
Citation: Lin, H.-Y.; Zhang, J.-Z.;

Chang, C.-C. Image Data Extraction

and Driving Behavior Analysis Based

on Geographic Information and

Driving Data. Electronics 2023, 12,

2989. https://doi.org/10.3390/

electronics12132989

Academic Editors: D. J. Lee and

Dong Zhang

Received: 6 June 2023

Revised: 29 June 2023

Accepted: 5 July 2023

Published: 7 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Image Data Extraction and Driving Behavior Analysis Based on
Geographic Information and Driving Data †

Huei-Yung Lin 1 , Jun-Zhi Zhang 2 and Chin-Chen Chang 3,*

1 Department of Computer Science and Information Engineering, National Taipei University of Technology,
Taipei 10608, Taiwan; lin@ntut.edu.tw

2 Department of Electrical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan;
jffc850629@gmail.com

3 Department of Computer Science and Information Engineering, National United University,
Miaoli 36003, Taiwan

* Correspondence: ccchang@nuu.edu.tw
† This paper is an extended version of our paper published in: Driving Behavior Analysis and Traffic

Improvement Using Onboard Sensor Data and Geographic Information. In Proceedings of the 7th
International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2021), Online,
28–30 April 2021.

Abstract: Driving behavior analysis has become crucial for traffic safety. In addition, more abundant
driving data are needed to analyze driving behavior more comprehensively and thus improve traffic
safety. This paper proposes an approach to image data extraction and driving behavior analysis that
uses geographic information and driving data. Information derived from geographic and global
positioning systems was used for image data extraction. In addition, we used an onboard diagnostic
II and a controller area network bus logger to record driving data for driving behavior analysis.
Driving behavior was analyzed using sparse automatic encoders and data exploration to detect
abnormal and aggressive behavior. A regression analysis was performed to derive the relationship
between aggressive driving behavior and road facilities. The results indicated that lane ratios, no lane
markings, and straight lane markings are important features that affect aggressive driving behaviors.
Several traffic improvements were proposed for specific intersections and roads to make drivers and
pedestrians safer.

Keywords: image data extraction; driving behavior analysis; geographic information system; global
position system

1. Introduction

Considerable research has been conducted on autonomous vehicle systems for self-driving
cars. One key component of self-driving cars is an understanding of human driving behavior to
avoid human–machine conflict [1–4]. Driving behavior analysis has become crucial for traffic
safety. With recent advances in machine learning techniques [3,4], data-driven approaches to
complicated human behavior modeling have become increasingly feasible. In particular, several
studies have made significant progress using deep learning techniques.

Among recent learning approaches [3,4], in addition issues regarding the design of
network structures, another critical issue has been the collection of large amounts of train-
ing data. With the popularization of dash cams, the driving data provided cannot meet
the needs of driving behavior analysis. More abundant driving data are needed to analyze
driving behavior more comprehensively and thus improve traffic safety. Autonomous vehi-
cle systems typically collect data from onboard sensors and extract information for specific
analyses [1]. These may encompass images captured by in-car cameras and proprioceptive
driving data recorded by onboard diagnostic systems. The extraction of adequate data
segments for neural network training and testing is critical. For instance, learning road
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sign recognition requires certain traffic scene images or modeling a driver’s acceleration
behavior using selected gas pedal information. Large training datasets are typically used in
deep neural networks to achieve better performance.

Conventionally, data annotation or labeling has been mainly completed manually
and sometimes through crowdsourcing. For driving data, a dataset collected according
to different tasks will contain various scenes and features. The selection and filtering of
adequate data require significant time and human labor. The development of technologies
for searching specific traffic scenes within a large number of image sequences has become
important. The main goals of this paper are to propose an image data extraction system
based on geographic information and driving behavior analysis using various types of
driving data. We used information derived from a geographic information system (GIS)
and a global positioning system (GPS) along with recorded driving videos to identify
road scenes with static objects such as traffic lights, traffic signs, bridges, and tunnels.
Additionally, we utilized an onboard diagnostic II (OBD-II) and a controller area network
bus (CANbus) logger to collect driving data [5]. By measuring several parameters at a high
sampling rate, we can completely observe driving behaviors and understand the influences
of traffic and road infrastructure.

