained using the pretrained CNN models. Table 11 compares these parameters for valence
classification of participants watching long videos individually using MobileNet, NASNet-
Mobile, DenseNet 201, InceptionResnetV2. All models attained the highest classification
accuracy and had similar performance in terms of accuracy, precision, recall, and F1 score,
and MobileNet had the shortest execution time, as indicated in Table 11.

Table 11. Performance evaluation of individual valence classification.

No. CNN Model Accuracy (%) Precision Recall F1 Score Data Execution Time (s)

1 InceptionResNetV2 99.8 1 0.9 1 314.81
2 MobileNet 99.8 1 1 1 174.88
3 DenseNet201 99.8 1 1 1 932.799
4 NASNetMobile 99.8 1 1 1 561.291

In total, 139 samples were correctly classified as high valence, and 139 as low valence.
No deviation was observed between training and validation accuracy.

4.2.3. Group Arousal Classification

For the classification based on social context, ECG recordings of the 17 participants
watching long videos in groups were captured [11]. Accuracy, F1 score, precision, and recall
were obtained using the pretrained CNN models. Table 12 compares these parameters for
arousal classification of participants watching long videos in groups based on the transfer
learning approach using MobileNet, NASNetMobile, DenseNet 201, InceptionResnetV2.
MobileNet had the highest classification accuracy, as shown in Figure 19.
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Table 12. Performance evaluation of group arousal classification.

No. CNN Model Accuracy (%) Precision Recall F1 Score Data Execution Time (s)

1 MobileNet 99.82 1 1 1 223.211
2 DenseNet201 99.10 1 1 1 960.337
3 InceptionResNetV2 98.74 1 1 1 871.891
4 NASNetMobile 98.74 0.99 0.99 0.99 301.785
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4.2.4. Group Valence Classification

For group valence classification, ECG recordings of the 17 participants watching
long videos in groups were captured [11]. Accuracy, F1 score, precision, and recall were
obtained using the pretrained CNN models. Table 13 compares these parameters for
valence classification of participants watching long videos in groups based on the transfer
learning approach using MobileNet, NASNetMobile, DenseNet 201, InceptionResnetV2.
MobileNet and DenseNet 201 had the highest accuracy, precision, recall, and F1 score, and
MobileNet had the shortest execution time.

Table 13. Performance evaluation of valence classification.

No. CNN Model Accuracy (%) Precision Recall F1 Score Data Execution Time (s)

1 MobileNet 99.82 1 1 1 191.844
2 DenseNet201 99.82 1 1 1 849.547
3 NASNetMobile 99.45 1 1 1 300.732
4 InceptionResNetV2 99.27 1 1 1 872.207

Figure 20 shows the confusion matrix for valence classification using InceptioRes-
NetV2, and Figure 21 shows the classification accuracy and loss plots. All samples were
correctly classified, with no misclassification, indicating the highest precision, recall, and
F1 score values.
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Finally, we compared classification accuracy when the participants experienced emo-
tions while watching long-duration videos individually and in groups, and while watching
short videos, for ECG data as indicated in Table 14 and Figure 22.

Table 14. Valence arousal classification accuracy.

No. CNN Model

ECG Short
Video
Arousal
Accuracy (%)

ECG Short
Video
Valence
Accuracy (%)

ECG
Individual
Long Video
Arousal
Accuracy (%)

ECG
Individual
Long Video
Valence
Accuracy (%)

ECG Group
Long Video
Arousal
Accuracy (%)

ECG Group
Long Video
Valence
Accuracy (%)

1 InceptionResNetV2 91.45 91.27 99.8 99.8 98.74 99.27
2 MobileNet 90.55 90.55 99.8 99.8 99.82 99.82
3 DenseNet201 90.55 92 99.8 99.8 99.10 99.82
4 NASNetMobile 89.27 89.09 99.8 99.8 98.74 99.45
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Figure 22 indicates that experimentally emotion classification accuracy using ECG
data is improved when the emotion elicitation occurs over a longer duration and in groups.

5. Conclusions

The novelty of this study is in the CWT-based deep learning classification for ECG
and GSR data using pretrained CNN models. The valence arousal classification accuracy
of 99.19% and 98.39% obtained using GSR data outperforms the accuracy obtained using
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ECG data. Furthermore, this novel work explored emotion classification considering long-
duration emotion elicitation and the social context of participants based on a deep learning
framework, resulting in an accuracy of around 99.80%, and when the participants watched
long-duration videos in groups, accuracy was around 99.82%. Emotions are experienced in
a better way when participants are engaged in groups. The architectural advancements
in five pretrained CNN models, MobileNet, NASNetMobile, DenseNet 201, InceptionRes-
netV2, and EfficientNetB7, help improve the accuracy considerably. Additionally, automatic
feature extraction makes the task less complex than traditional machine learning techniques
with manual feature extraction.

The performance of five pretrained CNN models, trained on millions of datasets, was
validated in terms of accuracy, precision, recall, F1 score, and execution speed. MobileNet,
DenseNet201, and InceptionResnetV2 exhibited similar performance in terms of accuracy in
both cases. MobileNet had the shortest execution time owing to its depthwise convolution
architecture, followed by NASNetMobile. MobileNet is suitable for implementation on
devices such as mobile phones. MobileNet outperformed the other models and can be
suitably used in the naturalistic environment where people’s emotions can be detected
easily using smart bands and mobile phones. The subject-independent classification was
explored, since different users react differently to the same stimuli based on their mental
strength and physical stability, in order to ensure that the classification was independent of
personality and mental status.

Some potential applications of the proposed model are mentioned below. The social
isolation due to the COVID-19 pandemic led to sadness and depression, resulting in
affective and behavioral problems among the population. This model could help to identify
emotions such as depression and calmness and thus enable appropriate action. In healthcare
scenarios, robots could be used to assess the emotions of patients and provide appropriate
assistance. The emotions of the driver such as anger, and calmness can be captured and
passengers may be alerted. The emotions of students, such as happy and sad, could be
accurately captured using wearable sensors, and suitable changes could be adopted in
teaching methodologies. Companies could develop appropriate marketing strategies based
on customers’ emotions to advertise products.

This model can accurately classify emotions based on two discrete classes, and could
be further extended to classify emotions in the four dimensions of Russell’s model. The
model could also be applied to classify emotions based on EEG recordings of subjects
and self-assessment reports. However, wearable devices such as Shimmer ECG and GSR
sensors are required to be in contact with the subject’s body, leading to some discomfort;
in addition, people might be reluctant to be monitored throughout the day. The size and
weight of the sensors could lead to discomfort for subjects, which could affect the accuracy
of the model. To overcome these limitations, lightweight sensors could be developed using
the latest technologies to capture ECG and GSR recordings.
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