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Abstract: Smoking and calling are two typical behaviors involved in public and industrial safety
that usually need to be strictly monitored and even prohibited on many occasions. To resolve the
problems of missed detection and false detection in the existing traditional and deep-learning-based
behavior-recognition methods, an intelligent recognition method using a multi-task YOLOv4 (MT-
YOLOv4) network combined with behavioral priors is proposed. The original YOLOv4 is taken as
the baseline network to be improved in the proposed method. Firstly, a K-means++ algorithm is used
to re-cluster and optimize the anchor boxes, which are a set of predefined bounding boxes to capture
the scale and aspect ratio of specific objects. Then, the network is divided into two branches with
the same blocks but independent tasks after the shared feature extraction layer of CSPDarknet-53,
i.e., the behavior-detection branch and the object-detection branch, which predict the behaviors and
their related objects respectively from the input image or video frame. Finally, according to the
preliminary predicted results of the two branches, comprehensive reasoning rules are established to
obtain the final behavior-recognition result. A dataset on smoking and calling detection is constructed
for training and testing, and the experimental results indicate that the proposed method has a 6.2%
improvement in recall and a 2.4% improvement in F1 score at the cost of a slight loss in precision
compared to the baseline method; the proposed method achieved the best performance among the
compared methods. It can be deployed to related security surveillance systems for unsafe-behavior
monitoring and early-warning management in practical scenarios.

Keywords: multi-task learning; object detection; behavior recognition; behavioral prior knowledge;
safety surveillance

1. Introduction

Smoking and calling are two kinds of human behaviors that are strictly monitored
and even prohibited in many occasions. In some public and industrial places such as gas
stations, laboratories, libraries, factories, etc., signs prohibiting smoking and calling are
usually posted in plain sight. Furthermore, smoking or calling while driving can even
cause serious traffic accidents. In recent years, with the development of image processing
and computer vision technology, it has become possible to automatically recognize such
specific behaviors from surveillance videos [1–6]. The problems of delays, omissions, and
the high labor costs of playing back the surveillance video for manual judgments can be
overcome by intelligent recognition methods. Traditional behavior-recognition methods
are usually realized by extracting hand-crafted low-level image features or combinations of
image features. Pan et al. [7] combined a Gaussian mixture model and the frame difference
method to detect moving objects from the video, and then used the color feature of smoke
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to detect smoking behavior. Zhang et al. [8] proposed a method to detect the human hand
region based on the combination of CMOG (co-occurrence matrix of oriented gradients)
and HOG (histogram of oriented gradient) features, and then established rules to judge the
behavior of holding a mobile phone. Wu et al. [9] introduced a color-based ratio histogram
analysis method and fused it with GMM (Gaussian mixture model) to propose an algorithm
for the automatic detection of smoking behavior. These traditional methods have achieved
a better real-time performance, but they rely on the algorithm design to extract effective
image features and it is difficult for them to adapt to complex real-world scenes.

With the popularity of deep-learning-based methods, deep convolutional neural
networks have been widely used to extract high-level image features automatically and
intelligently with a stronger representation capability, which has significantly improved
the performance of object detection and recognition in accuracy and generalization ability.
Xiong et al. [10] proposed a deep-learning-based method for recognizing driver’s calling
behavior, which firstly detected and tracked faces in real time to determine candidate
regions, and then detected the phone using a deep convolutional neural network to rec-
ognize the calling behavior. Yang et al. [11] proposed a machine-vision-based algorithm
for identifying dangerous human behaviors in petrochemical scenes and obtained the
final judgment results by fusing the pose-estimation algorithm with the object-detection
algorithm of YOLOv3 (You Only Look Once) [12]. Mao et al. [13] also used the YOLOv3
network to recognize the smoking and calling behaviors through dynamic face detection
and tracking the cropped face parts. Lu et al. [14] fused deformable and dilated residual
blocks with Faster R-CNN (region-based convolutional neural networks) [15] to identify
smoking and calling behaviors. Ye et al. [16] introduced an attention mechanism into the
Xception network to enhance the feature representation capability and achieved a good
performance in the recognition of smoking and calling behaviors. Lu et al. [17] combined
the heat maps with the color image of the driver’s head and hands and then used a method
of keypoint detection to improve the accuracy of driver-behavior recognition. These meth-
ods have utilized the advantages of deep convolutional neural networks and partially used
the relationship between behavior and behavior-related objects such as the face, head, or
hand. However, as single-task learning methods, they fail to fully mine and utilize the
prior knowledge between the behaviors and behavior-related objects. Therefore, there is
still room for improvement.

