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Abstract: Deep learning brings the opportunity to achieve effective speech steganalysis in speech
signals. However, the speech samples used to train speech steganalysis models (i.e., steganalyzers)
are usually sensitive and distributed among different agencies, making it impractical to train an
effective centralized steganalyzer. Therefore, in this paper, we present an effective framework,
named FedSpy, using federated learning, which enables multiple agencies to securely and jointly
train the speech steganalysis models without sharing their speech samples. FedSpy is a flexible
and extensible framework that can work effectively in conjunction with various deep-learning-
based speech steganalysis methods. We evaluate the performance of FedSpy by detecting the
most widely used Quantization Index Modulation-based speech steganography with three state-of-
the-art deep-learning-based steganalysis methods representatively. The results show that FedSpy
significantly outperforms the local steganalyzers and achieves good detection accuracy comparable
to the centralized steganalyzer.

Keywords: speech steganalysis; speech steganography; federated learning

1. Introduction

Speech steganography embeds secret messages into speech signals to realize covert
communications on public channels [1,2], providing a new way for secure information
transmission. Compared to speech encryption [3,4], speech steganography can conceal
the fact that the secret messages are being sent, thus offering stronger security in some
cases. However, it might pose a major threat if used by cybercriminals to transmit stolen
data, malware codes, and some other illegal messages. Therefore, speech steganalysis [5,6],
whose primary purpose is to detect the existence of hidden messages in speech signals, has
been attracting increasing attention in recent years. Particularly, with the development of
artificial intelligence, many well-performing speech steganalysis methods based on deep
learning [7–18] have been proposed, since deep learning can capture the subtle differences
between the steganographic and cover samples.

Although deep-learning-based speech steganalysis has achieved relatively good detec-
tion performance in laboratory settings, it still faces some challenges in practical applica-
tions. First, deep-learning-based speech steganalysis usually requires a large number of
steganographic samples as training data to obtain robust classifiers. For example, the train-
ing dataset in [7] includes over one million steganographic speech segments. However,
for the offenses of employing speech steganography to transmit unauthorized information,
security agencies usually only have a small number of steganographic samples, making it
difficult to independently train an effective steganalyzer (i.e., a robust classifier for detecting
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steganography). Of course, the direct collection of samples from multiple agencies might
solve the problem of insufficient samples in a single agency to a certain extent. However,
due to the sensitive nature of steganographic samples, even though these agencies are
allies in steganalysis, the data privacy concerns and legal constraints (e.g., General Data
Protection Regulation) prevent agencies from sharing the limited number of steganographic
samples they have, which is a common occurrence in collaborative steganalysis tasks [19].
Thus, the steganographic samples of various security agencies are existing in the form of
isolated data silos, which poses a significant obstacle to the deployment of deep-learning-
based speech steganalysis. In other words, the current challenge lies in finding an effective
approach to deploy deep-learning-based speech steganalysis across multiple security agen-
cies while protecting speech sample privacy. Therefore, the motivation behind this paper is
to present a practical solution in the form of collaborative speech steganalysis, which aims
to address this challenge comprehensively.

Federated Learning (FL) [20] is an emergent machine learning paradigm, which
provides a potential solution to the above issues. In FL, multiple clients (e.g., the security
agencies) can train a global model (e.g., a speech steganalysis classifier) collaboratively
without sharing training data with each other. Instead, each client trains a local model with
its local dataset and uploads the local model to a central server. Then the central server
aggregates all local models to update a global model. This process is repeated until the
global model is convergent. FL can mitigate the data privacy risk because the raw training
data is only kept in an on-premise environment.

Recently, Yang et al. successfully applied FL to image steganalysis and proposed
a framework named FedSteg [19]. FedSteg includes a one-round global model update,
followed by a local transfer learning at each client end that can decrease the distribution
discrepancy between the image data at different ends. However, in this paper, we ex-
perimentally show that FedSteg, designed for image steganalysis, is not well suited for
speech steganalysis. The reasons are twofold. First, as pointed out in a previous work [7],
the distribution discrepancy between different speech data (e.g., different gender, different
languages) has little effect on the detection accuracy of speech steganalysis, which indi-
cates that transfer learning is not so significant in speech steganalysis because it cannot
further improve detection accuracy. Second, the global model is only updated in FedSteg
once, which would also result in low detection accuracy even without the amplification of
transfer learning.

Thus, in this paper, we propose a novel Secure Collaborative Speech Steganalysis
Framework based on federated learning, named FedSpy, whose main contributions can be
summarized as follows.

