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Abstract: To overcome the limitations of traditional frequency selective surfaces in flexible state switch-
ing at the same frequency, this paper proposes a novel active frequency selective surface (AFSS) that
simultaneously exhibits conversion between absorption and transmission modes at the same frequency
band. By welding PIN diodes on the bottom structure of the AFSS, the conversion between band-pass
(transmission) and band-stop (absorption) filters can be controlled electronically. In the common-
frequency switch between absorption and transmission modes, the impedance matching of the AFSS is
attained by altering the capacitance value of the varactors embedded on the top structure of the AFSS.
The functionalities of the proposed AFSS design are investigated by full-wave simulations (in HFSS
software) at 11.4 GHz. Furthermore, the operating principle is analyzed using an equivalent circuit
model (in AWR software). To verify the concept, a prototype is manufactured, and the responses of
mode switching are measured by adjusting the bias voltage. The measurement result is consistent with
the simulation analysis. Owing to the tunability of the varactors, the structural asymmetry is compen-
sated to achieve 80% absorptivity and transmissivity within a field of view of ±35°. The developed
AFSS structure is highly valuable to be used in scenarios such as antenna domes, etc.

Keywords: active frequency selective surface; mode conversion; transmission mode; absorption
mode; microwave

1. Introduction

Since frequency selective surfaces (FSSs) have been developed for use as microwave
and millimeter-wave absorbers, they have been widely utilized in stealth, radar cross-
section (RCS) reduction, and other systems [1–7]. Considering the complexity and vari-
ability of practical application scenarios, the surface impedance of an active frequency
selective surface (AFSS) structure can be tailored by introducing tunable components such
as graphene [8,9], liquid crystals [10–12], and diodes [13,14], realizing multifunctional
AFSSs with tunable absorption, reflection, and transmission.

The traditional AFSS geometry structure comprises periodic metallic patterns printed
on opposite sides of a dielectric substrate. They usually use metal as the underlying layer of
a multilayer to achieve tunable absorbers. For example, Refs. [15–17] implemented tunable
AFSSs with adjustable absorbing frequency, bandwidth, or absorption rate by changing
the surface impedance of the top layer of a multilayer. Refs. [18,19] realized wideband
multifunction converters for absorption and reflection. However, using metal as the bottom
layer of a multilayer will limit the transmission of electromagnetic waves, resulting in
the failure of the AFSSs for realizing the dynamic conversion between absorption and
transmission modes [20–23].

To solve the above problems, the bottom layer of a multilayer achieved the conver-
sion between band-pass and band-stop filter. Ref. [24] presented an AFSS that realizes a
functional switch among absorption, transmission, and total reflection by controlling the
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response of the active devices. A tunable AFSS that can switch between absorption and
transmission by altering adjustable elements of the top layer of a multilayer was proposed
in [25]. Nevertheless, the transmission band is different from the absorption band in the
previous study, which not only wastes the spectrum resources but also fails to meet the
switch between stealth and communication states. On the other hand, propagation mode
control via metasurfaces has also been well documented in recent years, and it is capable of
converting a linearly polarized (LP) incident wave into a circularly polarized (CP) wave
or its cross-polarized LP wave at different frequencies [26]. Various types of metama-
terials with strong electromagnetic resonance have been reported [27–32], for instance,
Pan et al. proposed dual-band multifunctional coding metasurface in compact 5G/6G
communication systems [27]. This research covered the K band to THz.

In fact, most of the proposed designs realize dynamic switching among absorption,
reflection, and transmission by controlling the surface impedance of the structure [33,34].
When the surface impedance of the structure is changed, the resonant frequency will
also become different. By shifting the resonant frequency, the mode conversion between
absorption/reflection and transmission/reflection can be realized in the same frequency
band. However, for the AFSSs with absorbing and transmitting mode conversion, the
surface impedances of both the top and bottom layers are changed, which makes it dif-
ficult to achieve dynamic switching at the same frequency. Therefore, the goal of this
work is to achieve a functional switch between transmission and absorption in the same
frequency band.

In this paper, a compact AFSS that can switch between absorption and transmission
modes in the same frequency is presented by controlling the lumped components on the
AFSS. Its geometry comprises two tunable electric resonators spaced by a dielectric sub-
strate, with varactor and PIN diodes embedded on the top and bottom metallic layers,
respectively. The proposed AFSS is fabricated and demonstrated. The numerical and
experimental results show that the presented structure has the capability to achieve trans-
mission/absorption conversion in the same frequency of around 11.4 GHz under normal
incidence. And the absorption and transmission modes are angularly stable up to 35°
by changing the capacitance of the varactors, which compensates for the asymmetry of
the structure.

