A Multistable Discrete Memristor and Its Application to Discrete-Time FitzHugh–Nagumo Model
Abstract
:1. Introduction
2. Analysis of a Novel Discrete Memristor Map
2.1. Discrete Memristor Model
2.2. Pinched Hysteresis Loops
2.3. The Error Analysis
3. A Novel Memristive Neuron Model and Its Dynamical Behaviors
3.1. Description of a Generalized Discrete-Time FN Model
3.2. Constructed Memristive Discrete FHN Neuron Model
3.3. Lyapunov Exponents and Bifurcation Analysis
3.4. Memristor Initial-Value-Dependent Bifurcation Plots
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chua, L.O. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B. The missing memristor found. Nature 2008, 453, 80. [Google Scholar] [CrossRef] [PubMed]
- Bezziou, M.; Dahmani, Z.; Jebril, I.; Belhamiti, M.M. Solvability for a differential system of Duffing type via Caputo-Hadamard approach. Appl. Math. Inform. Sci. 2022, 11, 341–352. [Google Scholar]
- Kang, Q.; Huang, B.; Zhou, M. Dynamic behavior of artificial Hodgkin-Huxley neuron model subject to additive noise. IEEE Trans. Cybern. 2015, 46, 2083–2093. [Google Scholar] [CrossRef] [PubMed]
- Lv, M. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 2016, 85, 1479–1490. [Google Scholar] [CrossRef]
- Xing, M. Bifurcations and excitability in the temperature-sensitive Morris-Lecar neuron. Nonlinear Dyn. 2020, 100, 2687–2698. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, F.; Dai, Z.; Wang, J.; Chen, L.; Ling, H.; Soltanian, M.R. Radionuclide transport in multi-scale fractured rocks: A review. J. Hazard. Mater. 2022, 424, 127550. [Google Scholar] [CrossRef]
- Tian, J.; Hou, M.; Bian, H. Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems. Complex Intell. Syst. 2022. [Google Scholar] [CrossRef]
- Song, J.; Mingotti, A.; Zhang, J.; Peretto, L.; Wen, H. Accurate Damping Factor and Frequency Estimation for Damped Real-Valued Sinusoidal Signals. IEEE Trans. Instrum. Meas. 2022, 71, 1–4. [Google Scholar] [CrossRef]
- Li, Q.K.; Lin, H.; Tan, X.; Du, S. H∞ Consensus for Multiagent-Based Supply Chain Systems Under Switching Topology and Uncertain Demands. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 4905–4918. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y. Stock intelligent investment strategy based on support vector machine parameter optimization algorithm. Neural Comput. Appl. 2020, 32, 1765–1775. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y. Application of RBF neural network optimal segmentation algorithm in credit rating. Neural Comput. Appl. 2021, 33, 8227–8235. [Google Scholar] [CrossRef]
- Bao, B.; Rong, K.; Li, H.; Li, K.; Hua, Z.; Zhang, X. Memristor-coupled logistic hyperchaotic map. IEEE Trans. Circuits Syst. II Express Br. 2021, 68, 2992–2996. [Google Scholar] [CrossRef]
- Peng, Y.; He, S.; Sun, K. A higher dimensional chaotic map with discrete memristor. AEU-Int. J. Electron. Commun. 2021, 129, 153539. [Google Scholar] [CrossRef]
- Peng, Y.; Sun, K.; Peng, D.; Ai, W. Dynamics of a higher dimensional fractional-order chaotic map. Phys. A Stat. Mech. Its Appl. 2019, 525, 96–107. [Google Scholar] [CrossRef]
- Khennaoui, A.A.; Ouannas, A.; Momani, S.; Almatroud, A.A.; Al-Swalha, M.M.; Boulaaras, S.M.; Pham, V.T. Special fractional-order map and its realization. Mathematics 2022, 10, 4474. [Google Scholar] [CrossRef]
- Kong, S.; Li, C.; He, S.; Lai, Q. A memristive map with coexisting chaos and hyperchaos. Chin. Phys. B 2021, 30, 10502. [Google Scholar] [CrossRef]
- Zhang, L.P.; Wei, Z.C.; Jiang, H.B.; Lyu, W.P.; Bi, Q.S. Extremely hidden multistability in a class of a two dimensional maps with a cosine memristor. Chin. Phys. B 2022, 31, 100503. [Google Scholar] [CrossRef]
- Wang, J.; Gu, Y.; Rong, K.; Xu, Q.; Zhang, X. Memristor-based lozi map with hidden hyperchaos. Mathematics 2022, 10, 3426. [Google Scholar] [CrossRef]
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544. [Google Scholar] [CrossRef]
- Gu, H.G.; Pan, B.B.; Chen, G.R.; Duan, L.X. Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 2014, 78, 391–407. [Google Scholar] [CrossRef]
- Chay, T.R. Chaos in a three-variable model of an excitable cell. Phys. D 1985, 16, 233–242. [Google Scholar] [CrossRef]
- De, S.; Balakrishman, J. Brust mechanisms and brust synchronization in a system of coupled type-| and type neurons. Commun. Nonlinear Sci. Number. Simul. 2020, 90, 105391. [Google Scholar] [CrossRef]
- Ouannas, A.; Batiha, I.M.; Pham, V.-T. Fractional Discrete Chaos: Theories, Methods and Applications; World Scientific: Singapore, 2023. [Google Scholar] [CrossRef]
