A Fully Integrated 0.6 Gbps Data Communication System for Inductive-Based Digital Isolator with 0.8 ns Propagation Delay and 10−15 BER
Abstract
:1. Introduction
2. Inductive-Based Digital Isolation System
2.1. Tx Design
2.2. Transformer Design
2.3. Rx Design
2.4. Common Mode Noise Analysis
3. Measurement Results
3.1. System Functionality
3.2. Temperature Variations
3.3. Common Mode Rejection
3.4. Jitter Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, M.; Hassan, A.; Honarparvar, M.; Nabavi, M.; Audet, Y.; Sawan, M.; Savaria, Y. A versatile SoC/SiP sensor interface for industrial applications: Implementation challenges. IEEE Access 2022, 10, 24540–24555. [Google Scholar] [CrossRef]
- Stecher, M.; Jensen, N.; Denison, M.; Rudolf, R.; Strzalkoswi, B.; Muenzer, M.N.; Lorenz, L. Key technologies for system-integration in the automotive and Industrial Applications. IEEE Trans. Power Electron. 2005, 20, 537–549. [Google Scholar] [CrossRef]
- Kamath, A.; Neeraj, B.; Kannan, S. Understanding Failure Modes in Isolators; Texas Instruments Incorporated: Dallas, TX, USA, 2018. [Google Scholar]
- Ragonese, E.; Palmisano, G.; Parisi, A.; Spina, N. Highly Integrated Galvanically Isolated Systems for Data/Power Transfer. In Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy, 27–29 November 2019; pp. 518–521. [Google Scholar]
- Mazumder, S.K.; Sarkar, T. Optically activated gate control for power electronics. IEEE Trans. Power Electron. 2011, 26, 2863–2886. [Google Scholar] [CrossRef]
- SFH6747T; High Speed Optocoupler. Vishay Semiconductor: Malvern, PA, USA, 2004.
- Mallia, S.S.; Ns, S.; Adinarayana, S.K.; Aniruddhan, S. A self powered 50-Mb/s OOK transmitter for optoisolator LED emulation. IEEE J. Solid-State Circuits 2017, 52, 678–687. [Google Scholar] [CrossRef]
- Krone, A.; Tuttle, T.; Scott, J.; Hein, J.; Dupuis, T.; Sooch, N. A CMOS direct access arrangement using digital capacitive isolation. In Proceedings of the 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177), San Francisco, CA, USA, 7 February 2001; pp. 300–301. [Google Scholar] [CrossRef]
- Altoobaji, I.; Ali, M.; Hassan, A.; Audet, Y.; Lakhssassi, A. A High Speed Fully Integrated Capacitive Digital Isolation System in 0.35 µm CMOS for Industrial Sensor Interfaces. In Proceedings of the 2021 19th IEEE International New Circuits and Systems Conference (NEWCAS), Toulon, France, 13–16 June 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Shi, G.; Yan, R.; Xi, J.; He, L.; Ding, W.; Pan, W.; Liu, Z.; Yang, F.; Chen, D. A Compact 6 ns Propagation Delay 200 Mbps 100 kV/um CMR Capacitively Coupled Direction Configurable 4-Channel Digital Isolator in Standard CMOS. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 9–12 December 2018; pp. 721–724. [Google Scholar]
- Mahalingam, P.; Guiling, D.; Lee, S. Manufacturing challenges and method of fabrication of on-chip capacitive digital isolators. In Proceedings of the 2007 International Symposium on Semiconductor Manufacturing, Santa Clara, CA, USA, 15–17 October 2007; pp. 1–4. [Google Scholar]
- Moghe, Y.; Terry, A.; Luzon, D. Monolithic 1.8V–3.3V dual-channel 640Mbps digital isolator in 0.5μm SOS. In Proceedings of the 2012 IEEE International SOI Conference (SOI), Napa, CA, USA, 1–4 October 2012; pp. 1–2. [Google Scholar] [CrossRef]
- Akiyama, N.; Kojima, Y.; Nemoto, M.; Yukutake, S.; Iwasaki, T.; Amishiro, M.; Kanekawa, N.; Watanabe, A.; Takeuchi, Y. A high-voltage monolithic isolator for a communication network interface. IEEE Trans. Electron Devices 2002, 49, 895–901. [Google Scholar] [CrossRef]
