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Abstract: Aiming at the problem of low throughput and energy efficiency caused by the mutual
restriction of energy efficiency and spectral efficiency in massive MIMO systems and the fact that
resource allocation does not consider the factors of user service QoS and the upper and lower
speed limits, a resource joint optimization method based on user service QoS guarantee is proposed.
The method first performs user scheduling according to service delay and channel state under the
condition of equal power distribution and calculates the current system capacity, and then combines
transmit antenna power and service QoS constraints to redistribute power, and corrects the system
capacity, establishing the objective function for the joint optimization of the spectral efficiency and
energy efficiency. An algorithm combining deep learning and Q learning is used to solve the problem,
and finally, the purpose of joint optimization is achieved. The simulation shows that the joint
optimization method proposed in this paper can control the timeout of user data packets more finely
and, at the same time, obtain greater energy efficiency and throughput.

Keywords: massive MIMO system; traffic delay; channel state; joint optimization

1. Introduction

Multiple-Input and Multiple-Output (MIMO) technology has gradually matured after
years of development and has become one of the key technologies used in intelligent
communication [1], and this technology enables communication systems to obtain higher
transmission rates, system capacity, and spectral efficiency [2]. In the field of wireless
communication, because different types of services have different requirements for QoS
(quality of service, QoS) latency and rate, and when considering resource allocation, it is
necessary to take user service as the premise. Due to the limited spectrum resources and the
demand for high-rate capacity, spectrum efficiency as a traditional performance index has
long been widely studied [3]. At the same time, with the need for the future development
of green communication, the spectrum efficiency of the system is no longer blindly pursued;
therefore, the optimization index of energy efficiency has emerged, and the improved
energy efficiency means that the energy consumption of the system can be reduced [4].
In the real environment, the RF link corresponding to each antenna in the MIMO system
has a certain power consumption, and in the traditional MIMO system, due to the small
number of antennas, the power consumption generated by this part of the RF link can
usually be ignored. However, massive MIMO systems are equipped with a large number
of antennas, resulting in circuit power consumption that cannot be ignored anymore [5].
With an increasing number of antennas, the spectral efficiency of the system will continue
to increase, while the energy efficiency will increase to a certain extent and then begin to
decline, and the two restrict each other, presenting a contradictory relationship [6], and
it is difficult to achieve relative optimization at the same time. Therefore, for massive
MIMO systems, the joint optimization of spectral efficiency and energy efficiency is still
worth exploring.
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Many scholars, both domestically and internationally, have conducted research on
this topic. The research in [7] proposes a power allocation method based on the maximum
and minimum fairness criteria under massive MIMO systems, which maximizes the worst
signal-to-noise ratio of all users and ensures the average performance for the users but
does not consider the type of service and does not meet the QoS requirements of the
users. The research conducted in [8] studies the power allocation problem of massive
MIMO systems and proposes a power allocation method using the asymptotic concave
formation of the system sum rate, and the sum rate of the system increases with the
increased number of antennas but ignores the index of spectral efficiency. The research
in [9] proposes a beam allocation and power optimization scheme, which is solved by
expressing the problem of beam allocation and power optimization as a multivariate mixed
integer nonlinear programming problem. This scheme has certain research value but does
not consider the user’s QoS index. The research carried out in [10] considers the QoS
delay requirements of user services and the fairness of occupying wireless channels, and
a power allocation strategy based on user expectations and pre-allocation is proposed to
improve user satisfaction and fairness between users but the influence of channel status
information is not considered. The research in [11] uses power allocation to obtain optimal
energy efficiency, but the default number of users meets the antenna restriction conditions,
which is not in line with the access situation of users in practical applications. The research
in [12] obtains optimal energy efficiency through power allocation but does not add the
limitation of the transmission power of the base station antenna, which will cause the power
allocation to lose practical significance. The research in [13] proposes a joint optimization
design method for antenna selection and power distribution in massive MIMO systems.
The research in [14] optimizes energy efficiency under the constraints of spectral efficiency.
The research in [15] proposes an optimization algorithm for the energy efficiency of a
massive MIMO system based on the particle swarm optimization algorithm, which takes
the transmit power and the number of antennas in the system as the decision variables in
the optimization, and uses the improved particle swarm optimization algorithm to solve it,
which has certain advantages, but does not consider the factors of the number of users and
user service. The research in [16] takes the transmit power and the number of transmitting
antennas as the decision variables to obtain the joint optimization problem of spectral
efficiency and energy efficiency and then maps it to the NSGA-II algorithm for solving
but does not consider the user-side situation, and there are few comparative experiments.
With the continuous development of deep learning, neural networks have been applied to
resource allocation, electromagnetism, and antenna fields. As described in document [17],
neural networks have been used in the field of communication resource allocation. Using a
well-trained network to solve the resource allocation problem has very close performance
and low computational complexity compared with traditional mathematics algorithms. The
research in [18] points out that neural networks in deep learning have made a breakthrough
in terms of the antenna used for environmental sensing. The research in [19] utilized deep
neural networks for resource allocation among multiple users in MIMO systems. Firstly,
the objective function is optimized based on the multi-objective sine c–sine algorithm.
Secondly, the demand level of each user is identified, and a deep neural network algorithm
is used to solve the problem, which to some extent, improves the system performance.
However, the default number of users is less than the antenna limit, and there is no user
scheduling, which is not in line with the actual situation.

