i:;l?é electronics

Article

Deep Reinforcement Learning for Dynamic Twin Automated
Stacking Cranes Scheduling Problem

Xin Jin, Nan Mi, Wen Song *

check for
updates

Citation: Jin, X.; Mi, N.; Song, W.; Li,
Q. Deep Reinforcement Learning for
Dynamic Twin Automated Stacking
Cranes Scheduling Problem.
Electronics 2023, 12, 3288. https://
doi.org/10.3390/ electronics12153288

Academic Editors: Tianfei Zhou,

Xiankai Lu and Wenguan Wang

Received: 6 July 2023
Revised: 26 July 2023
Accepted: 29 July 2023
Published: 31 July 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Qiqiang Li *

Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
201820627@mail.sdu.edu.cn (X.].); 201916207@mail.sdu.edu.cn (N.M.)
* Correspondence: wensong@email.sdu.edu.cn (W.S.); qqli@sdu.edu.cn (Q.L.)

Abstract: Effective dynamic scheduling of twin Automated Stacking Cranes (ASCs) is essential for
improving the efficiency of automated storage yards. While Deep Reinforcement Learning (DRL) has
shown promise in a variety of scheduling problems, the dynamic twin ASCs scheduling problem is
challenging owing to its unique attributes, including the dynamic arrival of containers, sequence-
dependent setup and potential ASC interference. A novel DRL method is proposed in this paper
to minimize the ASC run time and traffic congestion in the yard. Considering the information
interference from ineligible containers, dynamic masked self-attention (DMA) is designed to capture
the location-related relationship between containers. Additionally, we propose local information
complementary attention (LICA) to supplement congestion-related information for decision mak-
ing. The embeddings grasped by the LICA-DMA neural architecture can effectively represent the
system state. Extensive experiments show that the agent can learn high-quality scheduling policies.
Compared with rule-based heuristics, the learned policies have significantly better performance with
reasonable time costs. The policies also exhibit impressive generalization ability in unseen scenarios
with various scales or distributions.

Keywords: automated stacking crane (ASC); dynamic scheduling; self-attention; deep reinforcement
learning (DRL)

1. Introduction

In smart cities, intelligent transportation systems (ITSs) are highly anticipated to
improve transportation efficiency and promote sustainable transportation development [1].
For port cities, the rapid growth in container logistics has brought great challenges to
the throughput and operation efficiency of container terminals. With the advancement of
the Internet of Things (IoT), Automated Container Terminals (ACTs) have emerged as a
popular way to address the aforementioned issue. ACTs have not only become a research
hot topic in academia [2] but have also been implemented in several ports, such as Qingdao
Port and Yangshan port in Shanghai. As the starting point of the loading operation and the
end point of the unloading operation, the storage yard is critical to the handling efficiency
of ACTs [3]. Automated Stacking Cranes (ASCs) are the most important equipment in the
yard. Therefore, effective ASC scheduling is of great importance for improving the terminal
operational efficiency. Meanwhile, energy consumption can be reduced by optimizing the
run time of ASCs.

An automated storage yard often consists of several blocks. Each block contains a
number of bays for container storage and is equipped with two ASCs (called twin ASCs)
to move containers. In this paper, we consider the scheduling of twin ASCs in one block.
Most existing works consider twin ASCs scheduling as a static problem. However, in
reality, the containers often arrive dynamically due to the uncertain arrival of vessels and
the scheduling of previous operations before storage in the yard, such as the unloading se-
quence of quay cranes (QCs) [4] and dispatching of Automated Guided Vehicles (AGVs) [5].

Electronics 2023, 12, 3288. https://doi.org/10.3390/ electronics12153288

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153288
https://doi.org/10.3390/electronics12153288
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7624-1861
https://doi.org/10.3390/electronics12153288
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153288?type=check_update&version=1

Electronics 2023, 12, 3288

20f22

Therefore, we consider a more realistic twin ASCs scheduling problem with dynamic
container arrival, which brings the challenge of uncertainty. In such cases, the limited infor-
mation with regard to containers is not enough for Mathematical Programming (MP) to
construct the entire set of constraints, and the incomplete task information cannot support
meta-heuristics in order to explore the entire operation process. In addition, considering
the NP-hardness of the problem, none of the previous methods can effectively handle a
dynamic environment, which requires a real-time response [6]. In reality, such dynamic
scheduling problems are often solved by rule-based heuristics. However, existing schedul-
ing rules are mostly designed based on human intuition; hence, the quality of solutions
is severely limited by their greedy nature and the lack of comprehensive observation of
system information.

Essentially, the dynamic twin ASCs scheduling problem can be considered as a variant
of the Dynamic Job-shop Scheduling Problem (DJSP). The container handling tasks and
ASCs can be regarded as the jobs and machines, respectively. The dynamic attribute is the
dynamic arrival of import containers. Recently, motivated by its impressive advancements
in Reinforcement Learning (RL) [7,8] and Deep Neural Networks (DNN) [9], DRL has been
employed to solve NP-hard combinatorial optimization problems [10] such as the JSP and
the traveling salesman problem (TSP) [11]. In DRL, the complex computation in traditional
methods is displaced by elaborated DNN, which endows the agent with high-quality
solutions and millisecond inference speed. Therefore, DRL has great potential in tackling
dynamic scheduling problems. However, the dynamic twin ASCs scheduling problem is
distinguished from standard JSP by its unique characteristics that cannot be handled by
existing DRL-based methods. Firstly, before handling a container, the ASC must move to
the position of the container from the end point of its previous handling. The time for such
movement (known as setup time) depends on the handling sequence. Hence, location-
related information is critical in minimizing the run time of ASCs. Secondly, the dynamic
arrival of import containers could cause severe congestion in ACT. Hence, it is important
to capture the congestion-related information by analyzing the sequential information of
dynamic containers. As a result, the agent needs to learn the location-related information
and congestion-related information—which have different semantics and require different
neural structures—simultaneously. Such multi-aspect learning is challenging for existing
DRL-based scheduling methods.

In this paper, we propose an end-to-end DRL to automatically learn effective heuris-
tics for solving the dynamic twin ASCs scheduling problem. Compared with rule-based
heuristics, the learned policies have noticeably better scheduling performance with
similar time costs. Specifically, we first propose a Markov Decision Process (MDP) model
to simulate the dynamic handling process of a block with twin ASCs. Based on the MDP
model, a novel neural structure is proposed to map the observation to a scheduling
policy. In particular, we propose the dynamic masked self-attention (DMA) mechanism
to grasp location-related information between containers while dealing with information
interference caused by ineligible containers. Further, we propose local information
complementary attention (LICA) to extract the congestion-related information of im-
port containers and fuse it with the location-related information. Finally, we design a
size-agnostic policy network to calculate the distribution over action spaces of variable
size. Benefiting from the size-agnostic property, the trained agent can be generalized
to handle problems of varying scales (i.e., the number of containers). We train the pro-
posed network using Proximal Policy Optimization (PPO) [12]. Extensive experiments
show that the learned policies perform remarkably well on problems of various scales.
Moreover, the learned policies exhibit strong generalization performance on instances
with various scales or different distributions.

The main contributions of this study are listed as follows:

Electronics 2023, 12, 3288

30f22

1. The DRL method is introduced to the dynamic twin ASCs scheduling problem for the
first time. The millisecond decision time, outstanding scheduling performance and
robust generalization capability are extremely promising for dynamic scheduling in
real scenarios.

2. We propose a novel MDP model for the dynamic scheduling problem, which compre-
hensively simulates the dynamic handling process in the container block.

3. We propose a novel attention mechanism, DMA, which can automatically ignore
information interference and grasp pairwise location relationships between containers.

4. We propose a novel attention-based framework, LICA, which complements the con-
tainer feature embeddings extracted by DMA with congestion-related information.

The remainder of this paper proceeds as follows: Section 2 summarizes relevant
works. The research problem is formally described in Section 3. Section 4 describes the
proposed neural structure and DRL method in detail. The comparative experiment results
are presented and discussed in Section 5. Lastly, Section 6 concludes the paper.

2. Literature Review

In this section, we briefly review the twin ASCs scheduling methods and DRL-based
scheduling methods.

2.1. Twin ASCs Scheduling Approaches

The twin ASCs scheduling problem has drawn more attention recently due to its
critical impact on ACT operational efficiency. Through handshake operations, the twin
ASCs achieve effective collaborative container handling. To facilitate this collaboration,
a handshake area is introduced. The effect of the handshake area on operation efficiency
and the performance of scheduling rules are discussed by Gharehgozli et al. [13]. In
order to address the issue of twin ASCs interference in a block, Carlo et al. [14]
presented and tested 14 priority scheduling rules. To improve the efficiency of storing
imported containers, Briskorn et al. [15] developed two meta-heuristics to minimize the
makespan. Han et al. [16] comprehensively formulated twin ASCs handling processes
and proposed MP and Genetic Algorithm (GA) to minimize the makespan. Oladugba
et al. [17] reformulated the twin yard crane scheduling problem in [16] and proposed a
new heuristic, a modified Johnson algorithm, to solve it.

