A Novel Method for Constructing Spatiotemporal Knowledge Graph for Maritime Ship Activities
Abstract
:1. Introduction
2. Research Methods and Materials
2.1. Design of Ontology Rules
2.2. BERT Model
2.3. Lattice-LSTM Structure
2.4. Named Entity Identification and Relation Classification
2.5. Triplet Extractor
3. Experiment
3.1. Datasets and Evaluation Metrics
3.2. Experimental Setup
3.3. Named Entity Recognition Performance Validation of Proposed Model
3.4. Performance Validation of Proposed Model for Relation Extraction
3.5. Performance Validation of Proposed Model for Triplet Extraction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, M.; Shin, S.-H.; Chang, Y.-T. Duration analysis for recurrent ship accidents. Marit. Policy Manag. 2017, 44, 603–622. [Google Scholar] [CrossRef]
- Lv, S. Construction of marine ship automatic identification system data mining platform based on big data. J. Intell. Fuzzy Syst. 2020, 38, 1249–1255. [Google Scholar] [CrossRef]
- Vestre, A.; Bakdi, A.; Vanem, E.; Engelhardtsen, O. AIS-based near-collision database generation and analysis of real collision avoidance manoeuvres. J. Navig. 2021, 74, 985–1008. [Google Scholar] [CrossRef]
- Shan, Y.; Zhou, X.; Liu, S.; Zhang, Y.; Huang, K. SiamFPN: A deep learning method for accurate and real-time maritime ship tracking. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 315–325. [Google Scholar] [CrossRef]
- Kwakye, M.M. Conceptual model and design of semantic trajectory data warehouse. Int. J. Data Warehous. Min. 2020, 16, 108–131. [Google Scholar] [CrossRef]
- Hage, W.R.V.; Malaise, V.; Vries, G.K.D.D.; Schreiber, G.; van Someren, M.W. Abstracting and reasoning over ship trajectories and web data with the Simple Event Model (SEM). Multimed. Tools Appl. 2012, 57, 175–197. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Zhao, Y.; Huang, W.; Liu, C.; Pu, H. Domain knowledge graph-based research progress of knowledge representation. Neural Comput. Appl. 2020, 33, 681–690. [Google Scholar] [CrossRef]
- Shbita, B.; Knoblock, C.A.; Duan, W.; Chiang, Y.Y.; Uhl, J.H.; Leyk, S. Building spatio-temporal knowledge graphs from vectorized topographic historical maps. SWJ 2023, 14, 527–549. [Google Scholar] [CrossRef]
- Isozaki, H.; Kazawa, H. Efficient Support Vector Classifiers for Named Entity Recognition. In Proceedings of the COLING 2002: The 19th International Conference on Computational Lingusitics, Taipei, China, 26–30 August 2002; Association for Computational Linguistics: Stroudsburg, PA, USA, 2002; pp. 1–7. [Google Scholar]
- Bikel, D.M.; Miller, S.; Schwartz, R.; Weischedel, R. Nymble: A High-Performance Learning Name-Finder. In Proceedings of the Fifth Conference on Applied Natural Language Processing, Washington, DC, USA, 31 March–3 April 1997; Association for Computational Linguistics: Washington, DC, USA, 1997; pp. 194–201. [Google Scholar]
- Lafferty, J.D.; Mccallum, A.; Pereira, F.C.N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the 18th International Conference on Machine Learning, San Francisco, CA, USA, 28 June–1 July 2001; Morgan Kaufmann Publishers Inc.: San Mateo, CA, USA, 2001; pp. 282–289. [Google Scholar]
- Ma, X.Z.; Hovy, E. End-to-End Sequence Labeling via Bi-Directional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016; Association for Computational Linguistics: Stroudsburg, PA, USA, 2016; pp. 1064–1074. [Google Scholar]
- Chiu, J.P.C.; Nichols, E. Named entity recognition with bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist. 2016, 4, 357–370. [Google Scholar] [CrossRef]
- Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing (almost) from scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537. [Google Scholar]
- Yan, H.; Sun, Y.; Li, X.N.; Qiu, X.P. An Embarrassingly Easy but Strong Baseline for Nested Named Entity Recognition [J/OL]. (15 September 2022). Available online: https://arxiv.org/abs/2208.04534 (accessed on 20 March 2023).
- Liu, L.Y.; Shang, J.B.; Ren, X.; Xu, F.; Gui, H.; Peng, J.; Han, J. Empower Sequence Labeling with Task-Aware Neural Language Model. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; AAAI Press: Menlo Park, CA, USA, 2018; pp. 5253–5260. [Google Scholar]
- Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF Models for Sequence Tagging [J/OL]. (9 August 2015). Available online: https://arxiv.org/abs/1508.01991 (accessed on 20 March 2023).
- Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural Architectures for Named Entity Recognition. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies Linguistics, San Diego, CA, USA, 12–17 June 2016; pp. 260–270. [Google Scholar]
- Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; Xu, B. Attention-Based Bidirectional Long Short-Term Memory Network for Relation Classification. In Proceedings of the 54th Annual Meeting of the ACL, Berlin, Germany, 7–12 August 2016; Association for Computational Linguistics: Stroudsburg, PA, USA, 2016; pp. 207–212. [Google Scholar]
- Tang, H.; Cao, Y.; Zhang, Z.; Cao, J.; Fang, F.; Wang, S.; Yin, P. HIN: Hierarchical Inference Network for Document-Level Relation Extraction. In Proceedings of the 24th Pacific-Asia Conference, Singapore, 11–14 May 2020; Springer: Cham, Switzerland, 2020; pp. 197–209. [Google Scholar]
- Li, J.; Xu, K.; Li, F.; Fei, H.; Ren, Y.; Ji, D. MRN: A Locally and Globally Mention-Based Reasoning Network for Document-Level Relation Extraction. In Proceedings of the ACL/IJCNLP, Online Event, 1–6 August 2021; pp. 1359–1370. [Google Scholar]
- Su, S.; Qu, J.; Cao, Y.; Li, R.; Wang, G. Adversarial training lattice LSTM for named entity recognition of rail fault texts. IEEE Trans. Intell. Transp. Syst. 2022, 23, 21201–21215. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.L.; Yang, J. Lattice LSTM for Chinese sentence representation. IEEE/ACM Trans. Audio Speech Lang. Process 2020, 28, 1506–1519. [Google Scholar] [CrossRef]
- Lagoze, C.; Hunter, J. The ABC ontology and model. J. Digit. Inf. 2001, 79, 160–176. [Google Scholar]
- Hage, W.R.V.; Malaisé, V.; Segers, R.; Hollink, L.; Schreiber, G. Design and use of the Simple Event Model (SEM). J. Web. Semant. 2011, 9, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Zahila, M.N.; Noorhidawati, A.; Yanti Idaya Aspura, M.K. Content extraction of historical Malay manuscripts based on Event Ontology Framework. Appl. Ontol. 2021, 16, 249–275. [Google Scholar] [CrossRef]
- Doerr, M.; Ore, C.E.; Stead, S. The CIDOC Conceptual Reference Model: A New Standard for Knowledge Sharing. In Proceedings of the Tutorials, Posters, Panels, and Industrial Contributions at the 26th International Conference on Conceptual Modelling, Auckland, New Zealand, 5–9 November 2007; pp. 51–56. [Google Scholar]
- Kaneiwa, K.; Iwazume, M.; Fukuda, K. An Upper Ontology for Event Classifications and Relations. In Proceedings of the 20th Australian Joint Conference on Artificial Intelligence, Gold Coast, Australia, 6 December 2007; pp. 394–403. [Google Scholar]
- Vacura, M. Modeling artificial agents’ actions in context—A deontic cognitive event ontology. Appl. Ontol. 2020, 15, 493–527. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, L.; Wu, Y.; Tang, T.; Li, W. Topic detection and tracking based on event ontology. IEEE Access 2020, 8, 98044–98056. [Google Scholar] [CrossRef]
- Li, F.; Du, J.; He, Y.; Song, H.Y.; Madkour, M.; Rao, G.; Xiang, Y.; Luo, Y.; Chen, H.W.; Liu, S.; et al. Time event ontology (TEO): To support semantic representation and reasoning of complex temporal relations of clinical events. J. Am. Med. Inform. Assoc. 2020, 27, 1046–1056. [Google Scholar] [CrossRef]
- Buoncompagni, L.; Kareem, S.Y.; Mastrogiovanni, F. Human activity recognition models in ontology networks. IEEE Trans. Cybern. 2021, 52, 5587–5606. [Google Scholar] [CrossRef]
- Kuptabut, S.; Netisopakul, P. Event extraction using ontology directed semantic grammar. J. Inf. Sci. Eng. 2016, 32, 79–96. [Google Scholar]
- Goy, A.; Magro, D.; Rovera, M. On the role of thematic roles in a historical event ontology. Appl. Ontol. 2018, 13, 19–39. [Google Scholar] [CrossRef]
- Selvam, S.; Balakrishnan, R.; Ramakrishnan, B. Social event detection-A systematic approach using ontology and linked open data with significance to semantic links. Int. Arab J. Inf. Technol. 2018, 15, 729–738. [Google Scholar]
- Devlin, Q.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. Available online: https://arxiv.org/abs/1810.04805 (accessed on 20 March 2023).