According to the above analysis, there is little literature that has studied the joint
optimization problem of energy efficiency and spectral efficiency based on the user service
QoS guarantee. Therefore, the research in this paper is carried out in two steps, firstly,
user scheduling is carried out under the condition of ensuring the QoS delay requirements
of users, and the system capacity is maximized on the basis of equal power distribution.
Then, the power of the scheduled users is re-distributed, the system energy efficiency is
optimized on the basis of the refined QoS rate requirements, and the system capacity after
adjusting the power is not lower than the system capacity in the first step of scheduling
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so as to establish a joint optimization problem, and finally, the Deep Q-Leaning Network
(DQN) algorithm is to solve the problem.

The main contributions of this article are as follows: Before resource allocation, users
are scheduled based on their business latency and channel state information to improve
the satisfaction of different users. Based on the refinement of the QoS rate requirements,
optimize system energy efficiency and ensure that the system capacity after power adjust-
ment is not lower than the system capacity during the first step of scheduling in order to
establish a joint optimization problem. Utilize the DQN algorithm to solve problems and
improve system performance.

2. Problem Modeling

Firstly, a multi-user massive MIMO system model is established, and the block diago-
nalization precoding method is used under this system model equivalent to the multi-user
system as a single-user system in order to eliminate the interference of other users [20].
Then, based on the average power allocation, user scheduling is carried out based on
service QoS delay requirements and channel status, and the system capacity is calculated.
Then, under the requirements of ensuring the upper and lower limits of transmitter power
and QoS rate, the selected users are reallocated to optimize the system’s energy efficiency,
the system capacity in the scheduling stage is corrected, and the objective function of the
spectrum efficiency and energy efficiency joint optimization is established to achieve a
compromise between the two.

2.1. System Model

This paper takes the downlink of a multi-user massive MIMO system as the back-
ground, assuming that the base station has KT transmitting antennas and M0 users, and if
the number of receiving antennas for the mth user is km, the base station can support M
users to communicate at the same time in each scheduling time slot. The system model is
shown in Figure 1.
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In a massive MIMO system, in order to improve the spectral efficiency of the system,
all users are allowed to reuse the same time–frequency resources. In this way, each user
will receive signals from other users in addition to receiving the signals they need, resulting
in inter-user interference. Therefore, in the transmitter end of the downlink system, it is
generally necessary to use precoding technology to preprocess the transmitted signal in
order to increase the signal-to-noise ratio, thereby accelerating the data transmission rate
and improving the performance of the entire system. In this paper, block diagonalization
precoding is used to decompose the downstream channel matrix of a multi-user MIMO
system into a block diagonalized form, which is equivalent to multiple single-user MIMO
systems that do not interfere with each other, eliminating interference from other users.
The equivalent channel model is shown in Figure 2.
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Assuming that the channel state information of the base station transmitter is known,
xm ∈ Ckm×1 represents the transmit signal vector of the mth user, and ym ∈ Ckm×1 represents
the received signal vector of the mth user, and then there are:

ym = Hm

M

∑
j=1

Djxj + nm = HmDmxm + Hm

M

∑
j=1,j 6=m

Djxj + nm (1)

where HmDmxm represents the signal required by the mth user, Hm
M
∑

j=1,j 6=m
Djxj represents

interference from other users, and nm ∈ Ckm×1 represents additive white Gaussian noise
in the mth user channel. Hm ∈ Ckm×KT represents the complex Gaussian random channel
matrix for the mth bit, and Dm ∈ CKT×km represents the precoded matrix for the mth use.
Block diagonalization is applied to find the pre-coded matrix, Dj, so that the interference
from other users is zero, and for the mth user, the matrix consisting of the channel matrix of
the other users is as follows:

Λ
Hm =

[
HT

1 , HT
2 , . . . , HT

m−1, HT
m+1, . . . , HT

M

]T
(2)

where
Λ

Hm is the
M
∑

j = 1
j 6= m

k j × KT-dimensional full-rank matrix. Decomposing
Λ

Hm by singular

value yields the following:

∧
Hm = Um

[
∑ m, 0

]
Vm

H = Um
[
∑ m, 0

][
V(1)

m , V(0)
m

]H
(3)

where Um is the unitary matrix of order
M
∑

j = 1
j 6= m

k j ×
M
∑

j = 1
j 6= m

k j, ∑ m is a diagonal matrix com-

posed of KR − km non-zero singular values of
Λ

Hm, Vm
H is the conjugate transpose matrix of

Vm, consisting of V(1)
m and V(0)

m , V(1)
m is composed of right singular vectors corresponding

to r
(

Λ
Hm

)
non-zero singular values of

Λ
Hm, and V(0)

m is composed of right singular vectors

corresponding to KT − KR + km zero singular values.
According to the unitary matrix property: UH

m Um = I; therefore, Equation (3) can be
written as follows: [

∑ m, 0
]
= UH

m
∧

Hm

[
V(1)

m , V(0)
m

]
(4)

∑ m = UH
m
∧

HmV(1)
m (5)
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0 = UH
m
∧

HmV(0)
m (6)

Multiplying the left and right of formula (6) together gives:

∧
HmV(0)

m = 0 (7)

According to (7), for the mth user, V(0)
m can eliminate the interference of other users,

and in order to solve the equation system,
M
∑

j=1,j 6=m
ki ≤ KT , ∀m = 1, 2, . . . , M needs to be

satisfied, which is the use of the block diagonalization method to remove multi-user
interference on the user scheduling scheme constraints; that is, the maximum number of
simultaneous communication users M limit.

Further, let H′m = HmV(0)
m and perform singular value decomposition to obtain:

H′m = HmV(0)
m = U′m[Λm, 0]

[
V(1)′

m , V(0)′
m

]H
(8)

where H′m is an km × (KT − KR + Km)-dimensional matrix, U′m is a km × km-dimensional
unitary matrix,

[
V(1)′

m , V(0)′
m

]
is a (KT − KR + Km)× (KT − KR + Km)-dimensional matrix,

Λm is a diagonal matrix composed of km non-zero singular values, and V(1)′
m is composed

of right singular vectors corresponding to km non-zero singular values of H′m.
Take the block diagonalized precoded matrix of Dm = V(0)

m V(1)′
m and substitute Dm

into Equation (1) to obtain the following:

ym = HmDmxm + nm = HmV(0)
m V(1)′

m xm + nm (9)

where HmV(0)
m V(1)′

m is the equivalent channel matrix. Substituting Equation (8) into (9) yields:

ym = U′mΛmxm + nm (10)