More recently, several articles have attempted to consider dynamic properties of the
ASCs scheduling problem. Jaehn and Kress et al. [18,19] investigated twin ASCs scheduling
scenarios in which inbound containers arrive in a sequential order. For this problem, they
propose several scheduling rules, a dynamic programming (DP) algorithm and a related
beam search heuristic to minimize the dwell time of the vessel. For a similar problem,
Lu et al. [20] propose a particle swarm optimization algorithm (PSO) based on a graph
theory model to optimize ASC run time and the waiting time of AGVs. Zheng et al. [21]
investigated the twin ASCs scheduling problem with dynamic processing time. They
calculate the dynamic processing time for each task and use proposed heuristics and GA
to minimize the largest tardiness. However, the dynamic attributes in these studies are
deterministic and known, so they are still a type of static scheduling problem [22].

While cooperative scheduling of twin ASCs has been widely studied, none of the
traditional methods can effectively address the dynamic twin ASCs scheduling problem.
Considering the non-negligible computation time and the NP-hardness of the dynamic twin
ASCs scheduling problem, MP methods and meta-heuristics have difficulty achieving high-
quality solutions within the constrained time. simultaneously Rule-based heuristics may
not produce satisfactory solutions due to their greedy nature and the lack of comprehensive
observation of system information.

2.2. DRL Methods for Scheduling Problems

DRL-based methods are more promising than traditional methods in solving complex
scheduling problems due to their low reliance on human experience and fast solving speed

Electronics 2023, 12, 3288

4 0f22

(after training). Recently, DRL has been employed to solve various scheduling problems
such as permutation flow-shop [23], hybrid flow-shop [24] and flexible job-shop [25]. In
particular, JSP has drawn much attention in DRL research as a well-known and standardized
scheduling problem. Lin et al. [26] propose a deep Q network to choose rules for addressing
the JSP under the smart factory framework. To overcome the performance limitation
caused by scheduling rules, Zhang et al. [27] propose an end-to-end DRL method that is
based on Graph Neural Networks (GNNs) [28] to explore the space of dispatching rules
for JSP. Park et al. [29] take a similar idea and propose a GNN-based DRL to solve JSP.
Furthermore, they propose a multi-agent scheduler based on type-aware graph attention,
ScheduleNet [30], to solve various types of multi-agent scheduling tasks, including routing
problems and JSP.

As mentioned previously, the dynamic twin ASCs scheduling problem can be regarded
as a DJSP with sequence-dependent setup times. Therefore, the above DRL methods are
not applicable since they are designed for static problems. To overcome this issue, several
DRL methods for DJSP have emerged recently. Zhao et al. [31] propose a Deep Q Network
(DQN) for DJSP with dynamically arriving jobs. The trained agent selects dispatching rules
to minimize the delay time. Wang et al. [32] and Zhang et al. [33] propose a DRL method
and a multi-agent DRL method to realize the end-to-end solution for DJSP. However,
the methods in [31-33] all adopt a multilayer perceptron (MLP) network to extract state
features. Such a simple neural structure cannot grasp the location-related information
and the congestion-related information from the raw features. As will be shown in the
experiments, the MLP-based policy network performs poorly due to the insufficient feature
extraction ability.

As discussed above, neither the traditional methods nor the existing DRL methods
can effectively tackle the dynamic twin ASCs scheduling problem studied in this paper due
to its complexity and unique properties, including the dynamic arrival of containers and
the sequence-dependent setup times.

3. Problem Description

In this section, we elaborate on the dynamic twin ASCs scheduling problem with the
dynamic arrival of import containers.

In ACT, the automated yard consists of a number of blocks perpendicular to the
quay. We consider the scheduling of twin ASCs for one block, the layout of which is
demonstrated in Figure 1. The block consists of a number of bays B = {0,1,...,5},
which are numbered in order from quay to land. Bay 0 and S are called the seaside IO
and landside IO, respectively, and can be regarded as a buffer with a certain capacity.
The seaside IO is responsible for the container shift between the block and the AGYV,
and the landside IO is employed to shift containers between the block and external
trucks. Bays 1, ..., B — 1 constitute the space for storing and stacking containers and are
called the storage area. There are two ASCs, called twin ASCs, for container handling
in the block. In a container handling process, the travel distance of ASCs in the row
direction is generally much smaller than that in the bay direction. Furthermore, the
motion in both directions can be performed simultaneously. Without loss of generality,
we only consider the bay-side movement of the ASC. Twin ASCs are more efficient with
a balanced workload on the seaside and landside [34]. Consequently, we set the bay that
is the average of all container handling midpoints as the handshake area to promote
workload balance. Seaside ASC can transport containers between the seaside IO and the
handshake area. The work range of the landside ASC is situated between the handshake
area and the landside IO. Since the two ASCs share a common track, they cannot overlap
or cross each other. For ease of description, we only consider the interference situation
with non-crossing and non-overlapping constraints. Note that safety distance constraints
can be incorporated into the presented methods [18,19].

Electronics 2023, 12, 3288

50f22

In actual ACT, to facilitate import/export management, container transportation
between blocks and vessels and between blocks and external trucks cannot be performed
simultaneously [35]. Here, we only consider the container movement between blocks
and vessels. When a vessel enters the terminal, a group of import containers needs to
be transported by AGVs from the quay to the seaside IO for storage. Considering its
limited capacity, if the seaside IO is already full, the AGV with import containers must
wait for other containers in the seaside IO to be removed before unloading the containers.
Simultaneously a group of export containers need to be transported from the seaside IO to
the quay by empty AGVs. Figure 1 gives an example wherein the import container (green)
needs to be moved into the block and the export container (red) needs to be moved to the
seaside I0.

Handshake
Bay 0 — Area [& Bay 40
I 1
_ — !
I 1
F (@) le—| © f]
I 2 2
I 1 [0} [} I !
[[| Slleee —[S|eee i
2 3
S —| < r 1
(%] H & f]
I 1
. : — N)
v
Seaside 10 Storage Area Landside 10
-3 Handled by Seaside ASC - Handled by Landside ASC
[T Acv Initial Position Target for the first handling Final Target

Figure 1. Layout of the block and process of container handling.

The container handling process is performed over a finite time horizon T = {0, 1, ..., w}.
The set of all containers is denoted as C = C; U Cg, where Cj and Cg are the set of import
and export containers, respectively, and the import containers in C; transported by AGVs
arrive dynamically at the seaside 1O. For the convenience of formulation, the arrival of
imported containers is defined as a Poisson process. Without loss of generality, we denote
a container ¢ € C as a tuple (t2,b,bP), which comprises its arrival time t2* € T, start
position b? € B, and destination position b? € B. Specifically, for import containers ¢ € Cj,
t2 is the arrival time of the AGV with container ¢, b5 = 0, and b? # 0. Benefiting from the
stability of AGV transport, once the container is loaded onto the AGV by the quay crane,
the arrival time to the seaside IO can be expected (i.e., the arrival time tZ is observable in
a time window before tf‘) [4,5]. Export containers ¢ € Cr are located in the block at the
beginning, i.e., tCA =0, bCS # 0, and bCD =0.

As mentioned above, AGVs with import containers ¢ € C; may wait at the seaside
IO due to its congestion. This waiting time ¢ is a variable determined by the twin ASCs
scheduling results, which directly affects the seaside IO occupancy. As a result, any import
container ¢ € Cy can only be handled by the ASC until it is unloaded in the seaside 10;
thus, its earliest accessible time is t//¢ = t4 + t!V. Until it is moved out the seaside IO by an
ASC, it will occupy a position within the seaside IO. Since export containers do not need to
wait, we have tfc = tCA = 0,Vc € Cg. However, the export containers need to be handled
to the seaside IO and remain there until there is an empty AGV to transport them away.
Additionally, it is assumed that the arrival of empty AGVs also follows a Poisson process.
Once the import container is handled into the seaside 1O, the container will be removed at
the earliest feasible time indicated in the arrival time list of empty AGVs.

Electronics 2023, 12, 3288

6 of 22

For a container c, if b2 and b are on the same side of the handshake area (e.g., the
green one in Figure 1), it needs to be handled once by the seaside ASC. Otherwise, it needs
to be handled twice by different ASCs. The target position of the first handling is the
handshake area, and the target position of the second handling is container’s destination
position b? (e.g., the handling process of the red container in Figure 1). Here, we denote
the seaside and landside ASC as ASCy and ASCj, respectively, and model each handling
as an operation i € O, where O = Oy U O1, with Og and O; being the operations of ASC
and ASCy, respectively. The operation to each container c cannot start before its earliest
accessible time t4€ and is non-preemptive (i.e., it must be handled to the target position of
the operation once started).

The processing time of each operation i consists of three parts: (1) fixed handling
time, (2) picking up and dropping down time of ASC and (3) waiting time caused by
possible ASC interference. The fixed handling time is the time of the ASC moving from
its start position bf to its target position biT. From the above, the processing time p; can be
formulated as:

pi =

bf —b§|/m+2mvieo, 1)

where 7 is the velocity of the ASC, and T is the picking up and dropping down time of
the ASC.

