Design and Validation of a V-Gate n-MOSFET-Based RH CMOS Logic Circuit with Tolerance to the TID Effect
Abstract
:1. Introduction
2. Proposed RH CMOS Logic Circuits
2.1. Introduction to the RH CMOS Logic Circuit
2.2. V-Gate n-MOSFET-Based CMOS Logic Circuit Modeling and Simulation
3. Chip Implementation and Experimental Results of RH CMOS Logic Circuit
3.1. Chip Implementation of the RH CMOS Logic Circuit
3.2. Radiation Exposure Test and Analysis of Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Q.; Jiang, J. An overview of radiation effects on electronic devices under severe accident conditions in NPPs, rad-hardened design techniques and simulation tools. Prog. Nucl. Energy 2019, 114, 105–120. [Google Scholar] [CrossRef]
- Xin, Y.; Wu, L.; Xiaolong, L.; Mohan, L.; Xin, W.; Jing, S.; Qi, G. Total Ionizing Dose Effect and Failure Mechanism of Digital Signal Processor. Chin. J. Electron. 2021, 32, 986–990. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Z.; Shao, H.; Zhang, Z.; Ning, B.; Chen, M.; Bi, D.; Zou, S. Total ionizing dose effects in elementary devices for 180-nm flash technologies. Microelectron. Reliab. 2011, 51, 1295–1301. [Google Scholar] [CrossRef]
- Li, J.; Chen, W.; Li, R.; Wang, G.; Qi, C.; Liu, Y.; Jin, X.; Bai, X.; Wang, C. Effects of total ionizing dose on transient ionizing radiation upset sensitivity of 40–180 nm SRAMs. AIP Adv. 2022, 12, 015026. [Google Scholar] [CrossRef]
- Gaul, S.; van Vonno, N.; Voldman, S.; Morris, W. Integrated Circuit Design for Radiation Environments; Wiley: New York, NY, USA, 2019. [Google Scholar]
- Dewitte, H.; Paillet, P.; Rizzolo, S.; Roch, A.L.; Marcandella, C.; Goiffon, V. Ultra-high total ionizing dose effects on MOSFETs for analog applications. IEEE Trans. Nucl. Sci. 2021, 68, 697–706. [Google Scholar] [CrossRef]
- Kumar, M.; Ubhi, J.S.; Basra, S.; Chawla, A.; Jatana, H.S. Total ionizing dose hardness analysis of transistors in commercial 180 nm CMOS technology. Microelectron. J. 2021, 115, 105182. [Google Scholar] [CrossRef]
- Chen, L.; Gingrich, D.M. Study of N-channel MOSFETs with an enclosed-gate layout in a 0.18 µm CMOS technology. IEEE Trans. Nucl. Sci. 2005, 52, 861–867. [Google Scholar] [CrossRef]
- Bucher, M.; Nikolaou, A.; Papadopoulou, A.; Makris, N.; Chevas, L.; Borghello, G.; Koch, H.D.; Faccio, F. Total Ionizing Dose Effects on Analog Performance of 65 nm Bulk CMOS with Enclosed-Gate and Standard Layout. In Proceedings of the International Conference on Microelectronic Test Structures, Austin, TX, USA, 19–22 March 2018. [Google Scholar] [CrossRef]
- Cardoso, G.S.; Balen, T.R. Performance Evaluation of Radiation Hardened Analog Circuits based on Enclosed Layout Geometry. In Proceedings of the 17th IEEE Latin American Test Symposium (LATS), Foz do Iguacu, Brazil, 6–8 April 2016. [Google Scholar] [CrossRef]
- Lee, M.S.; Lee, H.C. Dummy gate-assisted n-MOSFET layout for a radiation-tolerant integrated circuit. IEEE Trans. Nucl. Sci. 2013, 60, 3084–3091. [Google Scholar] [CrossRef]
- Lee, M.S.; Lee, H.C. Aspect ratio model for radiation-tolerant dummy gate-assisted n-MOSFET layout. Int. Sch. Res. Not. 2014, 2014, 145759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, M.; Prakash, N.R.; Kumar, A.; Jatana, H.S. L Style n-MOSFET Layout For Mitigating TID Effects; Springer: Silicon Valley, CA, USA, 2021. [Google Scholar]
- Lee, M.; Cho, S.; Lee, N.; Jeong, S.; Kim, S. Design of a radiation-tolerant I-gate n-MOSFET structure and analysis of Its characteristic. J. Korea Inst. Inf. Commun. Eng. 2016, 20, 1927–1934. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Lee, N.; Kim, J.; Hwang, Y.; Cho, S. Modeling and simulation-based layout optimization for tolerance to TID effect on n-MOSFET. Electronics 2021, 10, 887. [Google Scholar] [CrossRef]
- Bala, S.; Kumar, R.; Kumar, A. Total ionization dose (TID) effects on 2D MOS devices. Trans. Electr. Electron. Mater. 2021, 22, 1–9. [Google Scholar] [CrossRef]
- Saks, N.S.; Ancona, M.G.; Modolo, J.A. Generation of interface states by ionizing radiation in very thin MOS oxides. IEEE Trans. Nucl. Sci. 1986, 33, 1185–1190. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, M.; Yoshida, R.; Oshima, Y.; Ando, M.; Kimura, A.; Hirakawa, K.; Lwase, M.; Nabeya, S.; Yoda, T.; Ishihara, N. Dependence of total ionizing dose effect of nMOS transistors on the on/off duty ratio of a gate voltage. Jpn. J. Appl. Phys. 2021, 60, 104501. [Google Scholar] [CrossRef]
- Malik, M.; Prakash, N.R.; Kumar, A. Comparative analysis of radiation tolerant analog circuit layout in 180 nm CMOS technology for space application. Microelectron. J. 2023, 131, 105665. [Google Scholar] [CrossRef]
- Turowski, M.; Raman, A.; Schrimpf, R.D. Nonuniform total-dose-induced charge distribution in shallow-trench isolation oxides. IEEE Trans. Nucl. Sci. 2004, 51, 3166–3171. [Google Scholar] [CrossRef]
Type | Leakage Current (@25 kGy) |
---|---|
Standard CMOS NOT [μA] | 11.52 |
Radiation-Hardened CMOS NOT [μA] | 0.01 |
Standard CMOS NAND [μA] | 13.05 |
Radiation-Hardened CMOS NAND [μA] | 0.034 |
Standard CMOS NOR [μA] | 21.69 |
Radiation-Hardened CMOS NOR [μA] | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ki, D.; Lee, M.; Lee, N.; Cho, S. Design and Validation of a V-Gate n-MOSFET-Based RH CMOS Logic Circuit with Tolerance to the TID Effect. Electronics 2023, 12, 3331. https://doi.org/10.3390/electronics12153331
Ki D, Lee M, Lee N, Cho S. Design and Validation of a V-Gate n-MOSFET-Based RH CMOS Logic Circuit with Tolerance to the TID Effect. Electronics. 2023; 12(15):3331. https://doi.org/10.3390/electronics12153331
Chicago/Turabian StyleKi, Donghan, Minwoong Lee, Namho Lee, and Seongik Cho. 2023. "Design and Validation of a V-Gate n-MOSFET-Based RH CMOS Logic Circuit with Tolerance to the TID Effect" Electronics 12, no. 15: 3331. https://doi.org/10.3390/electronics12153331
APA StyleKi, D., Lee, M., Lee, N., & Cho, S. (2023). Design and Validation of a V-Gate n-MOSFET-Based RH CMOS Logic Circuit with Tolerance to the TID Effect. Electronics, 12(15), 3331. https://doi.org/10.3390/electronics12153331