Multiply U′Hm on both sides to obtain:

U′Hm ym = Λmxm + n′m (11)

where n′m = U′Hm nm and Λm are the diagonal matrices in which the diagonal elements are
not zero and the other elements are all zero. Let the diagonal element of Λm be λm,k and let
y′m = U′Hm ym to have y′m,k = λm,kxm,k, k = 1, 2, . . . , km.

Block diagonalized precoding equates multi-user channels to multiple independent
single-user channels, which in turn can be equivalent to multiple parallel channels. At this
point, the data rate Rm of the mth user after bandwidth normalization can be expressed
as follows:

Rm =
km

∑
k=1

log2(1 +
pm,k · λ2

m,k

σ2 ) (12)

where pm,k represents the signal power of the mth user on the kth parallel channel, the
diagonal element λm,k of Λm represents the channel fading coefficient, and σ2 represents
the power of additive white Gaussian noise.

2.2. User Scheduling

In practical applications, due to the burstiness of users, the number of users accessing
the system will be greater than the limit of the number of antennas at the base station end;
therefore, user scheduling is required first in resource allocation, and M users are selected
in each scheduling time slot to maximize system throughput while ensuring user service
QoS requirements.
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This article discusses four types of user services: conversational class, streaming
class, interaction class, and background class. The conversational class focuses on real-
time requirements, and the most critical QoS indicator is latency, which is very severe
and will cause the session to fail to proceed normally; therefore, latency is listed as an
important indicator affecting the conversational class. The streaming class does not require
interactions between two users, and data are only transmitted in one direction; therefore,
the service has certain real-time requirements but is not as strict as the conversational class.
Compared with the previous two, the delay requirements of the interactive class are not
high. The background class basically has no hard requirements in terms of delay. Therefore,
this article takes latency as the indicator of the QoS requirements in the user scheduling
stage and specifies that the delay requirement is the maximum time that data are waiting
in the queue. Table 1 shows the rate and delay requirements of the four services.

Table 1. Business Description.

Business Type z Priority Rate Requirements rz
(kbps)

Delay Requirement dz
(ms)

z = 1 Conversational class 1 4–64 100
z = 2 Streaming class 2 50–85 150
z = 3 Interaction class 3 3–385 250
z = 4 Background class 4 15–105 null

Among them, the conversation class pays the most attention to real-time experiences,
and the most critical QoS indicator is delay, which will cause the session to not continue
normally when the delay is very serious. In the streaming class, data are transmitted in
one direction, which has certain real-time requirements, but it is not as strict as that of
the conversational class. Compared with the previous two, the delay requirements of
the interactive class are not so strict. The background class only cares about whether the
data are transmitted correctly and almost do not require delay. In summary, this chapter
takes delay as the QoS metric in the user scheduling stage and specifies that the delay
requirement is the maximum time that data wait in the queue.

The number of antennas used in real life is not enough for users to use according to the
above business characteristics, which for delay requirements, often need user scheduling in
order to be achieved, assuming that users only use one service in a certain time slot, in the
user scheduling stage, consider the user’s service delay and channel status, set the number
of user waiting time slots to Wm,z, the maximum number of waiting time slots to nz, set
a scheduling cycle to t, and the delay requirement is expressed by the maximum number
of waiting cycles: dz = nz·t. When scheduling, first dispatch the user services that Wm,z is
about to reach or exceed nz, and if all the users who meet the conditions have been accessed
but there are still antennas left, the channel state information of the user is considered. The
user scheduling process is shown in Figure 3:

As can be seen from the above flowchart, the specific execution method of user
scheduling is:

Step 1: Initialize all user collections, set the unchecked collection to N = {1, 2, . . . , M0} and
the selected collection to Y = φ.
Step 2: Determine the number of waiting time slots for each service Wm,z, and if Wm,z ≥ nz,
select User M. Update the user collection,Y = {m : Wm,z ≥ nz} selected, N = N−Y unchecked.
Step 3: If the number of selected users exceeds the antenna limit, it ends. Otherwise, select User

m1 that satisfies m1 = arg maxm1
km1
∑

k=1
log2(1 +

P·λ2
m1,k

σ2 ). At this point R =
km1
∑

k=1
log2(1 +

P·λ2
m1,k

σ2 ),

update the user collection Y = Y + {m1}, N = N − {m1}.
Step 4: Iterate through the remaining user collection N. For each user s in N, define

Ys = Y + s and calculate the capacity of set Ys: RYs = ∑
m∈Ys

km
∑

k=1
log2(1 +

P·λ2
m,k

σ2 ). In set N, if a
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user satisfies RYs
≥ R, let s = arg maxsCYs at this time. Otherwise, end the algorithm and

then update R = RYs
and update user collection Y = Y + {s}, N = N − {s}.

Step 5: Repeat step 4 to finally update the user collection.
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2.3. Joint Optimization Function Establishment

After user scheduling, it can ensure the delay requirements of the user’s business.
However, this stage is performed under the circumstances of average power distribution.
Therefore, it is necessary to redistribute power and optimize the system capacity obtained
during the scheduling phase. To ensure the normal progress of the business, the lowest
limit of Rm0 is set to set the rate. Similarly, in order to avoid waste of resources, try not
to exceed the user m rate upper limit of Rm1. Therefore, the rate of user m Rm is limited
as follows:

Rm0 ≤ Rm =
km

∑
k=1

log2(1 +
pm,k · λ2

m,k

σ2 ) ≤ Rm1 (13)

The total rate of all selected users is:

R(pm,k) = ∑
m∈ϕ

Rm = ∑
m∈ϕ

km

∑
k=1

log2(1 +
pm,k · λ2

m,k

σ2 ) (14)

The optimization objective of this article is not only to maximize the throughput of the
scheduled user set but also to consider energy efficiency as an important indicator in this
article. Assuming that P0 is the upper limit of the transmitting power of the i-root antenna,
the power PTX

i limit of the launch antenna is as follows:

PTX
i = ∑

m∈ϕ

km

∑
k=1
|Dm(i, k)|

2

· pm,k < P0 (15)
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In summary, the total launch power of the base station can be expressed as follows:

E(pm,k) = e ·
KT

∑
i=1

PTX
i + Pc (16)

among them, e is the efficiency of the base station power amplifier. Pc is the power
consumption of the circuit component, which is a fixed value, defining the energy efficiency
EE as follows:

EE =
R(pm,k)

E(pm,k)
(17)

Therefore, the optimization proposed in this article is as follows:

maxpm,k EE =
R(pm,k)
E(pm,k)

maxpm,k R(pm,k)

s.t.PTX
i < P0

Rm0 ≤ Rm ≤ Rm1, m = 1, 2, . . . , M

pm,k ≥ 0, ∀i, m

(18)

It can be observed that if R(pm,k) is maximized, the greater the power consumption,
the worse the energy efficiency EE. The two restrict each other and are difficult to optimize
at the same time. The total capacity R(pm,k) after power redistribution should be greater
than the total capacity at average allocation in order to be meaningful. Therefore, this
article uses the main objective method to transform the problem, with EE as the main
optimization objective and R(pm,k) as the constraint, thus transforming the problem into:

maxpm,k EE =
R(pm,k)
E(pm,k)

s.t.R(pm,k) > ∑
m∈ϕs

km
∑

k=1
log2(1 +

P·λ2
m,k

σ2 )

PTX
i < P0, i = 1, 2, . . . , KT

Rm0 ≤ Rm ≤ Rm1, m = 1, 2, . . . , M

pm,k ≥ 0, ∀i, m

(19)