Before handling an operation i, the ASC must move from its current position (i.e., the
target position bjT of the previous operation j for this ASC) to the location of the next

container (i.e., the start position bl.s of 7). This movement can be regarded as the setup before
operation, and the corresponding setup time #;; can be formulated as:

i = ‘b].T —b$|/y,¥i,j € Opk € {0,1}, @)

where j indexes the previous operation of i on the same ASC. At the beginning, the seaside
ASC and the landside ASC are located at the seaside IO and the landside IO, respectively.
Clearly, the setup time depends on the scheduling of the handling sequence.

During handling of operation i, if both ASCs need to pass through the handshake area
at the same time, one ASC must wait outside (determined by a priority rule) to avoid ASC
interference. The time of such waiting, denoted as t}", is a variable related to the scheduling
decisions.

In this article, we attempt to improve the service quality and economic benefits by
minimizing the congestion and operation cost. To this end, we adopt the integrated
objective in [20]:

min : F = Tygit + Trun, 3)

where T, and Ty, are the total waiting times of AGVs with import containers and the
cumulative run time of ASCs to complete all operations, respectively. They represent the
congestion of AGVs in the block and the operating costs of ASCs, respectively. Concretely,
they are formulated as:

Topait = Z tgvf Trun = Z(Pi + t}/v + tji)- (4)
ceCy i€eO

Remark 1. Abstractly, the import containers can be regarded as dynamically arriving jobs, while
the export containers are static. One ASC (machine) can only process one job at one time and must
move to the position of the next container before handling it (setup). In addition, the ASC must
comply with the non-overlap constraint during all handling processes. To sum up, the scheduling
problem studied in this article can be viewed as a D]SP problem with a sequence-dependent setup
time and machine interference constraints.

Electronics 2023, 12, 3288

7 of 22

4. Methodology

In this section, we introduce our method in detail. Firstly, the MDP model is estab-
lished, followed by the definition of raw state features. Then, our neural architecture
is introduced in detail, including the two novel design: DMA and LICA. Finally, the
actor—critic-based training algorithm is presented.

4.1. Markov Decision Process

In this part, we formulate an event-driven MDP model to simulate the dynamic twin
ASCs scheduling problem.

4.1.1. State

The decisions are made at the initial time or when the ASC completes a handling
operation. If there is no eligible container to handle for the current decision step, the
environment transits to the next decision step. The ASC to be scheduled at ¢ is denoted as
ASC;. The state at the decision step t, denoted as S;, contains information about containers
and the block at ¢, such as the destination bay of import containers, the arrival time of
observable import containers, the origin position of export containers, the eligibility of all
containers, the current position of ASCs, and the occupancy status of the seaside 10. Note
that the eligible containers are the containers that can be handled by the ASC scheduled at
step t. Specifically, these are containers that have not been handled to their destination and
whose current operations are located in the scheduled ASC’s work range. Here, ASC; is
the ASC that just completed its handling operation.

4.1.2. Action

An action a; € Ay at step t is to select an eligible container for ASC;, i.e., select a job
for the machine. The action space Ay is the set of eligible containers. As the handling
progresses, the eligible actions for each step f are different, both the manual rules and the
DRL techniques must eliminate ineligible containers when choosing actions in order to
ensure the validity of the action.

4.1.3. Transition

Once the action a; is taken, the selected container will be transported to the target bay,
and the state S; will transit to the next state S;11. In this process, the scheduled ASC moves
to the current location of the selected container and transports the container to its target bay
(i.e., the destination bay or the handshake area). Considering the possible ASC interference
during the state transition, we apply the First-In-First-Out (FIFO) rule to prioritize ASCs
so as to satisfy the non-overlap constraints. This enables resolving possible interference at
a negligible cost.

4.1.4. Reward

To minimize the objective (3), the reward function R(S, 4;) is designed as the negative
increment value of AGV waiting time and work time for ASCs after taking action a; at step
t. The mathematical expression is as follows:

R(St/ ﬂt) = wait(t + 1) - Twait(t)
+ L [T (t+1) = Tan (1), ®)
ke{0,1}

where Ty, (t) is the total waiting time of AGVs with import containers at step t, and
ik (t) is the accumulated run time of twin ASCs at step t.

4.1.5. Policy

For the state S;, the stochastic policy 7t(a;|S¢) is a probability distribution over the
action space A;. Due to the dynamic nature of the investigated problem, we use the greedy

Electronics 2023, 12, 3288

8 of 22

strategy to select the action with the highest probability. For agent training, however, we
sample actions according to 7t(a;|S;) for the purpose of exploration.

4.2. Raw Features

To comprehensively represent the state S;, we design a set of raw features to describe
the states of all containers and resources (ASCs) in the block. For each container ¢ € C, we
record the following information as raw features:

1. The current position of ¢, which is an integer specifying the index of its current bay;

2. The destination of ¢, which is an integer specifying the index of its destination bay;

3. The distance between container ¢ and the current position of ASCy;

4. The eligibility of ¢, which is a binary value specifying if ¢ is accessible for the scheduled
ASC at t (0) or not (1);

5. The number of import containers in the seaside IO, which is an integer representing
the occupancy of the seaside IO by imported containers;

6. The number of export containers in the seaside IO, which is an integer representing
the occupancy of the seaside IO by exported containers;

7. The difference between the arrival time of ¢ and the current time: for special cases, it
is set to 0 if ¢ has already arrived, or a large number M if its arrival time is out of the
observation time window.

Here, features (1)—(4) are location-related features, and features (5)—(7) are congestion-
related features. Note that feature (7) is exclusive to import containers.

4.3. Feature Extraction Network

While the above features are informative, efficient feature extraction from complex
redundant raw features is extremely challenging for existing neural network structures.
Firstly, the location relationship between the containers and ASCs is pair-wise informa-
tion, which is subject to the information interference of ineligible containers. Secondly,
the effective fusion of the extracted congestion-related embeddings and location-related
embeddings is challenging for existing methods. To tackle the above problems, two novel
neural architectures, DMA and LICA, are elaborated as follows.

4.3.1. DMA

According to the problem description in Section 3, the characteristics of the ASC
container handling process can be summarized as follows: Firstly, ASCs handle the contain-
ers in a one-dimensional space (i.e., travel between bays). Secondly, before handling the
subsequent container, the ASCs must move from the location of their previous operation to
the location of the subsequent container (i.e., setup). It is obvious that the pairwise position
relationship between containers and ASCs is essential to optimize the run time of ASCs.
Driven by this intuition, we attempt to introduce a self-attention mechanism [36] into the
feature extraction network to grasp the pairwise location relationships. A self-attention
mechanism has been employed to solve some combinatorial optimization problems, such as
routing problems [37-40]. However, most of these techniques follow the encoder—decoder
structure [41], which is not applicable for dealing with complex features that change con-
stantly [42]. Therefore, we adopt a step-wise decision framework: i.e., the network extracts
embeddings and makes decisions at each step instead of using a decoder. Additionally, the
dynamic nature of the research problem makes the extraction of embeddings subject to the
interference of redundant information (i.e., the features of ineligible containers). As will
be shown in the experiments, directly applying the attention mechanism results in poor
performance. To tackle this issue, we propose a novel attention mechanism, DMA, to elimi-
nate the interference of redundant information. The details are introduced in combination
with Figure 2 as follows.

Electronics 2023, 12, 3288

9 of 22

In order to unify the model input dimensions, the location-related features are pro-
jected to a fixed dimension d;, = 128 as the input feature matrix X. Subsequently, Query
(Q), Key (K) and Value (V) can be obtained by linear projections:

Q=XxW, K=XxW, V=XxW, (6)

where W, € Rn*dg Wi € R%>d and W, € R%*d are trainable parameters, and
d; = dy = dy = 64 in our method.
Based on matrices Q and K, the compatibility matrix M € RN*N can be calculated by

M= (QKT) /\/dy, @)

where N = |C| is the number of containers, and +/dy is the scaling factor to regulate the
attention weight after softmax.

In DMA, the compatibility matrix M is masked by a dynamic mask to eliminate the
attention to the information of ineligible containers. Specifically, for each column in the
compatibility matrix, the elements are identified according to the eligibility of containers at
current state Sy and are masked out from the softmax by overwriting their score as follows:

—oo, if container iis ineligible

M'(i,j) = { ®)

M(i,), otherwise,
where M(i, j) is the element in row i and column j of the compatibility matrix M.

Then, attention can be calculated by row-wise softmax, and the output can be obtained
by the weighted summation of value vectors in V. The above process can be written as:

A(X) = Softmax(M')V.)

Inspired by multihead self-attention (MHA) [36], we propose multihead DMA to
capture more features from different high-dimensional spaces. As shown in Figure 2, M
DMA modules, which do not share parameters, are performed in parallel. Then, we fuse
all the outputs by concatenation and project this back to the d;, dimensional space by a
fully connected layer. Finally, the output embeddings of dimension N x d}, are obtained by
skip-connection and layer normalization. The above process can be formulated as follows:

h = Concat(A{(X),..., Au(X)), (10)

DMA(X) = LN(X + FC(h)), (11)

where A;(X),..., Am(X) are the outputs of MDA modules, Concat(-) is the horizon-
tal concatenation operator, FC(-) is a fully connected layer, and LN(-) is the layer nor-
malization operator. In our method, we stack L = 2 multihead DMA layers to ob-
tain the location-related embeddings E; € RN*% so as to balance performance and
computational efficiency.