This paper is organized as follows. Section 2 presents the proposed AFSS and corre-
sponding equivalent circuit models based on transmission-line theory. Sections 3 and 4
validate the functionalities of the proposed AFSS in full-wave simulations and experimen-
tal measurements, respectively. Finally, Section 5 provides the conclusions, along with a
discussion of the potential applications of the proposed AFSS.

2. Design and Analysis
2.1. Design Principle

A compact AFSS that can switch between absorption and transmission modes in the
same frequency is presented in this section. The conceptual configuration of the proposed
AFSS is shown in Figure 1. When the PIN diodes are in the OFF-state and the varactors
are supplied with reverse bias voltage, the AFSS is designed to be transmissive at normal
incidence, as illustrated in the right side of Figure 1. Inversely, when the PIN diodes are in
the ON-state, the AFSS functions as an absorber, as shown in the left side of Figure 1. In the
design, the functions of the top layer varactors are as follows: (1) tuning the capacitance
value of varactors and the ON-/OFF-states of PIN diodes achieves the dual-functional
switch in the same frequency; and, (2) by adjusting the capacitance value of the varactors,
the asymmetry of the structure is compensated, and the dual-functional switching is
angularly stable up to 35° .

In this design, the bias network that provides bias voltage for varactors and PIN diodes
is embedded into the top and bottom layers, which greatly reduces the manufacturing cost
and difficulty [35]. The basic geometry of the designed AFSS is illustrated in Figure 2a,b.
The varactors are welded on the top layer, and the PIN diodes are embedded on the bottom
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layer of the AFSS. The intermediate layer is a 1 mm thick FR4 substrate (with relative
permittivity of ε = 4.4 and tangential loss of tan δ = 0.002). The unit cells are arranged
periodically with a period p and printed in copper with a conductivity of σ = 5.8 × 107 s/m
and a thickness of 0.035 mm.

Figure 1. Conceptual configuration of the proposed AFSS with functional switching between absorp-
tion and transmission.

The actual current flows through the diodes of the top and bottom layers, as shown
in Figure 2c. The diodes are connected in parallel periodically, which means that a small
amount of voltage is enough to simultaneously regulate all the lumped elements in a large
prototype. In practice, the top and bottom layer diodes are welded in different ways. For a
set of adjacent cells on the top layer, varactors are installed so that the cathodes of adjacent
units are face to face. Instead, the anodes of adjacent units are opposite to each other.
The adjacent PIN diodes on the bottom layer are installed in similar way, with the cathodes
facing each other in each cell.

Figure 2. Schematic of the unit cell and biasing network of the proposed integrated absorption–
transmission structure: (a) Top view of the designed AFSS; (b) bottom view of the designed AFSS;
and (c) biasing voltage network of the designed AFSS. The optimal geometrical dimensions of the
proposed AFSS are p = 9 mm, w = 0.57 mm, b1 = c2 = 1.9 mm, b2 = c1 = 1.8 mm, d1 = 1.4 mm,
d2 = 3.9 mm, g = 0.92 mm, a = 2.2 mm, j = 0.4 mm, m = 1.08 mm, n = 0.8 mm, s = 0.9 mm, r = 0.6 mm,
h1 = 0.8 mm, h2 = 1 mm, l1 = 2.29 mm, and l2 = 2.21 mm.
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2.2. Equivalent Circuit Analysis

According to the transmission-line theory [36,37], the electromagnetic responses of the
designed AFSS with common-frequency conversion between absorption and transmission
modes can also be analyzed through an equivalent circuit model. The ON-/OFF-state of
the PIN diodes embedded in the bottom layer is equivalent to different circuit models.
The corresponding varactors welded on the top layer can be equivalent to a series of
resistance, capacitance, and inductance. Figure 3a,b illustrate the equivalent circuit model of
the proposed AFSS under the PIN diodes’ ON- and OFF-states, respectively. The equivalent
circuits of AFSS are obtained using AWR Microwave Office software. The subscripts “t”
and “r” correspond to the lumped components on the top and bottom layers, respectively.
For the absorption state, Ct1 and Cb1 represent the gap capacitances, Lt2, Ct2, and Rt2 signify
variable lumped components for the varactors. Lt1 and Lb1 portray the strip inductances.
Rt1 and Rb1 are attributed to the resistances of the metal and lossy substrate. The PIN diodes
in the ON-state (16 V bias voltage applied) can be represented by a series of resistance
(RbON) and inductance (Lb2). Accordingly, the OFF-state (5 V bias voltage applied) denotes
the parallels of capacitance and resistance. The capacitance is derived from the varactors,
while the inductance and resistance are mainly originated from the metallic patterns.