To analyze the relationship between driving behavior and transportation infrastructure,
visualization on a map provides a means of better observation and investigation. We used
machine learning methods to extract unique features from the driving data and then
mapped these features to the RGB color space to visualize the driving behavior. Data
mining algorithms [6] were utilized for data analysis and to classify driving behavior into
four categories, ranging from normal to aggressive. A regression analysis [7] was then
conducted on the relationship between aggressive driving behavior and road features at
intersections. Several traffic improvements were proposed for specific intersections and
roads to make drivers and pedestrians safer.

The contributions of this paper are as follows. (a) We present a road scene extraction
approach for specific landmarks and transportation infrastructure indicators. (b) To perform
a more comprehensive analysis, we present visual driving behavior, aggressive driving
behavior, and traffic light information on a map to associate driving behavior with roads.
(c) Based on the results of the driving behavior analysis, suggestions and verifications for
traffic improvement at intersections are presented, with their intention being to prevent
accidents.

2. Related Works
2.1. Data Extraction

As learning-based algorithms [3,4] become popular, the acquisition of training and
testing data has become crucial. For unsupervised classification, Hornauer et al. and
Wu et al. [8,9] proposed unsupervised image classification methods for extracting images
similar to those provided by general users [10]. However, good training data should be
reflected consistently in the testing data. For supervised classification [1,2], the data were
manually labeled. People need to have a similar understanding to annotate the same scene.
The network of this approach is based on feature similarity for a first-person driving image
query. However, this may not fully meet the needs of the users.

In addition, Naito et al. [11] proposed a browsing and retrieval approach to driving
data. Their approach provides a multidata browser, a retrieval function based on queries
and similarities, and a quick browsing function to skip extra scenes. The top-N images that
were highly similar to the current driving scenario were retrieved from a database for scene
retrieval. While an image sequence is processed, this approach calculates the similarity
between the input scene and the scenes stored in the database. A predefined threshold was
used to identify similarities between the images. Because the approach mainly searched for
the driving video itself, it could not be determined whether the images contained objects or
information that was interesting to the users for precise extraction.
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2.2. Driving Behavior Analysis

The key technologies for automotive driving-assistance systems have matured [12].
However, autonomous vehicles can still not be employed without human drivers. Owing
to the current limitations of driving-assistance systems, researchers and developers are
seeking solutions to improve human driving capabilities. Because changing driving habits
is challenging, developing a human-centered driving environment to avoid dangerous
situations is crucial. By understanding the relationships between traffic lights, road in-
frastructure, and driving behavior, suggestions for transportation improvement can be
provided. In addition, understanding human reactions is also a crucial issue for mixing
human-driven and self-driving cars.

Regarding driving behavior analysis, Liu et al. [13,14] proposed a method that uses
various types of sensors connected to a control area network. A deep sparse autoencoder
(SAE) was then used to extract hidden features from the driving data to visualize driving
behavior. Constantinescu et al. [15] used both principal component analysis (PCA) and
hierarchical cluster analysis (HCA) techniques to analyze driving data. The performance of
their techniques was verified by classifying the driving behavior into six categories based
on aggressiveness. In the approach proposed by Kharrazi et al. [16], driving behavior
was classified into three categories—calm, normal, and aggressive—using quartiles and
K-means clustering. Their results demonstrated that K-means clustering can provide good
classification results for driving behaviors.