In recent years, the idea of MTL (multi-task learning) [18–20] based on deep learning
has provided a convenient and effective way to combine information from multiple tasks
and achieved a better performance. Xie et al. [21] proposed a recurrent convolution multi-
task learning model for text classification, which achieved a good performance in text
classification. Zhi et al. [22] used multi-task learning to simultaneously learn similarity
metrics and classification tasks and effectively improved the accuracy of video classification.
Liu et al. [23] proposed a novel multi-task learning architecture that allows end-to-end
learning of task-specific feature-level attention and achieved good results on multiple
datasets. Zhang et al. [24] designed a multi-task object detector to detect ships in synthetic
aperture radar images and demonstrated that it outperformed a single-task learning method
of object detection.

In fact, it is not difficult to conclude that smoking or calling behaviors generally occur
with certain prior conditions [25]. For example, when someone is smoking (or calling),
there are certain position constraints among the face, the hand, and the cigarette (or phone),
and these position constraints also have a certain degree of contribution in judging whether
the smoking (or calling) behavior happens. Based on this inspiration and in order to fully
utilize the behavioral prior knowledge, we propose an intelligent smoking and calling
behavior-recognition method in this paper by combining multi-task learning ideas with
behavioral priors to improve the current popular object-detection network of YOLOv4 [26],
which is helpful to better prevent safety accidents related to these behaviors and to improve
the level of safety management.
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2. Method
2.1. Behavior-Recognition Procedure

In the proposed intelligent recognition method of smoking and calling behaviors, the
input is an image or a frame in a video, and the output is the behavior-recognition result
which is a class label: “smoking”, “calling”, or “normal”, indicating whether the smoking
or calling behavior happens. The behavior-recognition procedure of the proposed method
is shown in Figure 1.

Figure 1. The behavior-recognition procedure of our proposed method.

Considering that the smoking or calling behavior is usually associated with the human
face, a face-detection algorithm is used in our proposed method as a preprocessing step,
which pre-screens images or video frames containing human faces as the effective image
samples and sends them into the subsequent detection network named MT-YOLOv4, i.e.,
our proposed multi-task YOLOv4 network which is modified from the original YOLOv4
network. If no human face is detected, the output result can be directly set as “normal”
which means that no smoking or calling behavior occurs.

For the effective input image preprocessed by face detection in which a human face is
detected, our improved detection network MT-YOLOv4 is designed to utilize the relation-
ship between the candidate behavior and the objects related to the behavior. In contrast to
the original YOLOv4 network, MT-YOLOv4 has two independent detection branches after
the feature-extraction layer: the behavior-detection branch and the object-detection branch.
For a simple design, these two branches have the same blocks as the original YOLOv4
network but perform different detection tasks. The behavior-detection branch is used to
predict the label, confidence, and location information of the behavior (smoking, calling, or
normal behavior). Note that, in order to use the object network like YOLOv4 to detect these
behaviors, we treat the behaviors as “objects”, which correspond to larger image regions
than those of behavior-related objects such as hands, cigarettes, or mobile phones. The
object-detection branch is used to predict the label, confidence, and location information of
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the behavior-related objects (human hand, cigarette, or mobile phone), which is same as
the original YOLOv4 network. Then, with the preliminary prediction results of the two
detection branches, the prior knowledge about the smoking or calling behavior is analyzed,
and a comprehensive set of reasoning rules based on the behavioral priors is established to
further determine whether the behavior happens.