3. Solving the Combination Optimization Problem Based on DQN Algorithm

The joint optimization problem proposed above is the problem of NP-difficulty non-
convex optimization. It is more complicated to use traditional methods when solving this
problem. Therefore, for this decision-making problem, this article uses the DQN model in
deep Q learning to solve this problem. Among them, the neural network of the Q value
function is selected from the deep neural network of the full connection. In the above
resource allocation, define each user as an intelligent agent. At the moment of t, the user
observes the current status of the environment xt ∈ X, then use the ε− greedy strategy to
adopt action yt from the allowable set of action set A and obtain a reward rt+1, and then
obtain the status xt+1 and reward in the next moment.

Status collection: set as the maximum waiting cycle of the user, and record the status
corresponding to the t-transmission time of the learning process as follows:

xt =
{

γk(t)
}

(20)

Action collection: Define actions as selecting users and allocating power and record
the action corresponding to the t-th transmission time interval of the learning process as
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yt =
{

ak(t), pk(t)
}

. Among them, ak
l,m(t) is a dual variable, and its value is determined by

using pk
l,m(t):

ak(t) =
{

1 pk(t) > 0
0 pk(t) = 0

(21)

To reduce the set of actions, simplify the actions as follows:

yt =
{

pk(t)
}

(22)

Instantaneous reward is defined as energy efficiency, and the instantaneous reward
for executing action yt in state xt is recorded as follows:

rt = EE(t) (23)

Cumulative reward: the cumulative reward for executing action yt in state xt is defined
as the state action value function Q(xt, yt) and expressed as incremental updates:

Q(xt, yt) = Q(xt, yt) + α(rt+1 + β max Q(xt+1, y′)−Q(xt, yt)) (24)

among them, Q(xt, yt) represents the current value function of action yt executed in state
xt at time t, and max Q(xt+1, y) represents the maximum value function corresponding to
various actions a taken by time t + 1 in state xt+1. α represents the learning rate, usually
taken as a very small value. β ∈ (0, 1) represents the discount factor related to the future.

The objective value function of executing action yt in state xt is denoted as the sum of
the maximum Q value of the reward and the discount in the next state:

Qtarget(xt, yt) = rt + β max Q(xt+1, y′; θ′) (25)

The DQN model adopts a dual network structure, which records the current Q value
and the target Q value separately. The purpose of training the neural network is to reduce
the difference between the current Q value and the target Q value by minimizing the loss
function. The loss function loss is defined as follows:

∆ = Qtarget(xt, yt; θ′)−Q(xt, yt; θ) (26)

loss =
{

Qtarget(xt, yt; θ′)−Q(xt, yt; θ)
}2 (27)

The solution model based on DQN is as Figure 4, after each action selection, the
intelligent agent will store the state, action, rewards obtained, and the state of the next
time in the experience pool. When the experience pool is full, the network starts to update.
The reward and the next moment’s state are used to calculate the Q value, and the target
Q value is calculated from the Q value, and then the loss function value is calculated
until convergence.
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It can be seen from the above that the pseudocode for solving the above optimization
problem with DQN is as follows (Algorithm 1):

Algorithm 1: DQN

Initialize experience playback pool D and capacity N;
Initialize parameter θ of the current Q-value network Q(x, y; θ);
Initialize parameter θ′ of target Q-value network maxQ(x′, y′; θ′), i.e., θ→θ′;
for episode = 1, M do

Randomly select initial state x1;
for t = 1, T do
if random < ε do

Select actions based on the ε− greedy strategy and randomly select action yt with
probability ε;

else
Select action yt = arg maxQ(xt, y, θ);

end if
Execute action yt, observe reward rt and the next state xt+1;
Store memory, store (xt, yt, rt, xt+1) in experience playback pool D;
Batch extract sample data from D to train the current Q-value network;
Using the loss function, the parameter θ is updated through the gradient back propagation of

the neural network;
Copy and update the target Q-value network parameter θ′ every T round of cycling;
xt → xt+1

end for
end for

4. Experimental Simulation and Analysis
4.1. Feature Extraction and Analysis

The network parameters and deep learning algorithm parameter values for this experi-
ment are shown in Tables 2 and 3. The neural network used for training is a fully connected
neural network containing two hidden layers, and the activation function used by each
neuron is a modified linear unit (ReLU).

