Enhancing Artifact Protection in Smart Transportation Monitoring Systems via a Porous Structural Triboelectric Nanogenerator
Abstract
:1. Introduction
2. Experimental Section
2.1. Fabrication of the Porous CB/Ecoflex TENG
2.2. Characterization and Measurement
3. Results and Discussion
3.1. Fabrication of the PCE-TENG and Its Characterization
3.2. Working Principle and Fundamental Characteristics of the PCE-TENG
3.3. Optimization of the PCE-TENG
3.4. Mechanical Properties
3.5. Application of the PCE-TENG in the SAMS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bae, C.J.; Douka, K.; Petraglia, M.D. On the origin of modern humans: Asian perspectives. Science 2017, 358, eaai9067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardelean, C.F.; Becerra-Valdivia, L.; Pedersen, M.W.; Schwenninger, J.L.; Oviatt, C.G.; Macias-Quintero, J.I.; Arroyo-Cabrales, J.; Sikora, M.; Ocampo-Diaz, Y.Z.E.; Rubio, C., II; et al. Evidence of human occupation in Mexico around the Last Glacial Maximum. Nature 2020, 584, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Inomata, T.; Triadan, D.; Vazquez Lopez, V.A.; Fernandez-Diaz, J.C.; Omori, T.; Mendez Bauer, M.B.; Garcia Hernandez, M.; Beach, T.; Cagnato, C.; Aoyama, K.; et al. Monumental architecture at Aguada Fenix and the rise of Maya civilization. Nature 2020, 582, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, M.; Li, B.; Lu, R. A transport monitoring system for cultural relics protection based on blockchain and internet of things. J. Cult. Herit. 2021, 50, 106–114. [Google Scholar] [CrossRef]
- Kamba, N.; Wada, H.; Tsukada, M.; Takagi, Y.; Imakita, K. Measurement and Analysis of the Global Transport Environment for Packing Cases for Artifacts. Stud. Conserv. 2013, 53, 60–63. [Google Scholar] [CrossRef]
- Sánchez-Belenguer, C.; Vendrell-Vidal, E.; Sánchez-López, M.; Díaz-Marín, C.; Aura-Castro, E. Automatic Production of Tailored Packaging for Fragile Archaeological Artifacts. J. Comput. Cult. Herit. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Saunders, D. Monitoring shock and vibration during the transportation of paintings. Natl. Gallery Tech. Bull. 1998, 19, 64–73. [Google Scholar]
- Saunders, D.; Sitwell, C.L.; Staniforth, S. Soft Pack-The Soft Option? In Art in Transit: Studies in the Transport of Paintings; Mecklenburg, M.F., Ed.; National Gallery of Art: Washington, DC, USA, 1991; pp. 311–321. [Google Scholar]
- Lasyk, Ł.; Łukomski, M.; Bratasz, Ł.; Kozłowski, R. Vibration as a Hazard during the Transportation of Canvas Paintings. Stud. Conserv. 2013, 53, 64–68. [Google Scholar] [CrossRef]
- Rouillard, V.; Lamb, M.J. On The Performance of Mechanical Shock Indicators. Packag. Technol. Sci. 2017, 30, 257–268. [Google Scholar] [CrossRef]
- Proto, S.; Di Corso, E.; Apiletti, D.; Cagliero, L.; Cerquitelli, T.; Malnati, G.; Mazzucchi, D. REDTag: A Predictive Maintenance Framework for Parcel Delivery Services. IEEE Access 2020, 8, 14953–14964. [Google Scholar] [CrossRef]
- Mehamud, I.; Marklund, P.; Bjorling, M.; Shi, Y.J. Machine condition monitoring enabled by broad range vibration frequency detecting triboelectric nano-generator (TENG)-based vibration sensors. Nano Energy 2022, 98, 107292. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Fu, X.; Lin, Y.; Qi, Y.; Zhou, H.; Zhang, C. Broadband vibration energy powered autonomous wireless frequency monitoring system based on triboelectric nanogenerators. Nano Energy 2022, 98, 107209. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.L. Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator. Joule 2017, 1, 480–521. [Google Scholar] [CrossRef]