To analyze the correlation between driving and road facilities, Tay et al. [17] used a
regression model to associate driving accidents with environmental factors. Drivers were
liable to run when driving accidents occurred at night, on a bridge, and so on. Wong et al. [7]
utilized negative binomial regression to analyze the number of driving accidents and road
features at intersections. Road intersections can also be improved using simulations based
on the analysis results. Schorr et al. [18] presented an approach for recording driving data in
one- and two-way lanes. Based on an analysis of variance (ANOVA), a conclusion regarding
the impact of lane width on driving behavior was drawn. Abojaradeh et al. [19] proposed
a method for identifying driving behaviors and driver mistakes based on questionnaires
and highlighted their effects on traffic safety. They used regression analysis to derive the
correlation between the number of accidents and types of dangerous driving behaviors.

Regarding the improvement of transportation infrastructure, various suggestions have
been proposed for different road and intersection designs. Chunhui et al. [20] proposed an
approach to optimizing signal lights at intersections to make pedestrian crossing easier [21].
The efficiency of intersections was improved by reducing the frequency of conflicts between
turning vehicles and pedestrians. Ma et al. [22] proposed a technique for adding a dedicated
left-turn lane and waiting area based on the average daily traffic volume at an intersection.
The proposed method can facilitate more vehicles waiting to make a left turn. They also
analyzed three common left-turn operation scenarios at intersections and compared the
differences between them. In addition to suggestions for road infrastructure, several traffic
improvements have been suggested based on traffic light analysis. Anjana et al. [23]
presented a method based on different traffic volumes at intersections to evaluate the safety
of green traffic lights. The results showed that exclusive left-turn lanes and countdown
timers can improve traffic safety at intersections.

3. Image Data Extraction

OpenStreetMap (OSM) [14] is an open and global map that allows everyone to freely
build map content. The geographic information system in transportation (GIS-T) [24]
is an open transportation map data storage system used in Taiwan. The maps of GIS-T
are mainly divided into four categories, including basic geographic maps, transportation
systems, sightseeing information, and disaster prevention information.

To enact the proposed approach, we first collected information regarding traffic lights,
traffic signs, and road information from OSM and GIS-T. Traffic and road information
were used to identify locations of interest using GPS coordinates. We compared the GPS
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information obtained from the driving data to the locations of interest. The associated
images were then extracted and stored in video sequences for specific applications, such as
training and testing data for traffic light detection. Figure 1 illustrates a flowchart of image
data extraction.
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The driving recorder contained images at a resolution of 1280 × 720 and with a 110◦

field of view (FOV) in the horizontal direction. To extract suitable image data, users must
consider the geographic range of the target. For example, in road scene extraction with
traffic lights, the size of the traffic signal in an image may be larger than 25 × 25 pixels for
specific tasks. This corresponds to approximately 50 m away from the vehicle; thus, the
video should be rewound by 5 s before starting image data extraction.

We established an interface for user operations. The interface structure is divided
into two parts: image extraction and video filtering. The items included in the image
data extraction were traffic lights and traffic signs, whereas the video filtering included
highways and tunnels. A program interface was created for users to easily use the data
and assign parameters. It consists of a folder for selection, an item menu for extraction,
an OSM map display, and a driving image screen. The user first selects the folder where
the driving record video and driving GPS information are located, and the folder where
the extracted image will be stored. The user then selects traffic infrastructure or road
information for extraction. At the interface, the vehicle’s GPS trajectory and user-selected
traffic infrastructure simultaneously overlay the OSM window, and a synchronized driving
video is displayed on the right for inspection.

4. Driving Behavior Analysis

To demonstrate the proposed approach, we analyzed driving behavior and its correla-
tion with traffic and road features. Driving behavior was classified as normal or aggressive
and analyzed through data visualization and a regression model of the number of aggres-
sive driving behaviors and road features.

A flowchart of the driving behavior analysis is presented in Figure 2. First, we used
the ODB-II and CANbus loggers to collect driver data. We then utilized an SAE to extract
features from the driving data and compress the high-dimensional features into three
dimensions. Subsequently, we mapped the three-dimensional features to the RGB space
for display on the OSM. Moreover, we used the K-means clustering algorithm to further
classify the driving behavior based on aggressiveness. Finally, we used a negative binomial
regression model to analyze the road features at intersections and interchanges.
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4.1. Data Collection

In addition to exteroceptive sensors (such as LiDAR, GPS, and cameras), the infor-
mation collected via the proprioceptive sensors of the vehicle can also be used to analyze
driving behavior [5,25]. Sensor data derived directly from vehicle operations can provide
more comprehensive driving information.