Since the principle of the behavior-detection branch is the same as that of the object-
detection branch, the current popular object-detection networks (such as SSD [27], YOLOv3 [12],
YOLOv4 [26,28]) can all be used. In this paper, the original YOLOv4 network is adopted as
the baseline model, which has the advantages of a small model size, low deployment cost,
high flexibility, fast training speed, and short inference time. In addition, MTCNN [29]
is used as the face-detection algorithm due to its high speed and good performance. In
addition, for the object-detection task using deep-learning neural networks, the network
ideally returns valid objects in a timely manner regardless of the scale of the objects, but the
use of anchor boxes enables a network to detect multiple objects, objects of different scales,
and overlapping objects, and can improve the detection speed and efficiency. Anchor boxes
are a set of predefined bounding boxes of a certain height and width, which are defined to
capture the scale and aspect ratio of specific object classes that we want to detect and are
typically chosen based on object sizes in our training datasets. Therefore, different training
datasets should have different anchor boxes suitable to each dataset. In this paper, the
anchor boxes are re-generated and optimized by the K-means++ [30] algorithm to improve
the performance of behavior and object detection.

2.2. Algorithm Principle of the Proposed MT-YOLOv4

The original YOLOv4 network was proposed in June 2020, representing a single-stage
object-detection network like other YOLO networks. Using the ideas of ResNet [31] and
CSPNet [32], the YOLOv4 network is composed of CSPDarknet53, SPP (spatial pyramid
pooling) [33], and PANet (path aggregation network) [34] in the structure. In the YOLOv4
network, certain shortcut links between layers are set to solve the difficult problem of
optimizing the model when the network is deep, as well as to reduce the calculation and
memory cost. In addition, the strategy of SAT (self-adversarial training) is used to reduce
the risk of overfitting and to improve the generalization ability.

In this paper, a multi-task YOLOv4 (MT-YOLOv4) network is designed based on
the idea of MTL (multi-task learning) so as to make effective use of behavioral priors,
with different handling of the behavior-detection task (e.g., detecting behavior of smoking
or calling) and the behavior-related object detection task (e.g., detecting object of hand,
cigarette or mobile phone). The network structure of MT-YOLOv4 is illustrated in Figure 2.

From Figure 2, it can be seen that the MT-YOLOv4 network consists of 3 parts:
(1) CSPDarknet-53, for extracting the features of the input image; (2) the behavior-detection
branch, for detecting specific behaviors, such as smoking, calling and normal behavior; and
(3) the object-detection branch, for detecting objects related to behaviors, such as the human
hand, cigarette, and mobile phone. It can also be seen that CSPDarknet-53 and the object-
detection branch constitute the original YOLOv4 network. Compared with the original
YOLOv4 network, our proposed MT-YOLOv4 network adds a behavior-detection branch
which is the same as the object-detection branch in the structure, so that the network can
detect behaviors and the related objects simultaneously and independently. The CBL block
consists of layers of convolution, batch normalization (BN), and a leaky ReLU activation
function, while the CBM block consists of layers of convolution, batch normalization, and a
Mish activation function. The RES unit block consists of two CBM blocks and shortcut links,
while the CSPX block consists of CBM blocks and RES unit blocks. SPP uses a max-pooling
of 1 × 1, 5 × 5, 9 × 9, 13 × 13 for multi-scale fusion. The input of the MT-YOLOv4 network
is a three-channel color image with size of 416 × 416 pixels, represented as a tensor of
416 × 416 × 3. The outputs are 3 different scales of detection results and each scale is
assigned 3 anchor boxes with different sizes. Therefore, every cell in the output will predict
3 bounding boxes and each bounding box corresponds to 5 predicted values, i.e., horizontal
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coordinate, vertical coordinate, height, width and confidence. Thus, the dimensions of the
output tensor are S × S × 3 × (5 + C), where S × S is the output scale (i.e., 13 × 13, 26 × 26,
52 × 52) and C is the number of categories which is equal to 3 in this paper.

Figure 2. The network structure of MT-YOLOv4.