- Culurciello, E.; Pouliquen, P.O.; Andreou, A.G.; Strohben, K.; Jaskulek, S. Monolithic digital galvanic isolation buffer fabricated on silicon on sapphire CMOS. Electron. Lett. 2005, 41, 526–528. [Google Scholar] [CrossRef] [Green Version]
- von Daak, M.; Hille, P.; Silber, D. Isolated capacitively coupled MOS driver circuit with bidirectional signal transfer. In Proceedings of the PESC 98 Record, 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), Fukuoka, Japan, 22–22 May 1998; pp. 1208–1213. [Google Scholar] [CrossRef]
- Hashimoto, T.; Yuyama, Y.; Amishiro, M.; Nemoto, M.; Yukutake, S.; Kojima, Y.; Kanekawa, N.; Takeuchi, Y.; Watanebe, A. 4-kV 100-Mbps monolithic isolator on SOI with multi-trench isolation for wideband network. In Proceedings of the 2009 21st International Symposium on Power Semiconductor Devices & IC’s, Barcelona, Spain, 14–18 June 2009; pp. 49–52. [Google Scholar] [CrossRef]
- Munzer, M.; Ademmer, W.; Strzalkowski, B.; Kaschani, K.T. Insulated signal transfer in a half bridge driver IC based on coreless transformer technology. In Proceedings of the The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003, Singapore, Singapore, 17–20 November 2003; pp. 93–96. [Google Scholar] [CrossRef]
- Münzer, M.; Ademmer, W.; Strzalkowski, B.; Kaschani, K.T. Coreless transformer, a new technology for half bridge driver ICs. In Proceedings of the PCIM, Nuremberg, Germany, 20–22 May 2003. [Google Scholar]
- Chen, B.; Wynne, J.; Kliger, R. High speed digital isolators using microscale on-chip transformers. Elektron. Mag. 2003, 15, 1–6. [Google Scholar]
- Chen, B. Isolated half-bridge gate driver with integrated high-side supply. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 3615–3618. [Google Scholar] [CrossRef]
- Krishnapura, N.; Bhat, A.N.; Mukherjee, S.; Shrivastava, K.A.; Bonu, M. Maximizing the data rate of an inductively coupled chip-to-chip link by resetting the channel state variables. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 3531–3543. [Google Scholar] [CrossRef]
- Timothe, S.; Nicolas, R.; Jean-Christophe, C.; Jean-Daniel, A. Design and characterization of a signal insulation coreless transformer integrated in a CMOS gate driver chip. In Proceedings of the 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs, San Diego, CA, USA, 23–26 May 2011; pp. 360–363. [Google Scholar] [CrossRef]
- Kaeriyama, S.; Uchida, S.; Furumiya, M.; Okada, M.; Maeda, T.; Mizuno, M. A 2.5 kV isolation 35 kV/us CMR 250 Mbps digital isolator in standard CMOS with a small transformer driving technique. IEEE J. Solid-State Circuits 2012, 47, 435–443. [Google Scholar] [CrossRef]
- Uchida, S.; Kaeriyama, S.; Nagase, H.; Takeda, K.; Nakashiba, Y.; Maeda, T.; Ishihara, K. A face-to-face chip stacking 7 kV RMS digital isolator for automotive and industrial motor drive applications. In Proceedings of the 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Waikoloa, HI, USA, 15–19 June 2014; pp. 442–445. [Google Scholar] [CrossRef]
- Kagaya, T.; Miyazaki, K.; Takamiya, M.; Sakurai, T. A 500-Mbps Digital Isolator Circuits using Counter-Pulse Immune Receiver Scheme for Power Electronics. In Proceedings of the 2019 International Conference on IC Design and Technology (ICICDT), Suzhou, China, 17–19 June 2019; pp. 1–4. [Google Scholar]