Remark 2. Compared with the standard attention mechanism, the DMA can automatically elimi-
nate the interference of redundant information (i.e., the features of ineligible containers). Benefiting
from the multihead DMA, the feature extraction network can effectively learn to grasp the pairwise
location-related relationships between containers, which is significant to minimize the run time of
ASCs. Because the interference of redundant information is circumvented, the agent can converge
to a better result in the training process. Furthermore, the multihead DMA has a size-invariant
property with regard to the number of containers, which enables the network to work on problems of
different scales using the same parameters.

Electronics 2023, 12, 3288

10 of 22

Location-related Features]

Input Features]—

—DC Matrix Multiply)

v
[Dynamic Mask] [Compatibility Matrix]

v «M

4’(Masking)

v ‘L

C Softmax)

v

[Attention Matrix]

Dynamic Masked v

\Self—attention C Matrix Multiply)4—
'

C Concatenation)

. AW
kMultl head DMA C Add & Norm e

[Location-related Embedding]

= Projection =P |nformation Delivery

Figure 2. Multihead dynamic masked self-attention (DMA).

4.3.2. LICA

On the other hand, the congestion-related information is critical to optimizing the
total waiting time of AGVs with import containers. Due to the different characteristics
between location-related information and congestion-related information, utilizing one
neural architecture to extract the embeddings of both kinds of information cannot achieve
satisfactory performance. Considering the sequential property of congestion-related in-
formation, Long Short-Term Memory (LSTM) [43] is employed to extract the embeddings
from congestion-related features. Feature (7) is exclusive to imported containers, and the
congestion-relate information mainly affects the priority of import containers. Therefore,
the congestion-related embeddings E. € RNi*% are only captured for import containers,
where N; is the number of import containers. In order to effectively fuse two types of
information with different semantics, we design a novel neural framework, LICA, of which
the inputs are location-related embeddings captured by DMA and congestion-related
embeddings grasped by LSTM. The details are as follows.

As illustrated in Figure 3, the location-related embeddings E; € RN*“ obtained by
DMA (i.e., the blue one in Figure 3) and congestion-related embeddings E. € RN:*4
calculated by LSTM (i.e., the red one in Figure 3) have different dimensions. In LICA,

Electronics 2023, 12, 3288

11 0f 22

the location-related embeddings are split into two pieces: location-related embeddings
of import containers Ej; € RNi*% and location-related embeddings of export containers
E,, € RNexdi where N, is the number of export containers. Then, the location-related
embeddings of import containers and the congestion-related embeddings are fused by a
convolution fusion module. The first step is stacking them into a tensor 7;, € RNi*@nx2,
Then, 7}, is transformed into a new matrix by multiple point-wise convolution layers as
the fusion embedding of import containers:

E¢; = PwCono(Ty), (12)

where Ef; € RNi*di and PwConv(-) is an operator representing multiple point-wise
convolution layers and has two hidden layers with dimensions of 16 and 4, respectively.

Location-related Features Congestion-related Features
of All Containers of Import Containers
7 e 7
J £ J
/
/
y
v
. . 5o o A
[Dynamlc Masked Self—attentlon] 7 |
! da
f] f -
50 c 7 : Y/
~ : 4
T 7 I/ O 74
. V4 : T -]
5o c 2\ 5o o v 7
//L‘—V /7 | v/
505 7 |/ <. i/
Convolution
Concatenation Fusion
7 50 G 7
7 —
(—) SIOIC
VA Self-attention —— //
J —
7 o 7
Secondary Fusion

Figure 3. Local information complementary attention (LICA) framework with DMA and LSTM.

Following the convolution fusion, the new embeddings of import containers Ey;
include the location-related information and congestion-related information. To fuse the
embeddings of import containers and export containers effectively, a secondary fusion
module based on MHA is proposed. Specifically, we concatenate Ef; and Ej, together, and
a further fusion of them are performed by a standard MHA:

Ef = MHA (Concat(Eﬁ-, Ele)), (13)

where Ef, € RN s the output of the LICA as well as the embeddings captured by the
feature extraction network.

Remark 3. The proposed fusion framework, LICA, is capable of fusing embeddings with different
dimensions. Benefiting from LICA’s superior fusion capabilities, the location-related embedding is
complemented by the congestion-related information. The embeddings Ey, captured by the feature
extraction network can effectively represent the location-related relationship and the congestion state
of the block. Moreover, the size-insensitive property is retained. Therefore, the proposed feature
extraction network provides efficient information processing for decision making.

Electronics 2023, 12, 3288

12 of 22

4.4. Actor—Critic Framework and Training Algorithm

Based on the feature extraction network, we construct an actor—critic framework,
which consists of a policy network and a value network, and train it by PPO.

4.4.1. Policy Network

For mapping the extracted embeddings to policy 7t(a;|S¢), a size-agnostic policy
network is proposed in our method. The main part of this policy network is the multilayer
perceptron (MLP), which consists of fully connected layers (FCs). A vector representing the
priority of all containers is calculated by MLP:

Score = MLPr(Ef,), (14)

where Ef, € RN*di Score € RN*1 MLP, is an MLP (activated by a rectified linear unit
(ReLU)) with two hidden layers with dimensions of 64 and 32, respectively.

To guarantee the correctness of the learned policy, we mask out the ineligible containers
prior to softmax. The process of calculating the policy from Score can be formulated as:

Score! — —00 if container cis ineligible (15)
¢ Score. else,
t(at|S¢) = Softmax(Score'). (16)

Following the aforementioned process, actions with higher scores that are not masked have
a higher probability of being selected. The probabilities for ineligible containers are 0 and,
hence, they will never be selected.

4.4.2. Value Network

In the actor—critic framework, the calculation of the value function is needed to
estimate the cumulative rewards of the current state S; and to guide the training of the
agent. For this requirement, we propose an MLP-based value network, which has three
hidden layers with dimensions of 256, 128 and 64, respectively, and the dimension of the
output is 1. The input is a vector obtained by column summation of the embedding E,.
The calculation of the value can be formulated as:

0(St) = MLP,(mean(Ey,)), (17)

where MLP, is the MLP in the value network. Its hidden layers are activated by ReLU, but
its output layer is not activated.

4.4.3. Training Algorithm

Based on the aforementioned networks, an actor—critic framework is constructed. In
our approach, the Proximal Policy Optimization (PPO) algorithm [12] with Adam opti-
mizer is employed to train the neural network. The algorithm’s details are presented in
Algorithm 1. In order to boost the learning efficiency, we create N parallel simulation
environments with different training sets to collect rollout data. Each simulation environ-
ment collects data every C steps (i.e., collection steps). According to the collected data,
the network parameters are updated for 7 iterations with batch size B. After £ epochs of
training, the model with optimal results is selected for scheduling.

Electronics 2023, 12, 3288

13 of 22

Algorithm 1: Training Algorithm

Input: feature extractor network e; with trainable parameters {; actor network 79 with
trainable parameters 0; critic network vy with trainable parameters ¢; total episode
&, number of parallel environments A, collection steps C, update epochs Z,
Minibatch B;
1 Generate A parallel environments;
2 whilee < £ do
3 Initialize the rollout buffer M} as an empty list;

4 forn=1,2,..., N do

5 while c < C do

6 sample an instance without putting it back;
7 reset the environment with selected instance;
8 t<0;

9 while not Done do

10 get state S¢;

11 sample a; based on 7t(a¢|S;);

12 receive reward r; and next state Sy 1;

13 t+—t+1;

14 append(St, at, tt, Sp11) to My;

15 c+c+1;

16 R = vy (St);
17 fori=1,2,...,Zdo

18 reset gradients: d¢ < 0; df < 0;d¢ < 0;
19 forj=1,2,..., N xC/Bdo
20 fori e {1,2,...,B} do
21 R 71i4+YR; 6 < R —vp(S;);
22 a¢ < d¢ + ZM,, (SVeg(S,-);
23 d0 < do + Y_pg, 6Viogrt(a;lez (S;));
24 dqb — d¢+ZMb (5VU¢(Q1|€C(SZ'));
25 clip dz, dg and dy by [—0.2,0.2];
dg do dp .
26 | update ¢, 6 and ¢ by MLId=d) TV () and IAIG=AE

27 e<e+1;

5. Experiment

The experimental details and performance of the proposed method are presented and
discussed in this section.

5.1. Experiment Settings
5.1.1. Simulation Environment Settings

The parameters of the simulated scheduling environment are determined according
to scenarios in real-world ACT and previous research [16,20]. In this article, the block has
41 bays (39 bays for storage containers), which is a medium-scale block in a real ACT. The
capacity of the seaside 1O is five. For ease of description, the time-related parameters are
set to integers according to the proportional relationship in the actual handling process.
Concretely, the time of an ASC moving the distance of one bay is defined as one unit of
time, and the time for the ASC to pick up or drop a container is set as T = 3. Following
most research, we consider that the ASCs travel at a constant velocity 7 = 1 (one bay per
unit time). Considering the transportation process of the AGVs [44] and the proportional
relationship between AGV transportation time and ASC handling time in the actual ACT
operation [2], the observation time window is set as 60. For import containers out of the
observation time window, the difference between the arrival time and the current time is
set as a large number M = 80.