3. Model Training and Resulting Reasoning
3.1. Dataset Construction

No public dataset specifically for recognizing smoking and calling behaviors is avail-
able; thus, we construct a new dataset for training the MT-YOLOv4 network. Firstly, we
collect many videos containing smoking or calling behaviors of different people, indoors
and outdoors at different places and times, which increases the diversity of the data. In
addition, the changes in viewpoint and human body posture are taken into consideration.
Then, the MTCNN face-detection algorithm is used for preprocessing every several video
frame to screen for the effective sample images containing human faces, and the coordinates
of the face regions are recorded at the same time. Finally, we label all the collected effective
sample images using LabelMe, a free graphical annotation tool. When labeling a behavior
in the effective sample image, the region that covers the face and behavior-related objects is
selected, and the coordinates of the bounding box and the behavior label, namely “smok-
ing”, “calling”, or “normal”, are recorded. When labeling the behavior-related objects,
we only need to mark the regions of the hands, the cigarettes, or the mobile phones and
record their class labels and bounding box coordinates. Since the face region is already
detected and recorded by the MTCNN during the preprocessing step, it is unnecessary to
label the faces.
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As a result, a total of 10,461 frames are pre-screened from the collected videos
as the training set. The numbers of the labeled behavior samples are 4516 (smoking),
3968 (calling), and 1977 (normal), respectively; the numbers of the labeled behavior-related-
object samples are 9861 (hand), 6197 (cigarette), and 4873 (phone), respectively. In addition,
data augmentation strategies are adopted to further increase the number and complexity
of the samples, such as image scaling, image flipping, random adjustment of brightness,
adding noise, and mosaic, etc.

For performance evaluation, another 1167 testing images are collected from different
videos and webpages, which are also labeled and used as the test set.

It should be noted that for safety considerations, it is difficult to collect actual sample
images from public places such as gas stations and libraries, as well as industrial envi-
ronments such as petrochemical production and coal mining. However, experimental
results have shown that the model trained from the dataset constructed by our method
can accurately recognize smoking and calling behaviors in images collected in various
real-world scenarios without using the strategy of transfer learning.

3.2. Re-Cluster Anchor Boxes by K-Means++

To adapt our proposed model to the new dataset, the K-means++ algorithm is adopted
to re-cluster and optimize all of the annotated boxes in the training set and assign three
anchor boxes for each scale of the output. Since the network has outputs of three scales,
the number of clustering centers is set to nine. Unlike the original K-means algorithm that
randomly selects K points as the initial clustering centers, the optimization strategy of the
K-means++ algorithm is to make the distances between the K initial clustering centers as
far as possible. Therefore, the resultant clustering centers are not affected by the random
initialization of the cluster centers, which ensures that the obtained anchor boxes are more
relevant to the data themselves. The re-clustering steps are as follows:

Step 1: Randomly select a sample from the dataset as the first initial clustering center.
Step 2: Calculate the distance between each sample and the current clustering center

and calculate the probability of the sample becoming the next initial clustering center. Select
the sample with the highest probability as the next initial clustering center.

Step 3: Repeat the previous step until K initial clustering centers are selected, and then
execute the standard K-means algorithm.

For comparison, Table 1 lists the sizes of the original anchor boxes of YOLOv4 and the
optimized anchor boxes obtained by using the K-means++ re-clustering algorithm.

Table 1. Comparison of the size of the original and the re-clustered anchor boxes.

Output Scale Receptive Field Original Anchor
Box Size

Re-Clustered Anchor
Box Size

13 × 13 Large
459 × 401 338 × 217
192 × 243 314 × 180
142 × 110 271 × 141

26 × 26 Medium
72 × 146 128 × 65
76 × 55 91 × 61
36 × 75 64 × 60

52 × 52 Small
40 × 28 47 × 14
19 × 36 33 × 52
12 × 16 20 × 13

As shown in Table 1, the differences between the re-clustered anchor boxes and the
original anchor boxes are significant, no matter the output scale or receptive field. The
re-clustered anchor boxes are more suitable to capture the scale and aspect ratio of the
specific object classes we want to detect because they are trained using the samples in our
dataset. The performance comparison will be further analyzed in the experimental section.