Firstly, FedSpy enables the collaboration of speech steganalysis across isolated clients
(agencies). By employing FedSpy, these isolated clients can collaboratively perform ste-
ganalysis based on deep learning without compromising the privacy of steganographic
samples. This significantly addresses the challenge of insufficient steganographic samples
encountered by individual clients during the training of deep-learning-based steganalyzers.

Secondly, within the FedSpy framework, we introduce federated learning into speech
steganalysis for the first time. While federated learning has been widely applied in many
domains such as finance, healthcare, and the Internet of Things, its potential in speech
steganalysis has remained largely unexplored. Our work expands the realm of federated
learning, showcasing its efficacy in the domain of speech steganalysis.

Lastly, we implement three state-of-the-art speech steganalysis methods based on deep
learning in FedSpy. The experimental results prove that FedSpy can achieve commendable
detection accuracy comparable to the centralized steganalysis, surpassing the steganalysis
on local data set by a significant margin. Furthermore, these comprehensive experiments
convincingly demonstrate the effectiveness and scalability of FedSpy in collaborative
speech steganalysis.
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2. Related Work

Before describing FedSpy in detail, we first briefly review some representative deep-
learning-based speech steganalysis methods proposed in recent years.

Take the detection of Quantization Index Modulation (QIM)-based steganography, one
of the most widely used speech steganography methods, as an example. Early studies [5,6]
on QIM-oriented speech steganalysis normally extracted hand-crafted and well-designed
features from speech and conducted steganalysis using a Support Vector Machine (SVM)
classifier. In 2017, Lin et al. [7] first introduced deep learning into QIM-oriented speech
steganalysis. They found four codeword correlation patterns in VoIP streams and pro-
posed a Recurrent Neural Network (RNN)-based steganalysis model (named RNN-SM),
which achieved higher detection accuracy than those SVM-based methods [5,6]. Then,
Yang et al. [8] combined Convolutional Neural Network (CNN) and Long Short-Term Mem-
ory (LSTM) to propose a novel CNN-LSTM model to detect QIM-based steganography
with better performance than RNN-SM. In this CNN-LSTM model, the Bi-LSTM network is
used for capturing long-term contextual information from speech, while CNN is leveraged
to extract local features of each speech frame. In follow-up work, Yang et al. proposed three
more effective steganalysis methods based on the teacher–student model [9], the attention
mechanism [10], and the multi-head attention mechanism [11], respectively, wherein the
model in [11] (named FCEM) has the best performance in terms of both detection accuracy
and detection efficiency. Recently, Qiu et al. [12] proposed a novel steganalysis model
with distributed representations of codewords based on codeword embedding, Bi-LSTM,
and Multi-Layer Perceptron, to further improve the detection accuracy in short-length and
low-embedding-rate speech streams, and achieved state-of-the-art performance. (Note
that we refer to this model as DRCM in this paper.) Meanwhile, Wei et al. [13] also used
codeword embedding and Bi-LSTM to propose a QIM-oriented speech steganalysis method,
which can achieve frame-level speech steganography detection.

In addition to QIM-based speech steganography, several deep-learning based ste-
ganalysis methods for detecting other speech steganography methods were also proposed
recently. For instance, Tian et al. [14] proposed a speech steganalysis model using fea-
ture fusion and LSTM to detect Adaptive-Codebook-based steganography. Qiu et al. [15]
designed a novel separable convolution network with a dual-stream pyramid-enhanced
strategy to detect Fixed-Codebook-based steganography. For the general detection of
multiple steganography methods, Hu et al. [16] proposed a novel deep learning model
named Steganalysis Feature Fusion Network. Li et al. [17] presented a general steganalysis
method based on codeword embedding, Bi-LSTM, and CNN with an attention mechanism.
Tian et al. presented a novel Multi-Encoder Network to achieve efficient detection of
multiple steganography methods [18].

In summary, deep-learning-based steganalysis is becoming a new trend in speech ste-
ganalysis. However, as we discussed above, the existing deep-learning-based steganalysis
methods assume that an adequate number of speech samples (i.e., a training dataset con-
taining sufficient samples) are available. But this assumption does not hold in collaborative
steganalysis tasks when the clients only have a small number of samples and cannot share
the samples directly. Therefore, we propose to utilize federated learning to address this
challenge in this paper.