Electronics 2023, 12, 3288

14 of 22

5.1.2. Instance Generation

To provide training data for DRL and to evaluate the performance, the instances are
randomly generated by a generator with four parameters: the number of containers (N),
the percentage of import containers (POI), the mathematical expectation of the interval
time between AGVs with import containers (1/A;) and the mathematical expectation of
the interval time between empty AGVs (1/A,). Here, N is used to control the problem
scale, and N containers are separated into N; import containers and N, export containers
according to the POL. For the import containers, their origin bays are the seaside 10 (bay
0), and the destination bays are drawn from the uniform distribution U(1,39). On the
contrary, the destination bays of export containers are the seaside IO, and their origin bays
are drawn from the uniform distribution U(1, 39). In dynamic scheduling problems, the
Poisson process is generally used to model dynamic arrival [6]. Here, the arrival time of
AGVs with import containers and the arrival time of empty AGVs are generated by Poisson
process with A; and A,, respectively.

We generate five groups of instances of different scales for training and testing by
setting N to 20, 30, 40, 50 and 60, respectively denoted as C20, - - -, C60. For training, we set
the POI = 50%, A; =1/26 and A, = 1/30. For each scenario, we generate 30,000 instances
for training and an additional 1000 instances for testing.

5.1.3. Baselines

In this paper, we compare the scheduling performance of our method against a set
of rule-based heuristics and two DRL baselines. The heuristics are well-known schedul-
ing rules for dynamic JSP with sequence-dependent setup times [45] and twin ASCs
scheduling [13]. Specifically, the rules are Random, Shortest Processing Time (SPT), Longest
Processing Time (LPT), Shortest Setup Time (SST) (i.e., the nearest neighbor rule in [13])
and Prioritize Buffer Clearing (PBC) (i.e., prioritize moving containers out of the seaside
I0). To demonstrate the effectiveness of our feature extraction network design, we also
compare with two feature extraction structures: one based on the standard attention mech-
anism (AM) as in [37,42] and one based on the multilayer perceptron (MLP) as in [31-33].
Concretely, the AM model is a two-layer MHA with eight heads, and the MLP has two
hidden layers, which have 64 and 128 neurons, respectively.

5.1.4. Hyperparameters and Implementation

In our method, we perform & = 2000 epochs of training with A/ = 10 parallel
environments. For PPO, we set the clip range as 0.2, batch size B = 2048, number of
update iterations Z = 50 and learning rate Lr = 1 x 10~*. To boost the learning efficiency
on large-scale problems (C50 and C60), we adopt the “warm start” method for training.
Specifically, we load the model trained on the C40 (i.e., N = 40) instance set and train it on
the corresponding scale training set for £ = 1000 epochs.

Our method and baselines are implemented in Python. The environment and DRL
algorithm are implemented based on OpenAI Gym and Stable-baselines3. The hardware we
use is a machine with an Intel Core i9-10920X CPU and a single Nvidia GeForce 2080Ti GPU.

5.2. Training and Ablation Experiments

Here, we perform an ablation study to evaluate the effectiveness of the two key compo-
nents of our method: i.e., DMA and LICA. We compare five models with different feature
extractors, including: the MLP model (MLP), the standard self-attention model (AM), the
DMA model (DMA), the LICA model with standard self-attention (LICA-AM), and the
LICA model with DMA (LICA-DMA). We train the above models on the representative
medium-scale problem C40 and evaluate them on the testing set. The training curves and
testing performance are demonstrated in Figure 4 and Table 1, respectively.

As shown in Figure 4, the MLP model with a simple neural structure fails to learn
effective policies due to its poor feature extraction capability. Therefore, it is excluded from
the following comparison. DMA converges faster than AM and converges to much higher

Electronics 2023, 12, 3288

15 of 22

cumulative rewards, showing the effectiveness of its capability in automatically eliminating
interference and extracting the location-related interrelationships between containers and
ASCs. The advantage of DMA over AM is also validated in Table 1. Obviously, DMA is
more competent in extracting embeddings under information interference than AM.

g Sp—
~1800 AM WHMHWMW

— MLP

-2000

_g.»{l‘

—-2400 T

Average Cumulative Reward
I
N
N
o
(o]

{" :IM

0 500 1000 1500 2000
Episode

Figure 4. Training curves of DRL methods with different neural architectures.

Table 1. Scheduling performance of rules and DRL methods on medium-scale (C40) problem.

Method Tun Towait Ob;j.
Random 1790.41(140.16) 766.30(435.69) 2556.72(548.29)
SPT 1744.30(140.39) 424.11(333.45) 2168.42(446.88)
LPT 1799.49(144.94) 1291.49(489.62) 3090.99(611.57)
SST *1533.78(155.59) 319.02(289.14) 1852.80(417.50)
PBC 1892.11(145.52) 202.32(278.61) 2094.43(388.36)
AM 1781.74(131.58) 362.59(339.29) 2144.33(435.13)
DMA 1517.98(142.05) 159.55(219.59) 1677.53(334.33)
LICA-AM 1698.65(134.32) 74.52(156.00) 1773.17(256.37)
LICA-DMA 1505.89(152.36) 138.81(202.99) 1644.70(326.79)

“Obj.”, “Trun” and “Ty,;” are the average objective, run time of ASCs and the total waiting time of AGVs on 1000
testing instances, respectively. T means the average result of the best rule-based heuristics, while Bold means
average result of the best method among all methods, and the scalar in () is standard deviation.

Through the LICA framework, the location-related embeddings are complemented
by the congestion-related information obtained by LSTM. Therefore, as demonstrated in
Figure 4 and Table 1, the framework can effectively enhance the DRL model’s performance.
During training, LICA-AM converges to higher rewards than AM. Similarly, LICA-DMA
performs better than DMA in training. For the evaluation performance, LICA-AM signif-
icantly improves AM by reducing T,,;;. Moreover, LICA-DMA can grasp high-quality
location-related embeddings and fuse them efficiently. As a result, LICA-DMA performs the
best both in training and evaluation since it can coordinate Ty, and T,y more effectively.

5.3. Performance Comparison for Different Training Scales

In this subsection, we evaluate the performance of our method on different scales
and compare it with other baselines. Concretely, the agents are trained on training sets of
different scales (C20, ..., C60) and are tested on the corresponding scale testing sets with

Electronics 2023, 12, 3288

16 of 22

the same distribution. Results are summarized in Tables 1 and 2. The proportions of T},
and Ty,;; in the objective on different scales are shown in Figure 5.

As shown in Tables 1 and 2, PBC is the best rule for minimizing T,,;;, and SST is the
best rule for minimizing T;,, and the integrated objective. On the smallest scale C20, the
DRL method with AM obtains the minimum objective, while our method has extremely
similar performance. Except on C20, LICA-DMA consistently outperforms all baselines on
all problem scales, and the difference is noticeable, particularly for large-scale problems. In
addition, the policies learned by our approach have the lowest standard deviation on most
scales. This suggests that our method has remarkable stability.

Table 2. Scheduling performance of rule-based heuristics and DRL methods on different scales.

Random SPT LPT SST PBC AM LICA-DMA
Tun 851.11(91.88) 837.93(85.56) 833.36(96.15) t 682.24(69.70) 931.53(100.96) 668.37(63.71) 669.38(63.24)
8 Toair 39.57(48.92) 13.27(28.64) 72.53(64.16) 2.56(6.96) t0.73(5.03) 1.42(4.84) 1.56(4.84)
Obj. 890.69(126.63) 851.20(100.98) 905.89(146.94) t 684.80(72.71) 932.26(102.44) 669.79(65.26) 670.95(64.70)
Tn 132175(127.51) 1283.99(122.76) 1320.65(130.84) ' 1088.14(126.19) 1414.78(130.98) 1068.90(116.85) 1049.55(115.13)
5 Teair 277.38(20340) 129.94(139.27) 510.07(245.41) 66.82(86.29) t36.70(71.37) 30.25(57.22) 29.81(55.04)
Obj. 1599.12(306.72) 1413.93(238.29) 1830.72(358.10) ' 1154.96(196.73) 1451.48(181.63) 1099.16(157.37) 1079.36(154.34)
Tum 227557(164.11) 2222.69(164.81) 2288.58(163.40) ' 1997.89(175.84) 2379.37(166.19) 2275.33(168.84) 2120.47(182.81)
@ Tear 1514.66(731.03) 922.83(563.95) 2414.45(80349) 807.33(533.50) 1588.73(545.53) 836.62(664.84) 299.19(371.68)
Obj. 3790.23(862.71) 314552(701.82) 4703.03(939.65) '2805.21(678.79) 2968.10(674.39) 3111.95(786.80) 2419.66(509.94)
Tunm 274731(173.79) 2689.26(177.66) 2754.90(179.33) T 2441.54(192.38) 2851.28(179.16) 2721.38(170.87) 2527.86(188.19)
g T 2425.99(1074.21) 1578.18(860.18) 3707.13(1169.84) 1475.11(850.50) +1119.50(888.36) 1602.48(909.05) 719.89(704.74)
Obj. 517331(121229) 4267.44(1007.66) 6462.03(1317.93) ' 3916.65(1009.92) 3970.79(1027.76) 4323.86(1051.04) 3247.75(854.45)

“Obj.”, “Trun” and “Tyy,;t” are the average objective, run time of ASCs and the total waiting time of AGVs on 1000
testing instances, respectively. T means the average result of the best rule-based heuristics, while Bold means
average result of the best method among all methods, and the scalar in () is standard deviation.