Electronics 2023, 12, 3225 7 of 15

3.3. Loss Function for Network Training

Similar to the original YOLOv4 algorithm, the total loss function (Loss ) used for
training the MT-YOLOv4 model includes the bounding box position loss (LCIoU), the
confidence loss (Lconfidence ), and the classification loss (Lclass ). It can be represented by the
following formula:

Loss = LCIoU + Lconfidence + Lclass (1)

LCIou = 1− IoU +
d2

c2 + αν (2)

Lconfidence =
S2

∑
i=0

B

∑
j=0

K[− log(p) + BCE(n̂, n)] (3)

Lclass =
S2

∑
i=0

B

∑
j=0

1noobj
i,j [− log(1− pc)] (4)

In above formula, IoU is the ratio of the intersection over the union between the predicted
bounding box and the ground-truth bounding box, c and d are the center distance and the

diagonal distance of the two bounding boxes, respectively. ν = 4
π2

(
arctan wgt

hgt − arctan w
h

)2
,

α = ν
(1−IoU)+ν

. wgt and hgt are the width and height of the ground-truth bounding box,
and w and h are the width and the height of the predicted bounding box. S is the number of
grids, B is the number of anchor boxes for each grid, and K = 1obj

i,j represents the weight. If
there is an object in the j-th anchor box of the i-th grid, its value is 1; otherwise, it is 0. The
cross-entropy loss is represented as BCE(n̂, n) = −n̂ log(n)− (1− n̂) log(1− n), where n̂
and n are the ground-truth class label and the predicted class label for the j-th anchor box in
the i-th grid, respectively. p represents the probability that the detection result corresponds
to the correct category label.

3.4. Reasoning by Combining the Predicted Results of MT-YOLOv4 and the Behavioral Priors

The variability and complexity of behavioral performance make it difficult to design
a unified standard method for labeling the training sample images of behaviors, because
behavioral performance is susceptible to many subjective factors. In addition, there are
certain types of interference in complex image backgrounds. Therefore, the preliminary
predicted results of the behavior-detection branch of the MT-YOLOv4 network will have
the problems of missed detection or false detection.

Therefore, the proposed method in this paper combines the behavior-branch prediction
results with the prior knowledge of the behavior and establishes the reasoning rules to
obtain the final result. Firstly, the face region is detected using the MTCNN face-detection
algorithm, and the behavior bounding box predicted by the MT-YOLOv4 network should
cover the face region. Secondly, there are constraints on the positions of the face, hand, and
object (cigarette or mobile phone) when someone is smoking or calling.

We use Dist( f ace, cigarette), Dist( f ace, phone), and Dist( f ace, hand) to represent the
distance between the face and the object of the cigarette, mobile phone, and human hand,
where the distance is defined as the distance between the center points of the bounding
boxes. At the same time, we take the length of the face bounding box, Len( f ace), as the
reference distance to adapt to the scale change in the actual images. For a candidate
behavior of smoking or calling, the following three rules about confidence in the occurrence
of the behavior are established:

(1) When Dist( f ace, cigarette) ≤ a′ · Len( f ace), the confidence increases by p1;
(2) When Dist( f ace, phone) ≤ b′ · Len( f ace), the confidence increases by p2;
(3) When Dist( f ace, hand) ≤ c′ · Len( f ace), the confidence increases by p3.
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In above rules, p1, p2, p3 can be manually set to a value ranging from 0 to 1 according
to the contribution of the rule to the judgment of the behavior, a′, b′, c′ can be obtained
through a statistical analysis as follows.

For each training sample image, we first calculate the following three ratios based on
its labeling information and detected face information:

a =
Dist( f ace, cigarette)

Len( f ace)
, b =

Dist( f ace, phone)
Len( f ace)

, c =
Dist( f ace, hand)

Len( f ace)
(5)

The original ratio values of a, b, c cannot be directly used to calculate their means
and variances because certain outliers need to be filtered out. However, the outliers are
inherently irregular and difficult to find by statistical methods such as means and variances.
Therefore, the distribution map of these ratio values is taken as an effective and intuitive
tool to discriminate the outliers and the inliers. The distribution of the ratio values of all
samples is shown in Figure 3.