- Zhang, Z.B.; Wu, S.; Jiang, D.W.; Chen, G. BERT-JAM: Maximizing the utilization of BERT for neural machine translation. Neurocomputing 2021, 460, 84–94. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.S.; Hu, C.H.; Zhang, J.X. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Erk, K.; Smith, N.A. Attention Based Bidirectional Long Short-Term Memory Networks for Relation Classification. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 207–212. [Google Scholar]
Relation | Subject(s) | Object(s) |
---|---|---|
sam: hasEvent | Process | Event |
sam: has Actor | Process | Actor |
Event | Actor | |
Action | Actor | |
sam: hasPlace | Process | Place |
Event | Place | |
Action | Place | |
sam: hasTime | Process | Time |
Event | Time | |
Action | Time | |
sam: has Action | Event | Action |
sam: cause | Event | Event |
sam: followed | Action | Action |
Model | Precision | Recall | F1-Measure |
---|---|---|---|
LSTM-CRF | 78.15 | 77.07 | 77.61 |
BiLSTM-CRF | 82.15 | 79.66 | 80.89 |
BERT-LSTM-CRF | 90.68 | 88.64 | 89.65 |
BERT-BiLSTM-CRF | 93.38 | 91.55 | 92.46 |
BERT-Lattice-LSTM-CRF | 96.04 | 95.30 | 95.67 |
Model | Process | Event | Actor | Place | Time | Action |
---|---|---|---|---|---|---|
LSTM-CRF | 76.84 | 79.21 | 80.22 | 75.66 | 77.24 | 76.49 |
BiLSTM-CRF | 81.19 | 79.38 | 82.16 | 82.33 | 79.14 | 81.14 |
BERT-LSTM-CRF | 88.60 | 87.98 | 91.33 | 92.18 | 88.54 | 89.27 |
BERT-BiLSTM-CRF | 94.11 | 90.36 | 94.30 | 91.26 | 90.84 | 93.89 |
BERT-Lattice-LSTM-CRF | 95.16 | 95.98 | 95.06 | 96.81 | 96.21 | 94.80 |
Model | Precision | Recall | F1-Measure |
---|---|---|---|
LSTM-RC | 72.55 | 74.69 | 73.60 |
BiLSTM-RC | 78.24 | 79.16 | 78.70 |
BERT-LSTM-RC | 86.86 | 83.64 | 85.22 |
BERT-BiLSTM-RC | 91.22 | 92.37 | 91.79 |
BERT-Lattice-LSTM-RC | 95.89 | 96.03 | 95.96 |
Model | has- Event | has- Actor | has- Place | hasTime | has- Action | Cause | Followed |
---|---|---|---|---|---|---|---|
LSTM-RC | 72.05 | 72.88 | 73.41 | 71.61 | 73.87 | 75.23 | 76.15 |
BiLSTM-RC | 76.91 | 75.27 | 78.16 | 79.22 | 76.92 | 81.14 | 83.28 |
BERT-LSTM-RC | 86.20 | 85.89 | 82.69 | 84.37 | 85.10 | 86.13 | 86.16 |
BERT-BiLSTM-RC | 90.21 | 91.38 | 91.37 | 89.72 | 90.84 | 95.30 | 93.71 |
BERT-Lattice-LSTM-RC | 94.18 | 94.55 | 95.31 | 95.77 | 96.01 | 98.13 | 97.77 |
Model | Precision | Recall | F1-Measure |
---|---|---|---|
LSTM-CRF-RC | 56.70 | 57.56 | 57.13 |
BiLSTM-CRF-RC | 64.27 | 63.06 | 63.66 |
BERT-LSTM-CRF-RC | 78.76 | 74.14 | 76.38 |
BERT-BiLSTM-CRF-RC | 85.18 | 84.56 | 84.87 |
BERT-Lattice-LSTM-CRF-RC | 92.09 | 91.51 | 91.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, C.; Zhang, L.; Zhong, Z. A Novel Method for Constructing Spatiotemporal Knowledge Graph for Maritime Ship Activities. Electronics 2023, 12, 3205. https://doi.org/10.3390/electronics12153205
Xie C, Zhang L, Zhong Z. A Novel Method for Constructing Spatiotemporal Knowledge Graph for Maritime Ship Activities. Electronics. 2023; 12(15):3205. https://doi.org/10.3390/electronics12153205
Chicago/Turabian StyleXie, Cunxiang, Limin Zhang, and Zhaogen Zhong. 2023. "A Novel Method for Constructing Spatiotemporal Knowledge Graph for Maritime Ship Activities" Electronics 12, no. 15: 3205. https://doi.org/10.3390/electronics12153205
APA StyleXie, C., Zhang, L., & Zhong, Z. (2023). A Novel Method for Constructing Spatiotemporal Knowledge Graph for Maritime Ship Activities. Electronics, 12(15), 3205. https://doi.org/10.3390/electronics12153205