Domain Adaptive Few-Shot Learning for ISAR Aircraft Recognition with Transferred Attention and Weighting Importance
Abstract
:1. Introduction
- (1)
- A cross-domain FSL method from satellites to ISAR called S2I-DAFSL is proposed to implement the aircraft recognition task, addressing the DA and FSL simultaneously.
- (2)
- We propose the ATIN to further improve the transferability and effectiveness in the DA procedure, in which the attention-transferred module focuses on more informative regions, and the importance-weighting module helps choose more appropriate training samples.
- (3)
- Extensive experimental results demonstrate that the proposed method can improve the accuracy of ISAR aircraft image classification with more efficient implementation.
2. Overall Architecture
3. The ATIN Approach
3.1. The Attention Transferred Module
3.2. The Importance-Weighting Module
4. The FSL Procedure
5. Experiments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benedetto, F.; Riganti, F.; Laudani, A.; Albanese, G. Automatic aircraft target recognition by ISAR image processing based on neural classifier. Int. J. Adv. Comput. Sci. Appl. 2012, 3, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Kondaveeti, H.K.; Vatsavayi, V.K. Abridged shape matrix representation for the recognition of aircraft targets from 2D ISAR imagery. Adv. Comput. Sci. Technol. 2017, 10, 1103–1122. [Google Scholar] [CrossRef]
- Vatsavayi, V.K.; Kondaveeti, H.K. Efficient ISAR image classification using MECSM representation. J. King Saud Univ. Comput. 2018, 30, 356–372. [Google Scholar] [CrossRef] [Green Version]
- Slavyanov, K.; Nikolov, L. An algorithm for ISAR image classification procedure. Industry 2017, 2, 76–79. [Google Scholar]
- Kondaveeti, H.K.; Vatsavayi, V.K. Robust ISAR image classification using Abridged Shape Matrices. In Proceedings of the 1st International Conference on Emerging Trends in Engineering, Technology and Science, Pudukkottai, India, 24–26 February 2016; pp. 1–6. [Google Scholar]
- Slavyanov, K.O. Neural network classification method for aircraft in ISAR images. In Proceedings of the 12th International Scientific and Practical Conference on Environment, Technology, Resources, Rezekne, Latvia, 20–22 June 2019; pp. 141–145. [Google Scholar]
- Xue, R.H.; Bai, X.R.; Zhou, F. SAISAR-Net: A robust sequential adjustment ISAR image classification network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5214715. [Google Scholar] [CrossRef]
- Xue, B.; Yi, W.; Jing, F.; Wu, S. Complex ISAR target recognition using deep adaptive learning. Eng. Appl. Artif. Intell. 2021, 97, 104025. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z. Efficient complex ISAR object recognition using adaptive deep relation learning. IET Comput. Vis. 2020, 14, 185–191. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, Y.S.; Yin, C.B.; Lin, C.Y.; Xu, C.; Zhang, X. A deformation robust ISAR image satellite target recognition method based on PT-CCNN. IEEE Access 2021, 9, 23432–23453. [Google Scholar] [CrossRef]
- Xue, B.; Tong, N.N. Real-world ISAR object recognition using deep multimodal relation learning. IEEE Trans. Cybern. 2020, 50, 4256–4267. [Google Scholar] [CrossRef]
- Xue, B.; Tong, N.N.; Xu, X. DIOD: Fast, semi-supervised deep ISAR object detection. IEEE Sens. J. 2019, 19, 1073–1081. [Google Scholar] [CrossRef]
- Xue, B.; Tong, N.N. Real-world ISAR object recognition and relation discovery using deep relation graph learning. IEEE Access 2019, 7, 43906–43914. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, X.; Zhang, F.; Wang, L.; Xue, R.H.; Zhou, F. Robust Pol-ISAR target recognition based on ST-MC-DCNN. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9912–9927. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.S.; Ding, W.Z. A fast recognition method for space targets in ISAR images based on local and global structural fusion features with lower dimensions. Int. J. Aerosp. Eng. 2020, 2020, 3412582. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.; Ding, W. Multiple heterogeneous P-DCNNs ensemble with stacking algorithm: A novel recognition method of space target ISAR images under the condition of small sample set. IEEE Access 2020, 8, 75543–75570. [Google Scholar] [CrossRef]
- Choi, J.; Krishnamurthy, J.; Kembhavi, A.; Farhadi, A. Structured set matching networks for one-shot part labeling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–22 June 2018; pp. 3627–3636. [Google Scholar]
- Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4080–4090. [Google Scholar]
- Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, H.S.; Hospedales, M. Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1199–1208. [Google Scholar]
- Zhang, Y.; Yuan, H.X.; Li, H.B.; Chen, J.Y.; Niu, M.Q. Meta-learner-based stacking network on space target recognition for ISAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12132–12148. [Google Scholar] [CrossRef]