Figure 3. The distribution of the ratio values a, b and c.



Electronics 2023, 12, 3225 9 of 15

From Figure 3, it can be seen that the ratio value corresponding to a certain behavior
has shown a certain regularity in its distribution. A few points farther from the majority
can be regarded as outliers due to the diversity of the training sample images. It is obvious
that we can eliminate the effects of these outliers by excluding such points with a ratio
value greater than four. The choice of four as the threshold is based on what is shown
in Figure 3. Note that, this threshold does not need to be too precise, and it can be seen
that a smaller one (e.g., 3.7) or a larger one (e.g., 4.3) has little effect according to the point
distribution in Figure 3. Thus, the means and variances of the inliers can be calculated by
the following equations:

xa =

na
∑

i=1
xai

na
, xb =

nb
∑

i=1
xbi

nb
, xc =

nc
∑

i=1
xci

nc
(xai, xbi, xci ≤ 4) (6)

σa
2 =

na
∑

i=1
(xa − xai)

2

na
, σb

2 =

nb
∑

i=1
(xb − xbi)

2

nb
, σc

2 =

nc
∑

i=1
(xc − xci)

2

nc
(xai, xbi, xci ≤ 4) (7)

According to the central limit theorem, suppose that random variables {Xn} are
independently equally distributed, and the mathematical expectation and variance are
finite values: E(X) = µ, D(X) = σ2 > 0. When n is large enough, its mean value
approximately follows a normal distribution:

lim
n→∞

P(
Xn − µ

σ/
√

n
< a) = Φ(a) =

a∫
−∞

1√
2π

e−t2/2dt (8)

According to the frequency distribution law in the normal distribution, a′, b′, c′ can be
set as:

a′ = xa + 3σa, b′ = xb + 3σb, c′ = xc + 3σc (9)

Thus, we can guarantee the validity of the distance priori information in the labeled
training samples with a high probability. Calculated with the specific data, we obtain
a′ = 1.3, b′ = 1.4, and c′ = 2.4. If the training samples are changed, these parameters can
be re-calculated in the same way.

When judging whether a certain behavior happens in an input image, we produce a
comprehensive reasoning and analysis by combining with the preliminary predicted results
of the MT-YOLOv4 network and the prior knowledge of the behavior. First, the confidence
of a behavior p0 is obtained according to the results predicted by the behavior-detection
branch of MT-YOLOv4. Then, with the results predicted by the object-detection branch of
MT-YOLOv4 and according to the above three rules, the increase in the confidence of the
behavior corresponding to one rule can be determined:

∆pi =

{
pi, i f Rule i is satis f ied
0, otherwise

(10)

Therefore, the summary increase in confidence corresponding to the three rules is
3
∑

i=1
∆pi, and the final confidence of the behavior is:

p = min

(
p0 +

3

∑
i=1

∆pi, 1

)
(11)

In Equation (11), min(·) represents the operation to find the minimum which ensures
that the value of the confidence cannot be larger than one. According to the degree of
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contribution for the above-mentioned three rules to judge whether a smoking or calling
behavior happens, we set the parameters as p1 = 0.5, p2 = 0.4 and p3 = 0.1.

Letting T be the confidence threshold that indicates the occurrence of the behavior, the
rule for exactly determining whether the behavior occurs are as follows:{

behavior occurs, i f p > T
behavior doesnotoccur, otherwise

(12)

Note that T is set to 0.8 in this paper to ensure the reliability of the final recognition result.

4. Experiments
4.1. Experimental Setting and Performance Metrics

Experiments are conducted with Keras deep learning framework on the Windows
platform. The network models are trained with NVIDIA Quadro GP100 16 GB GPU using
CUDA 10.0 and cuDNN 7.6.5. Adam is adopted as the optimizer, and the learning rate is
initialized to 0.001 and adjusted dynamically by the method of cosine annealing, which is
beneficial to achieve the global optimal solution during the training process.