Figure 3. Equivalent circuit model of the proposed AFSSs: (a) equivalent circuit of the diodes in the
ON-state; (b) equivalent circuit of the diodes in the OFF-state.

To better understand the working principle from the equivalent circuit models, the
impedance of the top and bottom layers can be written as

ZT = (Rt1 + jωLt1 + 1/jωCt1)

‖(Rt2 + jωLt2 + 1/jωCt2) (1)

ZB = (Rb1 + jωLb1 + 1/jωCb1)‖(ZPIN) (2)

where ZPIN = Rb2 + jωLb2 + RON (ON-state) and ZPIN = Rb2 + Rb2 + 1/jωCOFF (OFF-state).
Now, the overall impedance of the proposed AFSS can be expressed as

Znet = ZR‖Z′B (3)

where Z′B can be found from the transmission-line theory

Z′B = ZS
ZB + jZS tan θ

ZS + jZB tan θ
(4)

where θ = βt, with β = 2π/λ being the phase shift constant.
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Regarding this model as a two-port network, the equivalent ABCD matrix can be
derived as follow [38]:[

A B
C D

]
=

[
1 0

YT 1

][
cos θ jZs sin θ

jYB sin θ cos θ

][
1 0

YB 0

]
=

[
cos θ + jZs sin θ jZs sin θ

(YT + YB) cos θ + j(YS + ZSYTYB) sin θ jYBZS sin θ + cos θ

] (5)

By simulating the equivalent circuit model of the above topological structure, the
correctness of the proposed equivalent circuit is verified. The scattering results of the
equivalent circuit model were acquired by ANSYS HFSS software and the AWR Microwave
Office software. Figure 4a,b illustrate the scattering parameters’ comparison results between
the full-wave simulation and the equivalent circuit model simulation in the transmission
and absorption states. To clarify, we described the reflectivity and transmissivity as S11
and S21, respectively, because it is sufficient to verify the validity of the AWR software.
The solid line represents the full-wave simulation results and the dashed line describes the
equivalent circuit simulation results. The proposed equivalent circuit model provides a
close agreement between the calculated and full-wave-simulated scattering parameters.
Additionally, the corresponding optimized values of the designed structure are listed in
Tables 1 and 2, representing the absorption and transmission states, respectively.

Figure 4. The simulation results comparison in HFSS and AWR: (a) simulated scattering parameters
of absorption state; (b) simulated scattering parameters of transmission state.

Table 1. Variable Value of Absorption State.

Variable Symbol Rt1 Lt1 Ct1 Rt2
Variable Value 7.65 ohm 3.42 nH 0.051 pF 35.96 ohm

Variable Symbol Lt2 Ct2 Rb1 Cb1
Variable Value 8.41 nH 0.093 pF 2.81 ohm 1.35 pF

Variable Symbol Lb1 Rb2 RbON Lb1
Variable Value 0.26 nH 9.29 ohm 19.12 ohm 0.25 nH

Table 2. Variable Value of Transmission State.

Variable Symbol Rt1 Lt1 Ct1 Rt2
Variable Value 11.17 ohm 49.86 nH 2.16 pF 41.61 ohm

Variable Symbol Lt2 Ct2 Rb1 Lb1
Variable Value 11.3 nH 0.036 pF 1.87 ohm 0.147 nH

Variable Symbol Cb1 Rb2 CbOFF Lb2
Variable Value 0.37 pH 0.532 ohm 0.46 pF 0.81 nH
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2.3. Surface Current Distribution

To further study the absorption and transmission mechanisms of the proposed struc-
ture, the surface current distributions of the AFSS in the absorption and transmission states
at 11.4 GHz are shown in Figure 5. Figure 5a,b denotes the surface current distributions on
the top and bottom layers, where the bottom layer’ diodes are in the OFF-state, and their
counterparts Figure 5c,d correspond to the ON-state. It is shown that for the top layer in
the different states of the diodes, the current directions are similar, yet the current inten-
sity are different. Concerning the transmission state, the current distribution is primarily
concentrated in the diodes. However, it is mainly concentrated on the connection for the
absorption state, which maximizes the absorption efficiency. Similarly, the bottom layer
is in the OFF-state, and the surface current is weak at the edge and concentrated on the
slot, while in the ON-state, the middle gap structure generates strong resonance, ensuring
excellent absorption performance at 11.4 GHz.