- Long, M.; Cao, Y.; Wang, J.; Jordan, M.I. Learning transferable features with deep adaptation networks. In Proceedings of the 32nd International Conference on Machine Learning, Lile, France, 6–11 July 2015; pp. 97–105. [Google Scholar]
- Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Conditional adversarial domain adaptation. In Proceedings of the 32nd Conference on Neural Information Processing Systems, Montreal, QC, Canada, 2–8 December 2018; pp. 1640–1650. [Google Scholar]
- Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Unsupervised domain adaptation with residual transfer networks. In Proceedings of the 30th Annual Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 136–144. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2962–2971. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep domain confusion: Maximizing for domain invariance. arXiv 2014, arXiv:1412.3474. [Google Scholar]
- Venkateswara, H.; Eusebio, J.; Chakraborty, S.; Panchanathan, S. Deep hashing network for unsupervised domain adaptation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5018–5027. [Google Scholar]
- Scheirer, W.J.; Rocha, A.d.; Sapkota, A.; Boult, T.E. Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1757–1772. [Google Scholar] [CrossRef]
- Giusti, E.; Ghio, S.; Oveis, A.H.; Martorella, M. Proportional Similarity-Based Openmax Classifier for Open Set Recognition in SAR Images. Remote Sens. 2022, 14, 4665. [Google Scholar] [CrossRef]
- Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. arXiv 2014, arXiv:1409.7495. [Google Scholar]
- Zhao, A.; Ding, M.; Lu, Z.; Xiang, T.; Niu, Y.L.; Guan, J.C.; Wen, J.R. Domain-adaptive few-shot learning. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 1389–1398. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.N.; Odena, A. Self-attention generative adversarial networks. arXiv 2018, arXiv:1805.08318. [Google Scholar]
- Chen, X.; Wang, S.; Long, M.; Wang, J. Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 1859–1868. [Google Scholar]
- Zhang, C.C.; Zhao, Q.J.; Wang, Y. Transferable attention networks for adversarial domain adaptation. Inf. Sci. 2020, 539, 422–433. [Google Scholar] [CrossRef]
- Liu, P.; Xiao, T.; Fan, C.N.; Zhao, W.; Tang, X.L.; Liu, H.W. Importance weighted conditional adversarial network for unsupervised domain adaptation. Expert Syst. Appl. 2020, 155, 113404. [Google Scholar] [CrossRef]
- MTARSI 2. Available online: https://doi.org/10.5281/zenodo.5044949 (accessed on 30 June 2021).
- MTARSI. Available online: https://doi.org/10.5281/zenodo.2888016 (accessed on 18 May 2019).
- Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; Wierstra, D. Matching networks for one shot learning. In Proceedings of the 30th Annual Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 3637–3645. [Google Scholar]
- He, K.M.; Zhang, X.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 29th IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 2008, 9, 2579–2625. [Google Scholar]
Model | 5-Way 1-Shot | 5-Way 5-Shot |
---|---|---|
ADDA [24] | 73.25 ± 0.55 | 83.98 ± 0.39 |
CDAN [22] | 73.72 ± 0.43 | 84.11 ± 0.51 |
RelationNet [19] | 72.58 ± 0.46 | 82.47 ± 0.28 |
MatchingNet [37] | 73.06 ± 0.53 | 83.62 ± 0.40 |
ProtoNet [18] | 71.79 ± 0.26 | 81.88 ± 0.31 |
CDAN + ProtoNet | 74.02 ± 0.41 | 84.35 ± 0.29 |
S2I-DAFSL | 75.97 ± 0.37 | 86.93 ± 0.26 |
Class | Precision | Recall | F1-Score |
---|---|---|---|
1 | 0.80 | 0.70 | 0.75 |
2 | 0.91 | 0.67 | 0.77 |
3 | 0.71 | 1.00 | 0.83 |
4 | 1.00 | 1.00 | 1.00 |
5 | 1.00 | 1.00 | 1.00 |
Class | Precision | Recall | F1-Score |
---|---|---|---|
1 | 0.95 | 0.60 | 0.74 |
2 | 0.70 | 0.47 | 0.56 |
3 | 0.53 | 0.80 | 0.64 |
4 | 0.78 | 0.97 | 0.86 |
5 | 0.93 | 0.90 | 0.91 |
Class | Precision | Recall | F1-Score |
---|---|---|---|
1 | 1.00 | 1.00 | 1.00 |
2 | 0.80 | 0.80 | 0.80 |
3 | 0.83 | 1.00 | 0.91 |
4 | 0.79 | 0.73 | 0.76 |
5 | 0.75 | 0.81 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Yao, Y.; Wang, Q. Domain Adaptive Few-Shot Learning for ISAR Aircraft Recognition with Transferred Attention and Weighting Importance. Electronics 2023, 12, 2909. https://doi.org/10.3390/electronics12132909
Li B, Yao Y, Wang Q. Domain Adaptive Few-Shot Learning for ISAR Aircraft Recognition with Transferred Attention and Weighting Importance. Electronics. 2023; 12(13):2909. https://doi.org/10.3390/electronics12132909
Chicago/Turabian StyleLi, Binquan, Yuan Yao, and Qiao Wang. 2023. "Domain Adaptive Few-Shot Learning for ISAR Aircraft Recognition with Transferred Attention and Weighting Importance" Electronics 12, no. 13: 2909. https://doi.org/10.3390/electronics12132909
APA StyleLi, B., Yao, Y., & Wang, Q. (2023). Domain Adaptive Few-Shot Learning for ISAR Aircraft Recognition with Transferred Attention and Weighting Importance. Electronics, 12(13), 2909. https://doi.org/10.3390/electronics12132909