Firstly, only the last layer of the network is unfrozen and trained for 50 epochs in a
method of transfer learning for fine-tuning. Then, all of the layers are unfrozen and trained
for another 50 epochs to obtain the final network model. The loss curves of the network
training are illustrated in Figure 4, with the training epoch number in the horizontal
coordinate and the loss value in the vertical coordinate. The blue solid line and the orange
dotted line represent the loss curves for the object-detection branch and the behavior-
detection branch, respectively. It can be seen that both of them are converged within
100 epochs, and the best model among those in the 100 epochs is adopted for inference.

Figure 4. The loss curves of network training.

P (precision), R (recall) and F1 (F1 score) are always used as the evaluation criteria for
object detection and recognition tasks, which are defined as:

P =
TP

TP + FP
(13)
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R =
TP

TP + FN
(14)

F1 = 2× P× R
P + R

(15)

where TP is the number of positive samples to be correctly predicted, FP is the number of
negative samples to be predicted as positive, and FN is the number of positive samples
predicted as negative. For the task of behavior recognition, more attention should be paid
to recall than precision. In addition, F1 score is the harmonic mean of precision and recall,
reflecting the balance between precision and recall. Generally speaking, a higher recall may
come at the expense of a degree of precision loss. Therefore, we choose recall and F1 score
as the performance metrics.

4.2. Ablation Experiment

This ablation experiment is carried out to verify the effectiveness of the strategies of
re-clustering anchor boxes and using behavioral priors for behavior recognition. We take an
additional 1167 images as the test set which are labeled in advance and used as a reference,
i.e., ground truth for calculating related performance metrics. The results of the ablation
experiments are shown in Table 2.

Table 2. The results of ablation experiments.

Using Re-Clustered
Anchor Boxes

Using Behavioral
Priors P (%) R (%) F1 (%)

No No 86.9 83.4 85.1
Yes No 87.9 84.7 86.3
No Yes 86.5 87.9 87.2
Yes Yes 85.5 89.6 87.5

As shown in Table 2, the method of using re-clustered anchor boxes results in an
improvement of 1.3% in the recall rate and an improvement of 1.2% in the F1 score compared
with the original YOLOv4 method. The reason is that the new anchor boxes re-clustered
from our new dataset are more suitable for the behavior-detection task. In addition,
the method of using behavioral priors results in an improvement of 4.5% in the recall
rate and an improvement of 2.1% in the F1 score compared with the original YOLOv4
method. When using re-clustered anchor boxes, there is a 4.9% improvement in recall
and a 1.2% improvement in the F1 score by using behavioral priors. The main reason
is that the reasoning rules established by behavioral priors comprehensively utilize the
information generated by the two branches of behavior detection and object detection in
the MT-YOLOv4 network, rather than relying on the behavior-detection result alone. In
total, the proposed method in this paper uses the strategies of re-clustering anchor boxes
and using behavioral priors and leads to a great improvement in performance, that is, an
improvement of 6.2% in recall and 2.4% in the F1 score.

4.3. Comparative Experiments with Other Deep Networks

In order to show the advantages of the method proposed in this paper, MT-YOLOv4 is
compared with other three typical deep-learning-based detection networks: SSD, YOLOv3,
and YOLOv4. These detection networks have been applied in some of the existing behavior-
recognition methods as described in Refs. [12,13]. The experimental results are illustrated
in Table 3.
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Table 3. The comparison of behavior-recognition results using different detection networks.

Detection Network P (%) R (%) F1 (%)

SSD 92.1 75.2 82.8
YOLOv3 93.5 76.1 83.9
YOLOv4 86.9 83.4 85.1

MT-YOLOv4 (the proposed method) 85.5 89.6 87.5

As can be seen from Table 3, the original YOLOv4 network outperforms the SSD
and YOLOv3 network, and the proposed method has achieved the highest recall and F1
score. Although the precision rate is slightly reduced compared with the original YOLOv4
network, the recall rate increases from 83.4% to 89.6%, and the F1 score increases from
85.1% to 87.5%. For the behavior-recognition task in the field of security surveillance,
recall is a more crucial assessment criterion. Therefore, the proposed method is the most
effective among the compared methods. The main reason lies in the fact that the different
detection tasks carried out by our MT-YOLOv4 network make beneficial contributions
to the behavior-recognition performance by combining the advantages of deep-learning
methods and behavioral priors.