An OBD system is an automotive electronic system installed in a vehicle to monitor
the vehicle’s operating status and report abnormal signals. An OBD-II system is a ve-
hicle diagnostic system that contains more comprehensive diagnostic trouble codes and
emissions control. A CANbus is a network characterized by its ability to allow multiple mi-
crocontrollers or devices on the network to communicate directly with each other without
the need for a host to control communication on the network. The CANbus is a protocol
supported by OBD-II. A CANbus logger is a recorder for a CANbus system. We used
ODB-II and CANbus loggers for driver data collection. Unlike the information obtained
from GPS receivers (including GPS messages, vehicle speed, and acceleration), which most
previous studies were limited to, the data obtained through OBD-II and CANbus loggers
can include various types of driving data for analysis. The specific data types used for the
proposed driving behavior analysis are as follows.

• OBD-II: engine rotation speed, engine load, throttle pedal position, acceleration XYZ,
and vehicle speed.

• CANbus logger: engine rotation speed, throttle pedal position, braking pedal position,
steering angle, wheel speed, and vehicle speed.

• GPS receiver: GPS and coordinated universal time (UTC).

Moreover, the DDD17 dataset [26] has 12 h of recorded data using a dynamic and
active-pixel vision sensor (DAVIS). It is the first open dataset of annotated DAVIS driving
records. The driving data recorded include steering angle, speed, GPS, accelerator position,
and so on. In addition, the driving data were collected under different conditions for six
days and over 1000 km of different roads. We selected the same driving data categories
as we collected with the CANbus loggers for analysis, including vehicle speed, steering
wheel steering angle, engine speed, engine torque, accelerator and brake position, and
acceleration. The UAH DriveSet [27] dataset is a public collection of data obtained via
the driving monitoring application DriveSafe [28], which captures data using the sensors
of a mobile phone. The driving data were collected by six different drivers and vehicles
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performing three different driving behaviors (normal, drowsy, and aggressive) on two
types of roads (motorway and secondary road). This dataset contains more than 500 min of
natural driving and related raw data. We used normal and aggressive driving data from
this dataset to verify whether the proposed approach can effectively classify aggressive
driving behaviors. These two datasets are commonly used datasets for driver behavior
analysis. There are some biases or limitations inherent in these two datasets because of
sample selections and sensor problems.

4.2. Visualization of Driving Behavior

The relationship between driving behavior and traffic infrastructure can be observed
through data visualization on a map. An autoencoder (AE) is a neural network for the
unsupervised learning efficient coding of unlabeled data. An SAE is an improved version
of an AE. Using an SAE does not requires that driving data be manually labelled and
can generate similar data through learning for feature extraction. We used the SAE to
extract features from the driving data, compress the high-dimensional features into three
dimensions, and map the 3D features onto RGB space for display on the OSM. The loss
function with sparse constraints is given as follows:

Jsparse(W, b) = J(W, b) + β
s2

∑
j=1

KL
(
ρ
∣∣∣∣ρ̂j

)
(1)

where J(W, b) is the cost function with parameters W and b. The parameter β controlling
the weight of the sparsity penalty term. ρ is a sparsity parameter, and ρ̂j is the average
activation of hidden unit j. Moreover, s2 is the number of neurons in the hidden layer, and
KL

(
ρ
∣∣∣∣ρ̂j

)
is Kullback–Leibler divergence between ρ and ρ̂j.

Unlike an autoencoder (AE), an SAE has a penalty term added to the loss function.
Thus, the activation of hidden nodes decreases to the required value. Using this property,
the relative entropy is added to the loss function to penalize the value of the average
activation degree being far away from the level ρ. The parameters maintain the average
degree of activation of the hidden nodes at this level. Thus, the loss function only requires
the addition of a penalty term for relative entropy without sparse constraints.