Cc20 C40

3500
3000
2500
2000
1500
1000

500

B Run time & Waiting time

@ Run time ®Waiting time

1000
900

C60

BRun time

Waiting time

7000
6000
5000
4000
3000
2000
1000

o

oS‘éO\Q

&
Figure 5. Average scheduling result analysis on small (C20), medium (C40) and large (C60)
scale problem.

As the problem scales up, the complexity of the problem increases, the information
interference increases, and the proportion of Ty,;; in the objective increases. The DRL
method with AM cannot handle the aforementioned issues; thus, scheduling performance
degrades significantly as the problem scale increases. Starting from C40, it cannot even
outperform SST. However, our method, LICA-DMA, can effectively overcome the above
issues. Consequently, our method maintains excellent scheduling performance on various

Electronics 2023, 12, 3288

17 of 22

problem scales. As shown in Figure 5, our method can effectively minimize the run time of
ASCs in small-scale problems. Furthermore, in medium-scale and large-scale problems, the
proposed approach can minimize the integrated objective by weighing Ty, and Ty, From
the comparison of DRL methods in Table 3, we can infer the superiority of our method.
The scheduling performance of LICA-DMA is significantly better than AM in most scale
problems. Compared with SST, the proposed DRL method yields T}, improvements of
1.88%, 3.55% and 1.82% for small and medium-scale issues. For large-scale problems, the
agent is required to place greater emphasis on the influence of Ty,;; on the integrated
objective. Consequently, it needs to sacrifice some T;y;,. For traffic congestion, the proposed
DRL method exhibits improvements in Ty,,;; when compared to the PBC rule. Specifically,
the DRL method achieves enhancements of 18.77%, 31.39%, 49.18% and 35.7% for C30-C60
scales. The millisecond decision time, T;, can meet the real-time scheduling requirements
for decision speed. Furthermore, the increase in T; with problem scale is within a reasonable
range. Although the training time of LICA-DMA is longer than AM, the training time is
acceptable in most circumstances due to the offline training of DRL.

Table 3. Performance comparison of DRL models on different scales.

C20 C30 C40 C50 C60

= AM 2.77h 5.29h 8.78 h 6.69 h 9.46 h

= LICA-DMA 4.63h 9.09h 15.16 h 11.52h 16.38 h
~ AM 2.76 ms 2.75 ms 3.12ms 3.14 ms 3.14 ms

B LICA-DMA 5.11 ms 5.29 ms 5.90 ms 6.06 ms 6.18 ms
5 AM 2.19% 4.83% 4.30% —10.93% —10.40%
é LICA-DMA 2.02% 6.55% 11.23% 13.74% 17.08%

T}y is the training time (in hours), T is the time for making one decision (in milliseconds). Impr. is the improvement
against the best rule.

5.4. Generalization Performance for Various Scales

In practice, the scale of the scheduling task (i.e., the number of containers) could
be different from those in training. Therefore, robust generalization capability is very
important for the practical application of scheduling methods. To verify our method’s
generalization capability, the agent trained at scale C40 is generalized to schedule the
dynamic twin ASCs scheduling problems ranging from C20 to C60. The average scheduling
results are exhibited in Table 4, while the improvement of the generalized agent against the
best existing methods are described in Figure 6 (left).

Table 4. Generalization performance on different problem scales.

Scale AM LICA-DMA
Trun 865.58(97.51) 712.73(71.44)
C20 Toait 7.24(22.22) 0.59(2.97)
Obj. 872.82(105.94) 713.33(72.11)
Toun 1318.43(125.67) 1086.39(110.75)
C30 Toait 98.70(140.12) 21.88(48.37)
Obj. 1417.13(232.24) 1108.27(142.16)
Trun 2266.37(153.50) 1975.72(191.24)
C50 Topait 866.39(612.24) 445.25(424.00)
Obj. 3132.75(729.82) 2420.97(585.66)
Trun 2735.67(165.16) 2429.99(209.61)
C60 Topait 1533.02(925.14) 912.11(728.61)
Obj. 4268.69(1051.62) 3342.10(903.70)

“Obj.”, “Truy” and “Tyy,;” are the average objective, run time of ASCs and the total waiting time of AGVs on

1000 testing instances, respectively. The scalar in () is standard deviation.

Electronics 2023, 12, 3288

18 of 22

As the experimental results show, the generalization results of LICA-DMA exceed
the best rule on most scales, but the generalization results of DRL with AM fail to do so.
Compared with SST, the improvements of LICA-DMA on various scales are —4.17%, 4.04%,
11.23%, 13.70% and 14.67%. As the improvement curves of the DRL methods show, the
improvement increases with the growth of the scale. This phenomenon may be caused by
the fact that the inherent enhancements of methods grow more quickly than the decline
brought on by scale differences. However, the generalization of AM is worthless due to its
poor scheduling performance. In addition, compared with the LICA-DMA models trained
with the corresponding scale instances, the gaps of the generalized LICA-DMA model on
various scales are only 6.32%, 2.68%, 0.05% and 2.90%, respectively. In general, the results
suggest that the policies learned by LICA-DMA have robust generalization capability for
problems with different scales.

20.00% 20.00%
15.00% o 15.00% o-AM r
10.00% —#-LICA-DMA
. 10.00%
% >00% 5 5.00%
[o
£ 0.00% I °
% -5.00% | 2 0.00%
[}
s - 9, > =
g_ 10.00% g— -5.00%
= -15.00% =
20.00% ——AM -10.00%
-25.00% &-LICA-DMA -15.00% ’
[— " T
-30.00% -20.00%
c20 c30 c40 c50 C60 40% 45% 50% 55% 60%
Scale POI
15.00%
.
10.00% .///r’/'_—.
5.00% ¥
-
c
@ 0.00%
£
L _s.00%
2 3
g-»m.uo%
-15.00%
—o—AM
-20.00%
—m—LICA-DMA
-25.00%
1/30 1/28 1/26 1/24 1/22

Lambda of import containers

Figure 6. Generalization analysis: improvement curves of DRL models against the best rule for
varying scales (left), POIs (right) and A; (bottom).

5.5. Generalization Performance for Different Distributions

In practice, the distribution of containers in the scheduling task could be different
from that in training. In the dynamic twin ASCs scheduling problem, the main item of
distribution is the percentage of import containers (POI). In order to validate our method’s
generalization performance on different POIs, we test the policy trained on the C40 scale
with POI = 50% and the testing instances with POI = {40%, 45%, 55%, 60%}. Due to the
limited space, policies trained on other scales with similar performance are not discussed
here. Additionally, we only compare with SST here, while other rule-based heuristics are
dropped due to their relatively poor performance.

Comparing the experimental results in Table 5, we can see that the policies learned by
our method, LICA-DMA, obtained the lowest objective for all POIs, whereas the policies
learned by AM cannot outperform the best-rule SST.

The improvement curves of generalization models against the best scheduling rule
on varying POls are described in Figure 6 (right). Specifically, AM fails to exceed the
best-rule SST, and the improvements of LICA-DMA for various POls are 3.49%, 7.25%,
11.23%, 13.95% and 16.51%, respectively. The curve of AM is not sensitive to different
POlIs, but it does not show that the policy learned by AM model has good generalization
ability due to its poor scheduling performance. As the curve of LICA-DMA shows, the
improvement increases as the POI increases. This phenomenon is caused by the following
reason: our approach handles blocking more effectively than SST. As the POI increases, the

Electronics 2023, 12, 3288

19 of 22

growth of the inherent enhancement of our method is faster than the decrease caused by
the POI difference. As a result, the generalization ability of our method for different POIs
is indirectly demonstrated.

Table 5. Generalization performance on problems with different POIs.

POI SST AM LICA-DMA
Trun 1519.11(151.82) 1786.94(134.03) 1523.14(142.02)
40% Toait 95.52(113.54) 110.79(138.10) 35.19(68.39)
Ob;. 1614.63(241.12) 1897.73(238.16) 1558.33(187.67)
Trun 1520.18(158.07) 1770.91(136.92) 1508.00(153.19)
45% Towait 186.92(184.87) 210.22(229.46) 75.30(120.18)
Ob;. 1707.10(318.65) 1981.13(332.85) 1583.31(247.99)
Trun 1541.45(152.32) 1800.53(134.61) 1510.88(151.25)
55% Towait 471.82(353.01) 567.04(446.75) 221.48(260.22)
Ob;. 2013.28(481.47) 2367.56(550.35) 1732.36(385.94)
Trun 1550.20(157.41) 1804.27(150.85) 1518.61(159.70)
60% Towait 673.46(493.41) 778.45(581.94) 337.94(373.56)
Ob;. 2223.66(630.99) 2582.72(702.49) 1856.55(510.25)
“Obj.”, “Trun” and “Tyy,;” are the average objective, run time of ASCs and the total waiting time of AGVs on

1000 testing instances, respectively. The scalar in () is standard deviation.