4.4. Examples of Behavior-Recognition Results

To intuitively demonstrate the effectiveness of the proposed method, Figure 5 shows
the recognition results of two groups of test samples for behavior recognition before and
after using behavioral priors for reasoning. Figure 5a,c show the original recognition
results without using behavioral priors, which are only based on the predicted results
of the behavior-detection branch of the MT-YOLOv4 network. It can be seen that the
smoking behavior in Figure 5a is not recognized, and the smoking behavior in Figure 5c is
misrecognized as a calling behavior. Correspondingly, Figure 5b,d show the recognition
results after using behavioral priors. By utilizing the predicted results of the behavior-
detection branch and the object-detection branch of the MT-YOLOv4 network together
and combining them with behavioral priors for reasoning, the smoking behaviors in both
figures are accurately recognized.

Figure 5. Examples of the comparison of the recognition results before and after using behavioral priors.
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To further verify the practicability of the proposed method, certain typical real-world
images are collected from webpages for testing. Related real scenarios include gas stations,
libraries, coal mines, airplanes, and cars. For the sake of fairness, the collected images
are not in our self-built dataset; that is, they have not been used in the model training
and the above testing experiments. As shown in Figure 6, our proposed method has
accurately recognized the smoking or calling behavior in each scene image, indicating that
the proposed method has a good generalizability. Therefore, it can be deployed to safety
surveillance systems for monitoring and preventing unsafe human behaviors.

Figure 6. Examples of smoking and calling recognition in practical scenarios. The source images are
collected from webpages.

5. Conclusions

To meet the needs of safety surveillance, we propose a new intelligent method to
simultaneously recognize smoking and calling behaviors. The existing traditional and deep-
learning-based behavior-recognition methods cannot make full use of prior knowledge,
resulting in the problems of missed detection and false detection. By combining deep
learning and behavioral priors, our method significantly improves the effectiveness of
behavior recognition and can be used for safety monitoring and accident prevention in
practical scenarios. In order to make full use of the behavioral priors, the original single-
task YOLOv4 network is improved into multi-task YOLOv4 (MT-YOLOv4) network. After
the CSPDarknet-53 layer, the network is divided into two branches: behavior detection
and object detection, with the same blocks but independent tasks. K-means++ is used
to re-cluster the anchor boxes, which further improves the performance. In order to
make full use of behavioral priors, the reasoning rules suitable for smoking and calling
behavior-recognition tasks are established, and a method based on statistical theory for
solving required parameters is presented. A new dataset for smoking and calling behavior
recognition is constructed which consists of tens of thousands of images for model training
and testing. The trained model also has an outstanding performance when applied to
images in actual scenes, which shows the practical value of the proposed method.

One limitation of the proposed method is that it depends on a face-detection algorithm
as a preprocessing step, so it is not applicable to cases where the face-detection algorithm
cannot detect the face due to the large variation in imaging conditions, such as illumination
and viewpoint. For example, the face is difficult to detect when photographed from the
side or behind. Another limitation is that there are several empirical parameters when
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reasoning with the behavioral priors. These parameters are generally set according to the
contribution of behavioral priors for the occurrence of smoking or calling.

Therefore, one future research direction is to replace face detection with head detec-
tion, because the head-detection task is not affected by the direction of imaging. Image-
enhancement methods [35,36] can be used to improve the quality of the input image to
achieve a better performance in head detection. In addition, recent state-of-the-art con-
volutional neural networks such as YOLOv7, YOLOv7v8, and NAS architectures can
be considered as an alternative to YOLOv4. Furthermore, we can try to put the prior
knowledge of behaviors into the design of loss functions and train a new end-to-end
behavior-recognition model which directly combines convolutional neural networks and
behavioral priors and can avoid the problem of setting empirical parameters.
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