3. The Description of FedSpy

As shown in Figure 1, the system model of FedSpy consists of a Trusted Authority (TA),
n clients, and a central server. TA is only responsible for distributing keys to the clients and
the server in the initialization phase, and does not participate in the speech steganalysis
tasks. Each client Ci has a local speech dataset Di, including its steganographic samples
and cover samples. The entire dataset (a.k.a, the global dataset) is denoted by D = ∪n

i Di.
All clients collaborate in training a deep-learning-based speech steganalysis model by
iteratively uploading their local models (i.e., w(t)

i ) to the central server for aggregation
(i.e., w(t)), where t indicates the round of iteration. Before describing the details of FedSpy,
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we would like to introduce two essential building blocks, i.e., deep-learning-based speech
steganalysis and secure local model aggregation.

Client: 𝐶𝐶2
Speech dataset: 𝐷𝐷2

Client: 𝐶𝐶1
Speech dataset: 𝐷𝐷1

Client: 𝐶𝐶𝑛𝑛
Speech dataset: 𝐷𝐷𝑛𝑛

Central
Server

𝒘𝒘1
(𝑡𝑡)

𝒘𝒘(𝑡𝑡)

𝒘𝒘2
(𝑡𝑡)

𝒘𝒘n
(𝑡𝑡)

Clients’ Keys

Server’s Key
TA

𝒘𝒘(𝑡𝑡) 𝒘𝒘(𝑡𝑡)

···

Figure 1. The system model of FedSpy.

3.1. The Building Blocks of FedSpy

Deep-learning-based Speech Steganalysis: As mentioned above, the current trend
in speech steganalysis is to introduce deep learning to build effective steganalysis mod-
els. Without loss of generality, assume the entire training dataset is D = {〈xk, yk〉, k =
1, 2, · · · , K}, where K is the number of the speech samples, xk represents the feature of the k-
th speech sample, and the label yk indicates whether it contains secret information. The goal
of the steganalysis model is to minimize the following loss function on the training set:

L(D, w) =
1
K

K

∑
k=1

c(xk, yk, w) (1)

where w is the parameter of the steganalysis model, and c(·) represents the classification
loss function. The specific forms of L(·) and c(·) depend on the concrete steganalysis model.
In FedSpy, since D is distributed over multiple clients, the loss function can be rewritten as:

L(D, w) =
n

∑
i=1

|Di|
|D| L(Di, w) (2)

In general, the most common method of minimizing Equation (1) is using gradient descent
(or its variation) [21] as follows:

w(t+1) ← w(t) − λ∇L(D, w(t)) (3)

where w(t) indicates the value of parameters w after the t-th iteration, and λ is the parameter
of the learning rate. In FedSpy, we will calculate Equation (3) in a federated way, where
D = ∪n

i Di.
Secure Local Model Aggregation: Recent research results have shown that the local

models in federated learning (e.g., the gradients) can reveal the sensitive properties of
the clients’ data [22,23]. Thus, to protect data privacy, the local models cannot be sent to
the server in plaintext. FedSteg [19] leverages the Paillier cryptosystem [24] to address
this problem, in which each client encrypts its local model using the server’s public key.
However, this method allows the server to obtain all local models clearly. In other words,
it cannot protect data privacy against an inside attacker at the server end. Instead, we
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integrate a state-of-the-art secure aggregation protocol [25] (which is also based on the
Paillier cryptosystem) into FedSpy, where the server can only obtain the aggregated result
of the local models of all clients. Specifically, this secure aggregation protocol consists of
four algorithms as follows.

• (PP, SKCi , SKS) ← GenKey(κ). TA runs this algorithm to generate the system pub-
lic parameter PP, the server’s secret key SKS, and each client Ci’s secret key SKCi ,
i ∈ {1, 2, · · · , n}, where κ is the security parameter.

• JmiK← Enc(mi, SKCi ). Each client Ci runs this algorithm to encrypt a private message
mi with its secret key SKCi . The ciphertext is denoted by JmiK.

• JmK ← Aggre(Jm1K, Jm2K, · · · , JmnK). This algorithm is run by the server. It takes as
input n ciphertexts from the n client, and outputs the ciphertext of aggregated results,
where m = m1 + m2 + · · ·+ mn.

• m ← Dec(JmK, SKS). Given a ciphertext output by Aggre(·), the server runs this
algorithm to decrypt it with its secret key SKS, and obtains the aggregated results.

Note that in this secure aggregation protocol, the server can only decrypt the ciphertext
aggregated from the n ciphertexts of the n clients. None of the clients’ private messages can
be revealed to the server. The details of this secure aggregation protocol and its security
analysis can be found in [25].