Table 2. Wireless network parameter values.

Parameter Name Parameter Value

Scheduling cycle length t 10 ms

Average power during user scheduling phase P 0.01 W

Noise power σ2 10−15 W

Number of base station antennas KT 20

Upper limit of antenna transmission power P0 10 W

Total number of connected users M 20

Number of receiving antennas per user km 2

Amplifier efficiency e 1/0.38

Link power consumption Pc 10 W

Table 3. Parameter values of DQN algorithm.

Parameter Name Parameter Value

Exploring Probability ε 0.8~0.1

Learning rate α 0.001

Discount factor γ 0.9

Experience Pool Size 2000
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4.2. Analysis of Simulation Results

To avoid repeated experiments, this chapter only discusses two types of business:
conversation and background. The comparative experiment selects the following three
algorithms: algorithm a, which is based on the user’s channel state; greedy algorithms are
used to schedule and select users, aiming to maximize system capacity, and then, energy
efficiency is optimized based on this scheduling. This method does not consider the QoS
latency requirements of users. The default number of antennas used in reference [11] is
required to meet the number of user accesses, and there is no user scheduling. If the number
of connected users exceeds the set number of antennas, random scheduling may be carried
out, and some users may not be able to access the services, which does not meet the user’s
QoS requirements. The comparison algorithm, b, limits the QoS rate of users based on the
above. The comparison algorithm, c, is the algorithm taken from the research [16], which
jointly optimizes spectral efficiency and energy efficiency and then maps it to the NSGA-II
algorithm to provide the solution without taking into account the QoS of the user service.

Assuming that for each scheduling slot, the number of waiting slots for a user’s data
packet increases by 1, reflecting user satisfaction as the number of users who have timed
out the data packet, the fewer timeout users, the higher user satisfaction. Assuming there
are a total of 20 users who use session-based and background-based services extremely and
evenly, the user satisfaction of the algorithm under different situations is shown in Figure 5:
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Figure 5. Comparison of data packet timeouts of different algorithms. (a) Packet timeout when the
number of session users is 1 and background users are 19; (b) Packet timeout when the number of
session users is 10 and background users are 10; (c) Packet timeout when the number of session users
is 19 and the background user is 1.
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From Figure 5a, it can be seen that when the number of users using background
services is 19 and the number of session users is 1, the user data packets in all of the
algorithms almost do not time out because background services do not require latency;
therefore, whether the algorithm considers the delay requirements during user scheduling
has little impact on the results. From Figure 5b, it can be seen that when the number of
session-type users and background-type users is half, whether the algorithm considers
delay requirements has a significant impact on the results because session-type services
have strict requirements in terms of delay. The algorithm proposed in this article mini-
mizes the number of timeout packets, ensuring the user’s business latency requirements.
Algorithms a, b, and c did not consider the business latency requirements during the user
scheduling process, resulting in a significant increase in the number of timeout packets,
which cannot be met by users using session-based services. As shown in Figure 5c, when
the number of session-based business users is 19 and the number of background-based
business users is 1, the number of timeout users in all algorithms will increase. However,
compared to the other three algorithms, the scheduling scheme proposed in this paper still
has fewer timeout users starting around the 10th time slot. In summary, the user scheduling
scheme proposed in this paper can alleviate the situation of packet timeout and improve
user satisfaction.