- Haroun, A.; Tarek, M.; Mosleh, M.; Ismail, F. Recent Progress on Triboelectric Nanogenerators for Vibration Energy Harvesting and Vibration Sensing. Nanomaterials 2022, 12, 2960. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Yu, W.; Jiang, Y.; Ding, Z.; Zhang, Z.; Zhang, X.; Xie, Y. Triboelectric nanogenerator metamaterials for joint structural vibration mitigation and self-powered structure monitoring. Nano Energy 2022, 103, 107773. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Zhang, N.; Yang, X.; Wang, Z.; Zhao, L.; Yang, W.; Dong, L.; Che, L.; Wang, G.; et al. A self-powered and high sensitivity acceleration sensor with V-Q-a model based on triboelectric nanogenerators (TENGs). Nano Energy 2020, 67, 104228. [Google Scholar] [CrossRef]
- Mu, J.; Han, X.; Yu, J.; Song, J.; He, J.; Geng, W.; Zou, J.; Xian, S.; Chou, X. Magnetic Levitation Type Double Helix Self-Powered Acceleration Sensor Based on ZnO-RTV Film. Adv. Mater. Technol. 2021, 7, 2100802. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Z.; Lin, Z.; Guo, H.; Chun, F.; Yang, W.; Wang, Z.L. All-in-one 3D acceleration sensor based on coded liquid–metal triboelectric nanogenerator for vehicle restraint system. Mater. Today 2021, 43, 37–44. [Google Scholar] [CrossRef]
- Qi, Y.; Kuang, Y.; Liu, Y.; Liu, G.; Zeng, J.; Zhao, J.; Wang, L.; Zhu, M.; Zhang, C. Kirigami-inspired triboelectric nanogenerator as ultra-wide-band vibrational energy harvester and self-powered acceleration sensor. Appl. Energy 2022, 327, 120092. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Y.; Wang, Y.; Lu, X.; Cheng, T.; Bao, G.; Wang, Z.L. Magnetic Flap-Type Difunctional Sensor for Detecting Pneumatic Flow and Liquid Level Based on Triboelectric Nanogenerator. ACS Nano 2020, 14, 5981–5987. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, X.; Wang, Z.; Ren, T.; Long, W.; Cheng, T.; Wang, Z.L. Nonintrusion Monitoring of Droplet Motion State via Liquid-Solid Contact Electrification. ACS Nano 2021, 15, 18557–18565. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.N.Y.; Xu, Z.; Wang, Z.L. Application of Triboelectric Nanogenerator in Fluid Dynamics Sensing: Past and Future. Nanomaterials 2022, 12, 3216. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Choi, D.; Kwon, J.Y.; Choi, D. A self-powered triboelectric microfluidic system for liquid sensing. J. Mater. Chem. A 2018, 6, 14069–14076. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, J.; Xiong, Y.; Wu, S.; Guo, W.; Liu, G.-S.; Sun, Q.; Wang, Z.L. Surface engineering AgNW transparent conductive films for triboelectric nanogenerator and self-powered pressure sensor. Chem. Eng. J. 2023, 462, 142170. [Google Scholar] [CrossRef]
- Ke, K.H.; Chung, C.K. High-Performance Al/PDMS TENG with Novel Complex Morphology of Two-Height Microneedles Array for High-Sensitivity Force-Sensor and Self-Powered Application. Small 2020, 16, e2001209. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.W. Fingerprint-inspired triboelectric nanogenerator with a geometrically asymmetric electrode design for a self-powered dynamic pressure sensor. Nano Energy 2022, 101, 107546. [Google Scholar] [CrossRef]
- Rana, S.M.S.; Rahman, M.T.; Salauddin, M.; Sharma, S.; Maharjan, P.; Bhatta, T.; Cho, H.; Park, C.; Park, J.Y. Electrospun PVDF-TrFE/MXene Nanofiber Mat-Based Triboelectric Nanogenerator for Smart Home Appliances. ACS Appl. Mater. Interfaces 2021, 13, 4955–4967. [Google Scholar] [CrossRef]
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Su, E.; Li, H.; Zhang, J.; Xu, Z.; Chen, B.; Cao, L.N.Y.; Wang, Z.L. Rationally Designed Anti-Glare Panel Arrays as Highway Wind Energy Harvester. Adv. Funct. Mater. 2023, 33, 2214934. [Google Scholar] [CrossRef]
- Deng, Z.; Xu, L.; Qin, H.; Li, X.; Duan, J.; Hou, B.; Wang, Z.L. Rationally Structured Triboelectric Nanogenerator Arrays for Harvesting Water-Current Energy and Self-Powered Sensing. Adv. Mater. 2022, 34, e2205064. [Google Scholar] [CrossRef]