3.2. The Details of FedSpy

The goal of FedSpy is to enable multiple clients to train a speech steganalysis model
collaboratively. Before the training process, TA first generates the cryptographic keys for
the server and the clients, which will be used for the secure aggregation of local models.
Specifically, TA runs the algorithm (PP, SKCi , SKS) ← GenKey(κ), sends SKS and SKCi
to the server and the client Ci (i = 1, 2, · · · , n) through a secure channel, respectively,
and publishes the system parameter PP. The secure channel can be established using
secure communication protocols, such as the Transport Layer Security (TLS) protocol. Note
that TA does not participate in the following training process.

The training algorithm of FedSpy (Algorithm 1) can be detailed as follows. First,
according to the chosen deep-learning-based steganalysis methods, the server generates
the initial global model parameter w(0) and broadcasts to all clients (as shown in Line 2).
Second, in the subsequent iteration, upon receiving the global model w(t), each client
performs the optimization algorithm (e.g., the gradient descent in Algorithm 1) with its
individual speech dataset, thereby obtaining its local model w(t+1)

i (as shown in Line 11).
Note that we could use another optimizer instead of gradient descent in this step. More
specifically, the detailed calculations of this step depend on the concrete steganalysis model
(i.e., the deep learning network) integrated into FedSpy. For instance, if we opt for RNN-
SM [7] as the underlying model, the parameter w(t) encompasses three sets of weights,
namely the Input Weights, the Connection Weights, and the Detection Weights. These
weights are locally optimized by each client utilizing the Adam algorithm [26] with cross-
entropy loss function. Then the local model w(t+1)

i is encrypted with the client’s secret
key SKCi and uploaded to the server (as shown in Lines 12–13). Third, the server securely
aggregates all local models to update the global model (as shown in Lines 4–6). The second
and third steps are iterated until convergence or reaching a maximum iteration number T.
Following the training process, each client can utilize the final global steganalysis model
for local detection of steganographic speech samples.
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Algorithm 1 The training Algorithm of FedSpy

1: procedure SERVER

2: Initialize and broadcast w(0) to all clients
3: for each round of iteration t = 0, 1, · · · , T − 1 do
4: Jw(t+1)K← Aggre(Jw(t+1)

1 K, Jw(t+1)
2 K, · · · , Jw(t+1)

n K)
5: w(t+1) ← Dec(Jw(t+1)K, SKS)

6: return w(t+1) to all clients
7: end for
8: end procedure
9: procedure CLIENT Ci

10: for each round of iterations t = 0, 1, · · · , T − 1 do
11: w(t+1)

i = |Di |
|D| (w

(t) − λ∇L(Di, w(t)))

12: Jw(t+1)
i K← Enc(w(t+1)

i , SKCi )

13: return Jw(t+1)
i K to the server

14: end for
15: end procedure

4. Performance Evaluation

In this section, we implement different speech steganalysis methods in FedSpy to show
its effectiveness and scalability, as well as to compare it with the FedSteg framework [19],
the centralized models, and the local models. Our experiments are implemented us-
ing Python on a server with Intel E5-2680 V4 CPU, NVIDIA GeForce RTX 2080 Ti GPU,
and 30 GB RAM.

4.1. Basic Steganalysis and Target Steganography Methods

In our experiments, we representatively port three state-of-the-art steganalysis models
(i.e., RNN-SM [7], FCEM [11], and DRCM [12]) into FedSpy, although FedSpy can be
extended to many other speech steganalysis methods based on deep learning. Like in
RNN-SM, FCEM, and DRCM, we take the Complementary Neighbor Vertices (CNV)
algorithm [27], a typical approach based on QIM [28], as our benchmark target. Despite
this, it is not difficult to see that FedSpy can also be applied to the detection of other speech
steganography methods, as long as we adopt the corresponding basic steganalysis method
in each client.

4.2. Utilized Dataset

We collected 25,000 speech samples from audio materials for language learning
with an 8 kHz sampling rate and 16 bits quantization, including 12,500 English sam-
ples and 12,500 Chinese samples. Each sample is one second long and encoded by G.729a
speech codec. Furthermore, we produce the corresponding steganographic samples with
10 different embedding rates (i.e., 10%, 20%, · · · , 100%) using the CNV-QIM steganographic
method [27], in which the secret messages are simulated as random binary sequences. There-
fore, for each embedding rate, we have a total of 50,000 samples, including 25,000 cover
and 25,000 steganographic samples. Since the clients usually consist of a few stable entities
(e.g., several security agencies), we first fix the number of clients at 4, where each client
owns 5000 cover samples and 5000 steganographic samples as training data. The rest of
the 5000 cover samples and 5000 steganographic samples are reserved as the testing data.
Then, we also investigate the performance of FedSpy with a different number of clients.