In order to demonstrate the advantages of the proposed method in the joint optimiza-
tion of energy efficiency and system capacity, two algorithms were added for comparison
on the basis of comparative experiments a, b, and c. Comparative algorithm d was an
algorithm used in reference [11], which optimized energy efficiency but did not consider
the user’s business delay requirements and the upper and lower limit requirements in
terms of rate. The comparison algorithm e only considers the throughput indicator un-
der the same scheduling scheme without considering the energy efficiency indicator in
green communication.

Let the signal-to-noise ratio be calculated as follows: SNR = P0/σ2. In the experiment,
the signal-to-noise ratio is changed by changing the value of σ2. In order to verify that the
method proposed in this article can achieve high energy efficiency, the efficiency of different
algorithms under different signal-to-noise ratios is compared, as shown in Figure 6.
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Figure 6. Comparison of energy efficiency under different signal-to-noise ratios.

From Figure 6, it can be seen that as the signal-to-noise ratio (SNR) continues to
increase, the energy efficiency of all algorithms increases accordingly. It should be noted
that the energy efficiency of algorithm e starts to slowly increase after increasing to a
certain extent. This is because the algorithm aims to improve system throughput, resulting
in higher energy consumption and having advantages in optimizing throughput alone.
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From the graph, it can also be observed that the algorithm proposed in this article and the
comparison algorithms a, b, c, and d have a similar growth rate as the signal-to-noise ratio
increases. This is because these algorithms are all optimized based on energy efficiency.
However, compared to this, the method proposed in this article still has a slight advantage,
indicating that the algorithm proposed in this article can improve throughput while not
affecting energy efficiency.

In order to further verify the advantages of the algorithm proposed in this article
in terms of system capacity compared to other algorithms mentioned above, different
algorithms were compared as the number of users in the system continued to increase, as
shown in Figure 7.
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From Figure 7, it can be observed that when the number of users is small, the through-
put obtained by all of the comparison algorithms increases rapidly without any difference
as the total number of users increases. When the total number of users exceeds the maxi-
mum number of users served simultaneously set by the system, the throughput obtained
by all of the algorithms will no longer continue to increase. As the total number of users
continues to increase, the system throughput begins to fluctuate. Note that the fluctuation
range of algorithm e is small and that the system throughput is maximum because this
algorithm only aims to improve system throughput. Compared to the other algorithms,
achieving higher throughput is reasonable, but it ignores the indicator of energy efficiency.
Among the remaining four algorithms, the system throughput fluctuation range of the
proposed algorithm and algorithm c is relatively small and relatively high. In summary,
Figures 6 and 7, combined from the perspectives of energy efficiency and throughput,
demonstrate that the algorithm proposed in this paper can effectively balance these two
objectives, achieving a relatively optimal combination of the two. Although algorithm c
can also effectively improve energy efficiency and throughput, it can be seen from Figure 5
that the packet timeout situation of this algorithm is severe and user satisfaction is low.
Therefore, overall, the algorithm proposed in this paper has good performance.

5. Conclusions

Aiming at the problem of low throughput and energy efficiency in large-scale MIMO
systems due to the mutual constraints between energy efficiency and spectral efficiency
and the lack of consideration of user service QoS and the rate of the upper and lower limits
in resource allocation, a method based on the combined optimization of spectrum and
energy resources under QoS guarantees is proposed. This method is divided into two steps.
First, greedy algorithms are used to schedule users based on their latency requirements.
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Then, a joint optimization problem model is established by setting upper and lower rate
requirements for the selected users. Finally, the DQN method is used to solve the problem.
The simulation results show that the algorithm proposed in this article can ensure user QoS
requirements and improve user satisfaction while also improving throughput and energy
efficiency to a certain extent.

This article focuses on the downlink of multi-user massive MIMO systems. The next
step is to focus on the multi-objective optimization problem of the uplink of massive MIMO
systems. In the future, more resource allocation issues will be considered, including power,
bandwidth, antenna number, etc. This joint resource allocation problem is very useful for
future communication users.
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