Figure 3 illustrates the flowchart and network structure used to visualize driving
behavior. The network contained nine hidden layers, and the dimensionality reduction
of each layer was half the number of nodes in the previous layer. The data collected by
OBD-II contained seven types and 70 dimensions after the windowing process. Thus, the
dimension reduction in the network is 70→ 35→ 17→ 8→ 3→ 8→ 17→ 35→ 70, and
the features are extracted by the last five layers. The data collected by the CANbus logger
contained six types and 60 dimensions after the windowing process. Likewise, the input to
the network comprises 60 nodes, and the dimension reduction is given as follows: 60→ 30
→ 15→ 7→ 3→ 7→ 15→ 30→ 60. Finally, driving behavior was visualized using the
OSM. Figure 4 shows an example of the driving behavior visualized on the OSM for the
network structure 70→ 35→ 17→ 8→ 3→ 8→ 17→ 35→ 70.

K-means clustering [6] is a clustering algorithm mainly used in data mining. The
purpose of K-means is to divide n data points into k clusters so that each data point
is classified into the category corresponding to the nearest cluster center. The elbow
method [6] is a technique used to find the number of clusters for K-means clustering. In the
proposed approach, we used the K-means clustering algorithm to further classify driving
behavior. The elbow method was used to determine the most appropriate k value to classify
driving behavior according to aggressiveness. Based on the results of the elbow method,
the error values did not change significantly after K was set to four. Thus, the inflection
point of the error curve was the position of K = 4. Driving behavior is classified according
to four levels, ranging from normal to aggressive, and the most aggressive driving behavior
is marked on the OSM.
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4.3. Negative Binomial Regression

The negative binomial regression model [7] is a well-known technique used to model
over-dispersed data. It is an extended version of the Poisson regression to process the
data overdispersion problem. In the proposed approach, a negative binomial regression
analysis was conducted to relate the number of aggressive driving behaviors (the dependent
variable) to various independent variables to capture the road features at intersections and
interchanges. The negative binomial regression model is used to predict the number of
aggressive driving behaviors µi, defined as

µi = exp(β1x1i + β2x2i + · · ·+ βkxki + εi) (2)

where βi is the correlation term associated with each road feature vector xki and εi is an
error term. Pearson’s chi-squared test was performed [29] to verify whether the data
were overdispersed. When the ratio was greater than one, the data were considered
overdispersed.
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To evaluate whether negative binomial regression could better fit our data, the Akaike
information criterion (AIC) was computed for these two models [30]. The AIC is an effective
measure of data fitting in regression models and is defined as

AIC = 2k− 2 ln(L) (3)

where k is the number of features, and ln(L) is the maximum likelihood. A smaller AIC
value implies a better-fitting model.

After classifying driving behavior using K-means clustering, aggressive driving behavior
was found to occur more frequently at interchanges and intersections. Negative binomial
regression analysis was performed for these two specific driving scenarios. We adopted the
road features proposed by Wong [16] and those commonly appearing in Taiwanese road scenes.

• Interchanges: (1) section length, (2) lane width, (3) speed limit, and (4) traffic flow.
• Four-arm intersection: (1) no lane markings, (2) straight-lane markings, (3) left-lane

markings, (4) right-lane markings, (5) shared-lane markings, (6) shared-lane markings
at the roadside, (7) motorcycle priority, and (8) branch road.

• Three-arm intersection: (1) no lane markings, (2) straight-lane markings, (3) shared-lane
markings at the roadside, (4) lane ratio, (5) motorcycle priority, and (6) branch road.

5. Experimental Results and Discussion

We divided the experiments into two parts: the image data extraction of training and
testing datasets and the driving behavior analysis based on the driving and road features.