4.3. Experimental Results and Performance Evaluation

We implement four types of steganalysis models based on RNN-SM [7], FCEM [11],
and DRCM [12], respectively, including
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1. FedSpy-RNN-SM (resp. FedSpy-FCEM or FedSpy-DRCM), incorporating RNN-SM
(resp. FCEM or DRCM) into FedSpy.

2. FedSteg-RNN-SM (resp. FedSteg-FCEM or FedSteg-DRCM), incorporating RNN-SM
(resp. FCEM or DRCM) into FedSteg [12]. In FedSteg, each client has a personalized
steganalysis model after transfer learning. Here, we take the average performance of
all personalized models as a reference.

3. Loc-RNN-SM (resp. Loc-FCEM or Loc-DRCM), leveraging RNN-SM (resp. FCEM or
DRCM) to create a local model for each client with the corresponding local sample set.
Here, we take the average performance of all local models as a reference.

4. Cen-RNN-SM (resp. Cen-FCEM or Cen-DRCM), leveraging RNN-SM (resp. FCEM or
DRCM) to implement a centralized model with all clients’ samples in a centralized
manner.

In addition, for RNN-SM, FCEM, and DRCM, we use Adam as the optimizer and
cross-entropy as the loss function. The initial learning rate is 0.001, and the batch size
is 64. The architectures of RNN-SM, FCEM, and DRCM can refer to [7], [11], and [12],
respectively. Since the encryption algorithm in FedSpy can only take integers as input, we
expand the model parameters by 1000 times and take the integer part of the parameters
for calculations.

4.3.1. The Analysis on Detection Performance

First, we evaluate the detection performance of FedSpy, including three metrics:
Accuracy (ACC), False-Positive Rate (FPR), and False-Negative Rate (FNR). The obtained
results are shown in Figures 2–4, from which we can learn the following results.
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Figure 2. The experimental results for RNN-SM-based methods.
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Figure 3. The experimental results for FCEM-based methods.
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Figure 4. The experimental results for DRCM-based methods.

First, for all of RNN-SM, FCEM, and DRCM, FedSpy is superior to FedSteg and the
local model in terms of ACC, FPR, and FNR, particularly at the low embedding rates. For
instance, when the embedding rate equals 20%, as shown in Figure 3a, FedSpy-FCEM can
achieve an ACC greater than 90%, while the ACC of FedSteg-FCEM and the local model is
approximately 85%. Even though DRCM has achieved excellent detection performance,
FedSpy-DRCM also gains a visible improvement compared to FedSteg-DRCM and the local
model when the embedding rate is low (e.g., 10%), as shown in Figure 4.

Second, FedSpy can achieve good detection performance comparable to the centralized
model. For example, for the samples with an embedding rate of 20%, the centralized model
of RNN-SM can achieve an ACC of 86.74%, while FedSpy-RNN-SM can also achieve an
ACC of 86.70%.

Third, the detection performance of FedSpy largely depends on the underlying ste-
ganalysis method. For example, as shown in Tables 1–3, for the speech samples with an
embedding rate of 20%, FedSpy-DRCM outperforms FedSpy-RNN-SM and FedSpy-FCEM
in ACC, FPR, and FNR. They are highly consistent with the comparison results for the
centralized models of the underlying steganalysis methods, where DRCM performs best.

Table 1. The statistical results of ACCs for samples of 20% embedding rate.

FedSpy FedSteg Local Model Central Model

RNN-SM 86.70% 81.31% 79.36% 86.74%
FCEM 92.13% 85.85% 83.03% 93.93%
DRCM 96.06% 95.42% 95.37% 96.10%

Table 2. The statistical results of FPRs for samples of 20% embedding rate.

FedSpy FedSteg Local Model Central Model

RNN-SM 13.32% 19.41% 20.21% 14.72%
FCEM 8.24% 15.78% 17.99% 4.26%
DRCM 3.42% 4.36% 4.58% 3.41%

Table 3. The statistical results of FNRs for samples of 20% embedding rate.