5.6. Generalization for Different AGV Arrival Processes

In an actual ACT, the number of AGVs assigned to each loading/unloading operation
is varied, and the relative positions of the blocks to the vessel are also different. Therefore,
the AGYV arrival process is variable. In this article, the AGV arrival process is abstracted
to a Poisson process, so we use A; and A, to regulate the arrival concentration of AGVs
carrying import containers and empty AGVs. To validate the generalization performance
on different AGV arrival processes, the policy learned on C40 training instances (A; = 1/26,
Ae =1/30) is employed to solve problems with different A; (1/22,1/24,1/28 and 1/30) and
Ae (1/26,1/28,1/32 and 1/34).

The scheduling performance of SST and DRL-based generalization models on different
A; is exhibited in Table 6. Although the results of the AM-based generalization model fail
to exceed the best scheduling rule, SST, the scheduling performance of the generalization
model based on LICA-DMA is noticeably superior to other baselines.

Table 6. Generalization performance for problems with different A;.

A SST AM LICA-DMA
Trun 1597.23(140.51) 1802.14(130.35) 1582.56(146.17)
5 Tovait 685.25(384.42) 670.20(464.91) 402.35(333.17)
Obj. 2082.48(499.23) 2472.34(562.67) 1984.91(450.78)
Toun 1571.34(153.28) 1795.89(134.94) 1549.77(156.12)
s it 491.21(331.52) 511.90(396.33) 251.12(256.65)
Obj. 2062.55(458.90) 2307.79(496.48) 1800.88(384.95)
Trun 1493.44(160.58) 1775.80(137.52) 1473.26(152.73)
x Topait 195.00(216.08) 273.90(308.34) 77.39(144.28)
Obj. 1688.44(352.54) 2049.69(411.90) 1550.65(271.05)
Toun 1451.95(162.48) 1767.06(144.07) 1439.83(142.47)
& Topait 99.88(148.05) 164.16(222.13) 31.52(80.58)
Obj. 1551.83(288.34) 1931.22(328.26) 1471.34(201.04)

“Obj.”, “Trun” and “Ty,;” are the average objective, run time of ASCs and the total waiting time of AGVs on
1000 testing instances, respectively. The scalar in () is standard deviation.

The improvement curves against the best scheduling rule for varying A; are described
in Figure 6 (bottom). As the curves show, the improvement increases with the growth

Electronics 2023, 12, 3288

20 of 22

References

of A;. This phenomenon may be caused by the fact that the inherent enhancements of
methods grow more quickly than the decline brought on by A; differences. Indirectly, the
generalization ability of the DRL methods is demonstrated. However the generalization of
the AM-based model is worthless in practice due to its unsatisfactory scheduling results.
As the LICA-DMA curve shows, the generalized model remarkably outperforms SST.
Specifically, the improvements to various A; are 5.19%, 8.16%, 11.23%, 12.69% and 13.04%,
respectively.

From the characteristics discussed in Section 3, we can infer that the effect of A, on
congestion is very limited. In the generalization experiment with different A,, for each
method, the scheduling differences caused by different A, are extremely small. Therefore,
the details of the generalization experiment for different A, are not discussed here due to
the limited space.

Remark 4. Benefiting from the LICA-DMA, the agent can eliminate the information interfer-
ence of ineligible containers automatically and can complement the container information with
congestion-related information. Compared with existing methods, our method has superior schedul-
ing performance and robust generalization capability, which is promising for practical applications.

6. Conclusions and Future Work

Efficient dynamic scheduling of twin ASCs can significantly boost the handling effi-
ciency of the storage yard, which is crucial to improving the service quality of ACT and
reducing energy consumption. In this paper, we propose an end-to-end DRL method to
solve the dynamic twin ASCs scheduling problem for the first time. To tackle redundant
and incomplete state information, we propose a size-insensitive neural architecture, LICA-
DMA, which is able to automatically eliminate the information interference of ineligible
containers and can complement the container information with congestion-related infor-
mation. As the extensive experimental results show, the policies learned by DRL with
LICA-DMA can obtain significantly better solutions with extremely low time complexity.
Furthermore, the learned policies exhibit robust generalization on different scales and
distributions. The proposed approach is promising for improving the handling efficiency
of storage yards in complex practical scenarios. In addition, this work extends the technical
framework of DRL to solve dynamic scheduling problems under complex constraints.
For future work, we intend to extend the DRL-based scheduling to the entire ACT by
integrating other equipment in the ACT, such as automated guided vehicles (AGVs) and
quay cranes (QCs).

Author Contributions: Conceptualization, X.J. and Q.L.; methodology, X.J. and W.S.; software,
X.J. and N.M.; validation, X.J. and N.M.; formal analysis, X.J.; investigation, X.J.; resources, Q.L.;
data curation, X.J.; writing—original draft preparation, X.J.; writing—review and editing, W.S,;
visualization, X.J.; supervision, Q.L.; project administration, Q.L.; funding acquisition, W.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the National Natural Science Foundation of China under grant
62102228 and by the Shandong Provincial Natural Science Foundation under grant ZR2021QF063.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

1. Dey, K, Fries, R.; Ahmed, S. Future of transportation cyber-physical systems-Smart cities/regions. In Transportation Cyber-Physical
Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 267-307.

2. Kizilay, D,; Eliiyi, D.T. A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container
terminals. Flex. Serv. Manuf. . 2021, 33, 1-42. [CrossRef]

3. Jin, X;; Duan, Z; Song, W.; Li, Q. Container stacking optimization based on Deep Reinforcement Learning. Eng. Appl. Artif. Intell.
2023, 123, 106508. [CrossRef]

http://doi.org/10.1007/s10696-020-09385-5
http://dx.doi.org/10.1016/j.engappai.2023.106508

Electronics 2023, 12, 3288 21 of 22

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Zhu, S.; Tan, Z.; Yang, Z.; Cai, L. Quay crane and yard truck dual-cycle scheduling with mixed storage strategy. Adv. Eng. Inform.
2022, 54, 101722. [CrossRef]

Chen, X; He, S.; Zhang, Y.; Tong, L.C.; Shang, P.; Zhou, X. Yard crane and AGV scheduling in automated container terminal: A
multi-robot task allocation framework. Transport. Res. C-Emer. 2020, 114, 241-271. [CrossRef]

Zhang, F; Mei, Y.; Nguyen, S.; Zhang, M. Evolving Scheduling Heuristics via Genetic Programming with Feature Selection in
Dynamic Flexible Job-Shop Scheduling. IEEE Trans. Cybern. 2021, 51, 1797-1811. [CrossRef]

Mnih, V.; Kavukcuoglu, K; Silver, D.; Rusu, A.A.; Veness,].; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A K,;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529-533. [CrossRef]

Song, W.; Cao, Z.; Zhang, J.; Xu, C.; Lim, A. Learning variable ordering heuristics for solving constraint satisfaction problems.
Eng. Appl. Artif. Intell. 2022, 109, 104603. [CrossRef]

Song, H.; Kim, M,; Park, D.; Shin, Y.; Lee,].-G. Learning From Noisy Labels With Deep Neural Networks: A Survey. IEEE Trans.
Neur. Net. Lear. 2022, 1-19. [CrossRef]

Bengio, Y.; Lodi, A.; Prouvost, A. Machine learning for combinatorial optimization: A methodological tour d’horizon. Eur. J.
Oper. Res. 2021, 290, 405-421. [CrossRef]

Wu, Y,; Song, W.; Cao, Z.; Zhang, J.; Lim, A. Learning improvement heuristics for solving routing problems. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 33, 5057-5069. [CrossRef]

Schulman, J.; Wolski, F; Dhariwal, P; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

Gharehgozli, A.H.; Vernooij, EG.; Zaerpour, N. A simulation study of the performance of twin automated stacking cranes at a
seaport container terminal. Eur.]. Oper. Res. 2017, 261, 108-128. [CrossRef]

Carlo, H.J.; Martinez-Acevedo, EL. Priority rules for twin automated stacking cranes that collaborate. Comput. Ind. Eng. 2015,
89, 23-33. [CrossRef]

Briskorn, D.; Emde, S.; Boysen, N. Cooperative twin-crane scheduling. Discrete App. Math. 2016, 211, 40-57. [CrossRef]

Han, X.; Wang, Q.; Huang, J. Scheduling cooperative twin automated stacking cranes in automated container terminals. Comput.
Ind. Eng. 2019, 128, 553-558. [CrossRef]

Oladugba, A.O.; Gheith, M.; Eltawil, A. A new solution approach for the twin yard crane scheduling problem in automated
container terminals. Adv. Eng. Inform. 2023, 57, 102015. [CrossRef]