- Guan, Q.; Lu, X.; Chen, Y.; Zhang, H.; Zheng, Y.; Neisiany, R.E.; You, Z. High-Performance Liquid Crystalline Polymer for Intrinsic Fire-Resistant and Flexible Triboelectric Nanogenerators. Adv. Mater. 2022, 34, e2204543. [Google Scholar] [CrossRef] [PubMed]
- Heo, D.; Kim, T.; Yong, H.; Yoo, K.T.; Lee, S. Sustainable oscillating triboelectric nanogenerator as omnidirectional self-powered impact sensor. Nano Energy 2018, 50, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Hou, Y.; Wang, Z.L. Grating-Structured Freestanding Triboelectric Nanogenerator for Self-Powered Acceleration Sensing in Real Time. Adv. Mater. Technol. 2022, 8, 2200746. [Google Scholar] [CrossRef]
- Kou, H.; Wang, H.; Cheng, R.; Liao, Y.; Shi, X.; Luo, J.; Li, D.; Wang, Z.L. Smart Pillow Based on Flexible and Breathable Triboelectric Nanogenerator Arrays for Head Movement Monitoring during Sleep. ACS Appl. Mater. Interfaces 2022, 14, 23998–24007. [Google Scholar] [CrossRef]
- Fan, Y.J.; Meng, X.S.; Li, H.Y.; Kuang, S.Y.; Zhang, L.; Wu, Y.; Wang, Z.L.; Zhu, G. Stretchable Porous Carbon Nanotube-Elastomer Hybrid Nanocomposite for Harvesting Mechanical Energy. Adv. Mater. 2017, 29, 1603115. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, I.; Yun, J.; Kim, D. Liquid-metal embedded sponge-typed triboelectric nanogenerator for omnidirectionally detectable self-powered motion sensor. Nano Energy 2021, 89, 106442. [Google Scholar] [CrossRef]
- Choi, J.H.; Ra, Y.; Cho, S.; La, M.; Park, S.J.; Choi, D. Electrical charge storage effect in carbon based polymer composite for long-term performance enhancement of the triboelectric nanogenerator. Compos. Sci. Technol. 2021, 207, 108680. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Q.; Chao, S.; Liu, R.; Cui, X.; Sun, Y.; Ouyang, H.; Li, Z. Ultrathin Stretchable Triboelectric Nanogenerators Improved by Postcharging Electrode Material. ACS Appl. Mater. Interfaces 2021, 13, 42966–42976. [Google Scholar] [CrossRef]
- Kim, J.; Ryu, H.; Lee, J.H.; Khan, U.; Kwak, S.S.; Yoon, H.J.; Kim, S.W. High Permittivity CaCu3Ti4O12 Particle-Induced Internal Polarization Amplification for High Performance Triboelectric Nanogenerators. Adv. Energy Mater. 2020, 10, 1903524. [Google Scholar] [CrossRef]
- Baytekin, H.T.; Patashinski, A.Z.; Branicki, M.; Baytekin, B.; Soh, S.; Grzybowski, B.A. The mosaic of surface charge in contact electrification. Science 2011, 333, 308–312. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Su, E.; Li, C.; Xu, S.; Tang, W.; Cao, L.N.Y.; Li, D.; Wang, Z.L. Enhancing Artifact Protection in Smart Transportation Monitoring Systems via a Porous Structural Triboelectric Nanogenerator. Electronics 2023, 12, 3031. https://doi.org/10.3390/electronics12143031
Zhang J, Su E, Li C, Xu S, Tang W, Cao LNY, Li D, Wang ZL. Enhancing Artifact Protection in Smart Transportation Monitoring Systems via a Porous Structural Triboelectric Nanogenerator. Electronics. 2023; 12(14):3031. https://doi.org/10.3390/electronics12143031
Chicago/Turabian StyleZhang, Jiabin, Erming Su, Chengyu Li, Shuxing Xu, Wei Tang, Leo N.Y. Cao, Ding Li, and Zhong Lin Wang. 2023. "Enhancing Artifact Protection in Smart Transportation Monitoring Systems via a Porous Structural Triboelectric Nanogenerator" Electronics 12, no. 14: 3031. https://doi.org/10.3390/electronics12143031
APA StyleZhang, J., Su, E., Li, C., Xu, S., Tang, W., Cao, L. N. Y., Li, D., & Wang, Z. L. (2023). Enhancing Artifact Protection in Smart Transportation Monitoring Systems via a Porous Structural Triboelectric Nanogenerator. Electronics, 12(14), 3031. https://doi.org/10.3390/electronics12143031