FedSpy FedSteg Local Model Central Model

RNN-SM 13.28% 17.98% 21.07% 11.82%
FCEM 7.50% 12.52% 15, 96% 7.88%
DRCM 4.46% 4.80% 4.68% 4.40%
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In the above experiments, the number of clients is initialized to four. In order to
further examine the performance of FedSpy, we conduct additional tests to evaluate the
impact of the number of clients on ACC, FPR, and FNR in FedSpy, with an embedding
rate of 50%. As illustrated in Figure 5a, as the number of clients increases, the ACC of
FedSpy-RNN shows a slight decline from 98% to 95%. However, both FedSpy-FCEM and
FedSpy-DRCM maintain a consistently high level of ACC, surpassing 99%, with minimal
changes. The influence of the number of clients on both FPR and FNR aligns with its
impact on ACC, as shown in Figure 5b and Figure 5c, respectively. This is due to the nature
of federated learning in FedSpy, where although the number of clients may change and
consequently the number of local samples per client may vary, the total number of training
samples remains constant. Thus, we can conclude that the impact of the number of clients
in FedSpy may depend on the underlying steganalysis model (e.g., RNN-SM). However,
the overall performance of FedSpy is independent of the number of clients, as long as the
total number of samples remains constant.
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Figure 5. The impact of the number of clients on the ACC, FPR, and FNR in FedSpy

4.3.2. The Analysis on Detection Time

In addition to the preceding analysis on detection performance, we also examine the
time complexity of FedSpy. The time complexity of FedSpy, as well as other steganalysis
methods based on deep learning, can be divided into two parts, namely the training time
and the detection time. Due to the complex architecture of the steganalysis model and
the large volume of the training data, the training phase typically demands a substantial
amount of time. For instance, the average training duration for a steganalysis model (e.g.,
RNN-SM, FCEM, and DRCM) spans approximately 20 min in our experiment. Thus, like
other research works on speech steganalysis [7,11,12], we only evaluate the detection time
of FedSpy, which is crucial in real-time speech steganalysis tasks. Theoretically, since the
underlying deep learning network remains unchanged, the detection time of the models
trained within FedSpy should align closely with that of the centralized models. Figure 6
shows the comparison results of detection time between the models trained within FedSpy
and the centralized models. It is evident that the detection times of both approaches are
essentially identical. Owing to the excellent design of the underlying models (i.e., RNN-SM,
FCEM, and DRCM), FedSpy-RNN-SM, FedSpy-FCEM, and FedSpy-DRCM are all capable
of detecting a speech segment of one second in less than 1 millisecond. Therefore, it can be
inferred that FedSpy does not influence the detection time of speech steganalysis, as it is
determined by the integrated steganalysis models.
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Figure 6. The time of detecting a single sample with one second length and 10% embedding rate.

5. Conclusions and Future Work

In this paper, we presented an effective Secure Collaborative Speech Steganalysis
Framework based on federated learning, called FedSpy, which can be organically combined
with various deep-learning-based methods. The experimental results show that the ste-
ganalysis models in conjunction with FedSpy perform significantly better than each client’s
local steganalysis model, and achieve good performance comparable to the centralized
steganalysis model without privacy protection. To the best of our knowledge, this work
is the first exploration of secure collaborative speech steganalysis, and despite achieving
remarkable results, there are inevitably some shortcomings as follows. First, this work aims
to explore the possibility of applying federated learning to collaborative speech steganalysis
with a concern for data privacy. However, there are other security issues to be considered
in our future work, such as an insider attack (e.g., the poisoning attack [29]) in the presence
of malicious inside participants. Second, in our experiments, all steganographic samples
are generated with widely used CNV-QIM algorithm, and are thereby Independent and
Identically Distributed (IID). In the future, we would also extend FedSpy to support the
detection of multiple speech steganography methods, which is typically a challenging
problem of federated learning on non-IID data [30], since steganographic samples gen-
erated by different steganographic methods are non-IID. Moreover, we intend to delve
into the interpretability, robustness, and generality of the collaborative speech steganalysis
models in our future research, which would allow us to gain a better knowledge of how
the steganalysis models work.
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Abbreviations
The following abbreviations are used in this manuscript:

FL Federated Learning
QIM Quantization Index Modulation
SVM Support Vector Machine
RNN Recurrent Neural Network
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
TA Trusted Authority
CNV Complementary Neighbor Vertices
ACC Accuracy
FPR False-Positive Rate
FNR False-Negative Rate
IID Independent and Identically Distributed
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