5.1. Extraction of Training and Testing Data

We demonstrate the image data extraction for road scenes with traffic lights. Figure 5a
shows the driving trajectory (indicated by the red curve) and traffic light positions (indicated
by blue circles) on the OSM. The driving videos were filtered through an extraction system
to contain traffic lights from far to near. The extracted images in Figure 5b,c correspond to
orange dots (a) and (b) in Figure 5a, respectively.
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Electronics 2023, 12, 2989 9 of 14

5.2. Driving Behavior Analysis

For the driving behavior analysis, we first presented the visualization and K-means
classification and then performed an analysis of the driving behavior and road features.

5.2.1. Visualization and K-Means Classification

We used five segments of driving data from the UAH DriveSet, in which the drivers
showed normal and aggressive behaviors separately. In each data segment, 50 samples
were used for classification. The results are presented in Table 1 with the percentage of
correct classifications, where D1–D5 represent the five drivers. N and A denote normal and
aggressive driving, respectively. The table shows that K-means classification can provide
satisfactory classification results for normal and aggressive driving behaviors.

Table 1. K-means classification performance on the UAH DriveSet.

D1 D2 D3 D4 D5

N A N A N A N A N A
100% 80% 100% 100% 100% 96% 98% 100% 98% 98%

Figure 6 shows the visualized driving behavior and the corresponding driving data
chart. Figure 6a shows the visualized driving behavior (including aggressive driving),
using the driving data in the UAH DriveSet visualized on the OSM with traffic light location
information. The red circles A and B in Figure 6a correspond to the driving data chart
enclosed by the red rectangles A and B, respectively, in Figure 6b. The driving images
corresponding to the red circles A and B in Figure 6a are shown in Figure 7a,b, respectively.
In this example, the aggressive driving behavior at the location indicated by red circle
A in Figure 6a was due to sudden braking caused by the car in front at the intersection
(Figure 7a), and that at the location indicated by red circle B in Figure 6b was due to the
driver changing lanes (Figure 7b).
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By visualizing the driving behavior and displaying aggressive driving behaviors on
OSM with reference to the driving video, we can observe a correlation between driving
behavior and traffic infrastructure. The three situations were analyzed as follows:

a. Influence of two-way lanes on driving behavior: The vehicle speed in a two-way lane
was higher than that in a one-way lane. Thus, aggressive driving behaviors with fast
driving and emergency braking are more likely to occur in two-way lanes.

b. Influence of traffic lights on driving behavior: The most aggressive driving behavior
occurs at intersections. There may be many reasons for this, such as fast-changing
signals and poor road design. This generally causes more conflicts between drivers
and other vehicles.

c. Influence of interchanges on driving behavior: In highway traffic, the most aggressive
driving behaviors occur at interchanges. A vehicle entering an interchange entrance
tends to drive in the inner lane. This generally causes the other drivers to change
lanes or slow down.

5.2.2. Negative Binomial Regression

Because aggressive driving behaviors frequently occur near intersections and inter-
changes, we further investigated these driving scenarios using negative binomial regression
analysis of the correlation between the number of aggressive behaviors and road features.

The p-value can be used to evaluate the statistical significance of the features of
aggressive driving behaviors [31]. The following two driving scenarios were examined.

Four-Arm Intersection: Eight different road features were defined at the intersections.
The regression analysis is shown in Figure 8a, where Intercept is the error term of the
regression model, LEFT is the left-turn lane mark, STRA is the straight lane mark, RIGHT
is the right-turn lane mark, TWO is the shared lane mark, SHARE is the shared lane mark
on the side of the road, NO is no lane mark, MOTOR is the number of priority locomotive
lanes, CROSS is the number of branch roads, and the coefficient term is the parameter of
the regression model. The features that have considerable impacts on aggressive driving
behaviors included “straight lane marking,” “shared lane marking at roadside,” and “no
lane marking.” The influences of these features on the driving behavior demonstrated
positive, negative, and positive correlations, respectively. When “p > |z|” < 0.05 held, the
feature significantly affected aggressive behavior.
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Highway Interchange: Four different road features were defined for highways. The
regression analysis results are shown in Figure 8b, where LONG is the length of interchange,
LANE is the lane width, LIMIT is the ramp speed limit, and FLOW is the average daily
traffic volume. The features that had a considerable impact on aggressive driving behaviors
were “speed limit” and “length of interchange.” The influences of these features on driving
behavior showed positive and negative correlations, respectively.