Jaehn, E; Kress, D. Scheduling cooperative gantry cranes with seaside and landside jobs. Discrete App. Math. 2018, 242, 53—68.
[CrossRef]

Kress, D.; Dornseifer, J.; Jaehn, F. An exact solution approach for scheduling cooperative gantry cranes. Eur. J. Oper. Res. 2019,
273, 82-101. [CrossRef]

Lu, H.; Wang, S. A study on multi-ASC scheduling method of automated container terminals based on graph theory. Comput.
Ind. Eng. 2019, 129, 404-416. [CrossRef]

Zheng, F; Man, X.; Chu, E; Liu, M.; Chu, C. Two Yard Crane Scheduling With Dynamic Processing Time and Interference. IEEE
Trans. Intell. Transp. 2018, 19, 3775-3784. [CrossRef]

Xiong, H.; Shi, S.; Ren, D.; Hu, J. A survey of job shop scheduling problem: The types and models. Comput. Ind. Eng. 2022,
142,105731. [CrossRef]

Yang, S.; Wang, J.; Xu, Z. Real-time scheduling for distributed permutation flowshops with dynamic job arrivals using deep
reinforcement learning. Adv. Eng. Inform. 2022, 54, 101776. [CrossRef]

Ni, E; Hao, J; Lu, J.; Tong, X.; Yuan, M,; Duan, J.; Ma, Y,; He, K. A Multi-Graph Attributed Reinforcement Learning Based
Optimization Algorithm for Large-Scale Hybrid Flow Shop Scheduling Problem. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 14-18 August 2021; pp. 3441-3451.

Song, W.; Chen, X,; Li, Q.; Cao, Z. Flexible Job Shop Scheduling via Graph Neural Network and Deep Reinforcement Learning.
IEEE Trans. Ind. Inform. 2022, 19, 1600-1610. [CrossRef]

Lin, C; Deng, D.; Chih, Y.; Chiu, H.T. Smart manufacturing scheduling with edge computing using multiclass deep Q network.
IEEE Trans. Ind. Inform. 2019, 15, 4276-4284. [CrossRef]

Zhang, C.; Song, W.; Cao, Z.; Zhang, J.; Tan, P.S.; Chi, X. Learning to dispatch for job shop scheduling via deep reinforcement
learning. Proc. Adv. Neur. Inf. Process. Syst. 2020, 33, 1621-1632.

Wu, Z,; Pan, S.; Chen, F; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 2020, 32, 4-24. [CrossRef]

Park, J.; Chun, J.; Kim, S.H.; Kim, Y.; Park, J. Learning to schedule job-shop problems: Representation and policy learning using
graph neural network and reinforcement learning. Int. J. Prod. Res. 2021, 59, 3360-3377. [CrossRef]

Park, J.; Bakhtiyar, S.; Park, J. ScheduleNet: Learn to solve multi-agent scheduling problems with reinforcement learning. arXiv
2021, arXiv:2106.03051.

Zhao, Y.; Wang, Y.; Tan, Y.; Zhang, J.; Yu, H. Dynamic Jobshop Scheduling Algorithm Based on Deep Q Network. IEEE Access
2021, 9, 122995-123011. [CrossRef]

Wang, L.; Hu, X.; Wang, Y.; Xu, S.; Ma, S.; Yang, K,; Liu, Z.; Wang, W. Dynamic job-shop scheduling in smart manufacturing using
deep reinforcement learning. Comput. Netw. 2021, 190, 107969. [CrossRef]

http://dx.doi.org/10.1016/j.aei.2022.101722
http://dx.doi.org/10.1016/j.trc.2020.02.012
http://dx.doi.org/10.1109/TCYB.2020.3024849
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1016/j.engappai.2021.104603
http://dx.doi.org/10.1109/TNNLS.2022.3152527
http://dx.doi.org/10.1016/j.ejor.2020.07.063
http://dx.doi.org/10.1109/TNNLS.2021.3068828
http://dx.doi.org/10.1016/j.ejor.2017.01.037
http://dx.doi.org/10.1016/j.cie.2015.04.026
http://dx.doi.org/10.1016/j.dam.2016.04.006
http://dx.doi.org/10.1016/j.cie.2018.12.039
http://dx.doi.org/10.1016/j.aei.2023.102015
http://dx.doi.org/10.1016/j.dam.2017.06.015
http://dx.doi.org/10.1016/j.ejor.2018.07.043
http://dx.doi.org/10.1016/j.cie.2019.01.050
http://dx.doi.org/10.1109/TITS.2017.2780256
http://dx.doi.org/10.1016/j.cor.2022.105731
http://dx.doi.org/10.1016/j.aei.2022.101776
http://dx.doi.org/10.1109/TII.2022.3189725
http://dx.doi.org/10.1109/TII.2019.2908210
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1080/00207543.2020.1870013
http://dx.doi.org/10.1109/ACCESS.2021.3110242
http://dx.doi.org/10.1016/j.comnet.2021.107969

Electronics 2023, 12, 3288 22 of 22

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Zhang, Y.; Zhu, H.; Tang, D.; Zhou, T.; Gui, Y. Dynamic job shop scheduling based on deep reinforcement learning for multi-agent
manufacturing systems. Robot. Comput.-Int. Manuf. 2022, 78, 102412. [CrossRef]

Saanen, Y.; Valkengoed, M. Comparison of three automated stacking alternatives by means of simulation. In Proceedings of the
Winter Simulation Conference, Orlando, FL, USA, 4 December 2005; p. 10. [CrossRef]

Park, K.; Park, T.; Ryu, K.R. Planning for remarshaling in an automated container terminal using cooperative coevolutionary
algorithms. In Proceedings of the 2009 ACM Symposium on Applied Computing, New York, NY, USA, 8-12 March 2009;
pp. 1098-1105.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In
Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4-9 December 2017; Volume 30.
Kool, W.; van Hoof, H.; Welling, M. Attention, Learn to Solve Routing Problems! In Proceedings of the International Conference
on Learning Representations, Vancouver, BC, Canada, 30 April-3 May 2018.

Li, J; Ma, Y;; Gao, R;; Cao, Z,; Lim, A.; Song, W.; Zhang, J. Deep Reinforcement Learning for Solving the Heterogeneous
Capacitated Vehicle Routing Problem. IEEE Trans. Cybern. 2021, 52, 13572-13585. [CrossRef]

Xin, L.; Song, W.; Cao, Z.; Zhang, J. Step-Wise Deep Learning Models for Solving Routing Problems. IEEE Trans. Ind. Inform.
2021, 17, 4861-4871. [CrossRef]

Li, K.; Zhang, T.; Wang, R.; Wang, Y.; Han, Y.; Wang, L. Deep Reinforcement Learning for Combinatorial Optimization: Covering
Salesman Problems. IEEE Trans. Cybern. 2021, 52, 13142-13155. [CrossRef]

Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, QC, Canada, 7-12 December 2015; Volume 28.

Song, W.; Mi, N.; Li, Q.; Zhuang, J.; Cao, Z. Stochastic Economic Lot Scheduling via Self-Attention Based Deep Reinforcement
Learning. IEEE Trans. Autom. Sci. Eng. 2023. [CrossRef]

Xu, X.; Yoneda, M. Multitask Air-Quality Prediction Based on LSTM-Autoencoder Model. IEEE Trans. Cybern. 2021, 51, 2577-2586.
[CrossRef]

Zhong, M.; Yang, Y.; Dessouky, Y.; Postolache, O. Multi-AGV scheduling for conflict-free path planning in automated container
terminals. Comput. Ind. Eng. 2020, 142, 106371. [CrossRef]

Vinod, K.; Prabagaran, S.; Joseph, O. Dynamic due date assignment method: A simulation study in a job shop with sequence-
dependent setups. J. Manuf. Technol. Mana. 2019, 30, 987-1003.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.rcim.2022.102412
http://dx.doi.org/10.1109/WSC.2005.1574425
http://dx.doi.org/10.1109/TCYB.2021.3111082
http://dx.doi.org/10.1109/TII.2020.3031409
http://dx.doi.org/10.1109/TCYB.2021.3103811
http://dx.doi.org/10.1109/TASE.2023.3248229
http://dx.doi.org/10.1109/TCYB.2019.2945999
http://dx.doi.org/10.1016/j.cie.2020.106371

	Introduction
	Literature Review
	Twin ASCs Scheduling Approaches
	DRL Methods for Scheduling Problems

	Problem Description
	Methodology
	Markov Decision Process
	State
	Action
	Transition
	Reward
	Policy

	Raw Features
	Feature Extraction Network
	DMA
	LICA

	Actor–Critic Framework and Training Algorithm
	Policy Network
	Value Network
	Training Algorithm

	Experiment
	Experiment Settings
	Simulation Environment Settings
	Instance Generation
	Baselines
	Hyperparameters and Implementation

	Training and Ablation Experiments
	Performance Comparison for Different Training Scales
	Generalization Performance for Various Scales
	Generalization Performance for Different Distributions
	Generalization for Different AGV Arrival Processes

	Conclusions and Future Work
	References