Figure 5. (a,c) are surface current distributions on the top layer of the proposed unit cells for
normal incidence at 11.4 GHz for the OFF-state and ON-state, respectively; (b,d) are surface current
distributions on the bottom layer of the proposed unit cells for normal incidence at 11.4 GHz for the
OFF-state and ON-state, respectively.

3. Numerical Validation and Analysis
Simulation Results

The master–slave boundary condition is set on the side of the model to simulate a
plane periodic structure in the simulation. The electromagnetic wave is defined by the
Floquet port at normal incidence. The corresponding varactors can be equivalent to an RLC
circuit with a nonlinear variation. When the bottom layer’s diodes are in the ON-state, the
underlying geometry demonstrates reflection behavior. By modulating the capacitance
value of the varactors to 0.5 pF, the entire AFSS structure satisfies impedance matching,
leading to absorbing at around 11.4 GHz (where the insertion loss and return loss are both
better than 10 dB), as shown in Figure 6a. The solid line represents the return loss and the
dashed line denotes the insertion loss. When the top diodes have 0.8 pF capacitance value
and the bottom layer’ diodes are in the OFF-state, the overall structure exhibits broadband
transmission (with an insertion loss smaller than 1 dB), as illustrated in Figure 6b. It is
worth noting that the tunability of the varactors makes it attainable for the topological
structure to absorb and transmit in the same frequency band.
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The simulation results of the designed AFSS are illustrated in Figure 6a,b, without
changing the capacitance value of the varactors under the oblique incidence. By adjusting
the capacitance values of the varactors, Figure 6c,d represents that the absorption and
transmission modes are angularly stable up to 35°. It is obvious that the varactors embedded
in the top layer have a significant effect on compensating the asymmetry of the structure.
However, when the incident angle is greater than 35°, for the absorption state, the return loss
is distinctly worse than 10 dB at 11.4 GHz, revealing that the structural surface impedance
is no longer matched with the free-space wave impedance.

Figure 6. Simulation results at different incident angles in TE polarization of the proposed AFSS:
(a) scattering parameters of the absorption state with a 0.5 pF capacitance of the varactors; (b) scatter-
ing parameters of the transmission states with a 0.8 pF capacitance of the varactors; and (c,d) are the
scattering parameters of the absorption and transmission states by changing the reverse bias voltage
of varactors, respectively.

4. Experiment Verification
4.1. Sample Fabrication and Experiment

The proposed AFSS structure was fabricated utilizing printed circuit board (PCB)
technology. The top and bottom layers’ metal patterns are printed on opposite sides of
the 1 mm thick FR4 substrate. PIN diodes (SMP1321-079LF) are embedded on the bottom
layer, and varactors (SMV1231-011LF) are mounted on the top layer. Thus, the top and
bottom layers’ diodes can be adjusted independently by bias voltage network to achieve
the switch between absorption and transmission mode at the same frequency. Figure 7a,b
are photos of the top and bottom sides of the prototype, respectively. The structure consists
of 32 × 31 units, where the entire size of the sample is 288× 279 mm2.

For experimental verification [39,40], measurements are carried out in an anechoic
chamber. The active components used in this paper are SMP1321-079LF PIN diodes and
SMV1231-011LF varactors. A dual DC regulated power supply is used to provide voltage
to the diodes. Two X-band standard gain horn antennas are used as transmitting and
receiving antennas. The prototype is surrounded by pyramid absorbers to reduce the
diffraction effect. Before the measurement, the horn antennas and the prototype should
be normalized to eliminate the environmental impact. For transmission measurements,
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the two horn antennas are calibrated in free space, and then for reflection tests, a metal
plate of the same size as the prototype is used for calibration. Then, the horn antennas are
used to transmit the normal incident quasi-plane wave, which is fixed 1 m away from the
prototype. The reflection coefficient is measured by placing the transmitting and receiving
horn antennas on the same side of the prototype.

Figure 7. Photograph of the fabricated prototype: (a) top side; (b) bottom side.