5.3. Discussion

Our approach is mainly divided into two parts: image data extraction and driving
behavior analysis. For the first part, we used open-source traffic and road map data as a
database. We compared it with the driving video and GPS information imported by the
user and used extracted images containing the items required by the user as a data set.
According to a previous method proposed by Naito et al. [11], the method mainly searched
for the driving video itself. It could not be determined whether the images contained
objects or information that was interesting to the users for precise extraction.

The second part involved the analysis of driving behavior. We first used OBD-II
and CANbus loggers to obtain driving data. Unlike the information obtained from GPS
receivers (with GPS messages, vehicle speed, and acceleration), which previous methods
were limited to, the data obtained through OBD-II and CANbus loggers can include
various types of driving data to analyze in more details. The data collected via OBD-II were
comprised of seven types and the data collected by the CANbus logger were comprised of
six types. However, it might be difficult to collect data for some older vehicles. Moreover,
for data preprocessing, we first needed to find the maximum and minimum values of the
data and then scaled the data values into [−1, 1]. Since each driving feature is independent,
different features must be treated separately when doing scaling. The analysis results could
be biased due to sample selections and sensor problems.

We then used the SAE for feature extraction and K-means to identify normal and
aggressive driving behaviors to observe the relationship between the driver and the driving
environment. We also used UAH DriveSet and driving videos to verify that our approach
can indeed find aggressive driving behaviors and specific driving events across a large
volume of driving data. After that, a negative binomial regression analysis was performed
for specific scenarios. Through the analysis results, lane ratios, no lane markings, and
straight lane markings were found to be important features that affect aggressive driving
behavior. Finally, we conducted a case analysis of a single intersection. For the previous
method proposed by Liu et al. [13], various types of sensors connected to a control area
network for driving behavior analysis were used. Although this approach can present
driving behavior in a driving color map, it cannot observe more associations between
driving behavior and roads or other facilities.

Several evaluation metrics can be used to measure the performance of a classifier.
Different applications have different goals for specific evaluation metrics. For the proposed
approach, we used K-means classification to perform binary classification of normal and
aggressive driving behaviors. The most important metric is the accuracy rate, and the
significance of other evaluation metrics is relatively limited. Therefore, the results are
presented with the percentage of correct classifications, and K-means classification can
provide satisfactory classification results.

Traffic improvement suggestions and verification were proposed based on the analysis
of a case study at an intersection. This needs to be verified to prove that the proposal is
effective in reducing aggressive driving behavior. We found intersections with features
similar to the proposed improvements among the existing intersections and collected
driving data and driving videos for verification. The results showed that several traffic
problems are significantly improved. No conflicts between the driving of vehicles and the
passing of pedestrians exist.
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6. Conclusions

We have presented an approach to image data extraction and driving behavior anal-
ysis using geographic information and driving data. We used information derived from
geographic and global positioning systems for image data extraction. Moreover, we used
OBD-II and CANbus loggers to record various types of driving data for driving behavior
analysis. We used data mining algorithms for data analysis and to classify driving behavior
into four categories, ranging from normal to aggressive. We conducted a regression analysis
on the relationship between aggressive driving behavior and road features at intersections.
The results showed that lane ratios, no lane markings, and straight lane markings are
important features that affect aggressive driving behaviors. Finally, traffic improvements
were proposed based on the analysis of a case study at an intersection.

In the future, we will add more, different extraction items for data sets and more,
different drivers and vehicles for a more accurate analysis of driving behavior. Moreover,
for the regression analysis, if more samples are used, the accuracy will be higher. However,
there is no certain approach to determining the adequate sample size. In the proposed
approach, we can obtain good results with at least 20 observations. We will add more
observations for the regression analysis to obtain more accurate results.
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