- Hioual, A.; Oussaeif, T.-E.; Ouannas, A.; Grassi, G.; Batiha, I.M.; Momani, S. New results for the stability of fractional-order discrete-time neural networks. Alex. Eng. J. 2022, 61, 10359–10369. [Google Scholar] [CrossRef]
- Hioual, A.; Ouannas, A.; Oussaeif, T.-E.; Grassi, G.; Batiha, I.M.; Momani, S. On Variable-Order Fractional Discrete Neural Networks: Solvability and Stability. Fractal Fract. 2022, 6, 119. [Google Scholar] [CrossRef]
- Li, Z.; Guo, Z.; Wang, M.; Ma, M. Firing activities induced by memristive autapse in Fitzhugh-nagumo neuron with time delay. AEU Int. J. Electron. Commun. 2021, 142, 153995. [Google Scholar] [CrossRef]
- Bao, B.; Yang, Q.; Zhu, L.; Bao, H.; Xu, Q.; Yu, Y.; Chen, M. Chaotic bursting dynamics and coexisting multistable firing patterns in 3D autonomous Morris?Lecar model and microcontroller-based validations. Int. J. Bifurc. Chaos 2019, 29, 1950134. [Google Scholar] [CrossRef]
- Ma, J.; Song, X.; Jin, W.; Wang, C. Autapse-induced synchronization in a coupled neuronal network. Chaos Solitons Fract. 2015, 80, 31–38. [Google Scholar] [CrossRef]
- Qu, L.; Du, L.; Zhang, H.; Cao, Z.; Deng, Z. Regulation of chemical autapse on an FHN-ML neuronal system. Int. J. Bifurcat. Chaos 2019, 29, 1950202. [Google Scholar] [CrossRef]
- Muni, S.S.; Rajagopal, K.; Karthikeyan, A.; Arun, S. Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling. Chaos, Solitons Fractals 2022, 155, 111759. [Google Scholar] [CrossRef]
- Hussain, I.; Jafari, S.; Perc, M.; Ghosh, D. Chimera states in a multi-weighted neuronal network. Phys. Lett. A 2022, 424, 127847. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Yang, X.; Lu, Y. Application of discrete memristors in logistic map and Hindmarsh–Rose neuron. Eur. Phys. J. Spec. Top. 2022, 231, 3209–3224. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, C.; Deng, Q.; Hong, Q. Locally active memristor with three coexisting pinched hysteresis loops and its emulator circuit. Int. J. Bifurcat. Chaos 2020, 30, 2050184. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Hong, Q.; Sun, Y. A multi-stable memristor and its application in a neural network. IEEE Trans. Circuits Syst. Express Briefs 2020, 67, 3472–3476. [Google Scholar] [CrossRef]
- Adhikari, S.P.; Sah, M.P.; Kim, H.; Chua, L.O. Thre fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 3008–3021. [Google Scholar] [CrossRef]
- Weither, M.; Herzig, M.; Tetzlaff, R.; Ascoli, A.; Mikolajick, T.; Sleazeck, S. Pattern formation with locally active S-type NbOx mamristor. IEEE Trans. Circuits Syst. I Reg. Pap. 2019, 66, 2627–2638. [Google Scholar] [CrossRef]
- Chen, M.; Sun, M.; Bao, H.; Hu, Y.; Bao, B. Fluc charge analysis of two-memristor- based Chua’s circuit: Dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 2019, 67, 2197–2206. [Google Scholar] [CrossRef]
- Ma, M.; Lu, Y.; Li, Z.; Sun, Y.; Wang, C. Multistability and Phase Synchronization of Rulkov Neurons Coupled with a Locally Active Discrete Memristor. Fractal Fract. 2023, 7, 82. [Google Scholar] [CrossRef]
- Ma, M.; Xiong, K.; Li, Z.; Sun, Y. Dynamic Behavior Analysis and Synchronization of Memristor-Coupled Heterogeneous Discrete Neural Networks. Mathematics 2023, 11, 375. [Google Scholar] [CrossRef]
- Njitacke, Z.T.; Kengne, J. Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: Coexistence of multiple attractors and remerging Feigenbaum trees. AEU—Int. J. Electron. Commun. 2018, 93, 242–252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shatnawi, M.T.; Khennaoui, A.A.; Ouannas, A.; Grassi, G.; Radogna, A.V.; Bataihah, A.; Batiha, I.M. A Multistable Discrete Memristor and Its Application to Discrete-Time FitzHugh–Nagumo Model. Electronics 2023, 12, 2929. https://doi.org/10.3390/electronics12132929
Shatnawi MT, Khennaoui AA, Ouannas A, Grassi G, Radogna AV, Bataihah A, Batiha IM. A Multistable Discrete Memristor and Its Application to Discrete-Time FitzHugh–Nagumo Model. Electronics. 2023; 12(13):2929. https://doi.org/10.3390/electronics12132929
Chicago/Turabian StyleShatnawi, Mohd Taib, Amina Aicha Khennaoui, Adel Ouannas, Giuseppe Grassi, Antonio V. Radogna, Anwar Bataihah, and Iqbal M. Batiha. 2023. "A Multistable Discrete Memristor and Its Application to Discrete-Time FitzHugh–Nagumo Model" Electronics 12, no. 13: 2929. https://doi.org/10.3390/electronics12132929
APA StyleShatnawi, M. T., Khennaoui, A. A., Ouannas, A., Grassi, G., Radogna, A. V., Bataihah, A., & Batiha, I. M. (2023). A Multistable Discrete Memristor and Its Application to Discrete-Time FitzHugh–Nagumo Model. Electronics, 12(13), 2929. https://doi.org/10.3390/electronics12132929