4.2. Sample Measurement Results

Based on the above tests, Figure 8a,b illustrate the measurement results of the absorp-
tion and transmission states. The experimental results illustrate that when the PIN diodes
are in the OFF-state and varactors are loaded with a 5 V bias voltage, the AFSS functions
as a bandpass filter at around 11.5 GHz under normal incidence. Accordingly, when the
bottom layer’s diodes are in the ON-state, the top layer’s varactors are loaded with a bias
voltage of 16 V, and the AFSS acts as an absorber at around 11.5 GHz. The measurement
results have a slight frequency shift compared with the simulation results, and the results
of the return loss in the transmission state are higher than the simulation results. This is
mainly due to the differences between the active components and the equivalent elements
of the diodes’ simulation and the manufacturing tolerance of the printed circuit board.
Additionally, the dispersion effect of the parasitic elements and the limited size of the
manufacturing prototype can also cause deviation between measurement and simulation
results, which cannot be ignored.

When an electromagnetic wave is incident on the surface of the medium, the absorp-
tivity and the transmissivity are expressed as

A(ω) = 1− R(ω)− T(ω) = |S11|2 − |S21|2 (6)

T(ω) = |S21|2 (7)

Considering the TE polarization, the absorptivity and transmissivity are calculated
from simulation and measurement, as illustrated in Figure 8c,d, respectively. At around
11.4 GHz, the simulation results show that absorptivity reaches about 92%; meanwhile,
the transmissivity is up to 82%. The measurement results illustrate that the absorptivity
is 92.5% at 11.5 around GHz, which is consistent with the simulation results, while trans-
missivity decreased to 78%. The conversion between absorption and transmission modes
at 11.5 GHz was achieved by switching the states of the diodes. The absorptivity and
transmissivity bandwidth are calculated as 80%, the measured absorption bandwidth is
within 11.36–11.83 GHz, and the transmissivity is higher than 70% within 11.15–11.78 GHz.
With independent control of the biasing conditions (ON-/OFF-states) of the diodes, the
AFSS realizes the same frequency conversion between transmission and absorption modes,
unlike the existing articles, as shown in Table 3.
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Figure 8. Measurement and simulation results of absorption and transmission modes: (a,b) are the
scattering parameters of the measurement absorption and transmission states, respectively; (c,d) show
the simulation and measurement absorptivity and transmissivity, respectively.

Table 3. Comparison of this Work with Existing Articles.

AFSS Structure

Working Mode

Biasing Network Polarization
Transmission Mode Absorption Mode

Insertion Loss
(dB)

Center
Frequency

(GHz)

Absorption
Rate (%)

Center
Frequency

(GHz)

Ref. [24] 1.2 8.61 and 11.33 92 10 Surface Single
Ref. [25] 1.96 4 90 5.2 Drilling Double
Ref. [33] 0.97 0–0.8 90 8–18 Drilling Double

This work 0.85 11.4 GHz 92 11.4 GHz Surface Single

The asymmetry of the structure can be compensated to achieve the conversion between
absorption and transmission modes by adjusting the bias voltage of the varactors. The mea-
surement results are show in Figure 9 under the oblique incidence of 0–30°. The solid line
represents the return loss and the dashed line denotes the insertion loss. When the bias
voltage is changed at different incident angles, the transmission performance is relatively
stable, but the absorption behavior is slightly worse. Therefore, the angular response of
the asymmetric structures by changing the surface impedance of the proposed design is
somewhat limited.
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Figure 9. Measurement results for different incidences in TE polarization of the proposed AFSS:
(a,b) are the scattering parameters of absorption and transmission states, respectively.

5. Conclusions

A compact AFSS that can switch between absorption and transmission modes in the
same frequency by controlling the lumped components on the AFSS is proposed in this
paper. The reconfigurable AFSS structure is designed, analyzed, and measured, whereas
it not only realizes the dual-functional conversion between transmission and absorption
modes at the same frequency but also compensates the angular sensitivity of the asymmet-
ric structures by independently controlling the bias conditions (ON-/OFF-state) of the PIN
diodes and the tuning capacitance value of the varactors. Both equivalent circuit modeling
and surface current analysis are used to further analyze the absorption and transmission
mechanism of the designed structure, which outstands the functionality of the active com-
ponents in mode conversion. The designed AFSS was manufactured by PCB technology
and measured in an anechoic chamber. Both simulated and measured results demonstrate
that the presented structure has the capability to achieve transmission/absorption conver-
sion in the same frequency of around 11.4 GHz under normal incidence. The absorption
and transmission modes are angularly stable up to 35° by changing the capacitance of the
varactors, which compensates for the asymmetry of the structure. The proposed AFSS is of
high value in applications scenarios that are not sensitive to polarization, such as antenna
dome, etc.
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