- Javid, M.; Ptacek, K.; Burton, R.; Kitchen, J. A 650 kV/μs Common-Mode Resilient CMOS Galvanically Isolated Communication System. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 587–598. [Google Scholar] [CrossRef]
- Yun, R.; Sun, J.; Gaalaas, E.; Chen, B. A transformer-based digital isolator with 20kVPK surge capability and >200 kV/µS Common Mode Transient Immunity. In Proceedings of the 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, HI, USA, 15–17 June 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Altoobaji, I.; Ali, M.; Hassan, A.; Nabavi, M.; Audet, Y.; Lakhssassi, A. A Fully Integrated On-Chip Inductive Digital Isolator: Design Investigation and Simulation. In Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 9–12 August 2020; pp. 868–871. [Google Scholar]
- Sankaran, S.; Kramer, B.; Howard, G.; Sutton, B.; Walberg, R.; Khanolkar, V.; Payne, R.; Morgan, M. An efficient and resilient ultra-high speed galvanic data isolator leveraging broad-band multi resonant tank electro-magnetic coupling. In Proceedings of the 2015 Symposium on VLSI Circuits (VLSI Circuits), Kyoto, Japan, 17–19 June 2015; pp. C210–C211. [Google Scholar] [CrossRef]
- Chen, L.; Sankman, J.; Mukhopadhyay, R.; Morgan, M.; Ma, D.B. 25.1 A 50.7% peak efficiency subharmonic resonant isolated capacitive power transfer system with 62 mW output power for low-power industrial sensor interfaces. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 428–429. [Google Scholar] [CrossRef]
- Ragonese, E.; Spina, N.; Castorina, A.; Lombardo, P.; Greco, N.; Parisi, A.; Palmisano, G. A Fully Integrated Galvanically Isolated DC-DC Converter with Data Communication. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 1432–1441. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bhat, A.N.; Shrivastava, K.A.; Bonu, M.; Sutton, B.; Gopinathan, V.; Thiagarajan, G.; Patki, A.; Malakar, J.; Krishnapura, N. 25.4 A 500 Mb/s 200 pJ/b die-to-die bidirectional link with 24 kV surge isolation and 50 kV/μs CMR using resonant inductive coupling in 0.18μm CMOS. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 434–435. [Google Scholar]
- Ishihara, H.; Onizuka, K. 18.8 A Fully-Generic-Process Galvanic Isolator for Gate Driver with 123 mW 23% Power Transfer and Full-Triplex 21/14/0.5 Mb/s Bidirectional Communication Utilizing Reference-Free Dual-Modulation FSK. In Proceedings of the 2020 IEEE International Solid- State Circuits Conference—(ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 300–302. [Google Scholar] [CrossRef]
- ISO72x Single Channel High-Speed Digital Isolators, Data Sheet, Rev. L; Texas Instruments: Dallas, TX, USA, 2015.
- ISO7841x High-Performance, 8000-Vpk Reinforced Quad-Channel Digital Isolator, SLLSEM3G; Texas Instruments: Dallas, TX, USA, 2014.
- ADuM110N, 3.0 kV RMS Digital Isolator; Analog Devices: Norwood, MA, USA, 2019.
- Mohan, S.S.; Yue, C.P.; del Mar Hershenson, M.; Wong, S.S.; Lee, T.H. Modeling and characterization of on-chip transformers. International Electron Devices Meeting 1998. In Proceedings of the International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217), San Francisco, CA, USA, 6–9 December 1998; pp. 531–534. [Google Scholar]
- Razavi, B. Design of Analog CMOS Integrated Circuits; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Sackinger, E.; Guggenbuhl, W. A versatile building block: The CMOS differential difference amplifier. IEEE J. Solid-State Circuits 1987, 22, 287–294. [Google Scholar] [CrossRef]
- Baker, R.J. CMOS Circuit Design, Layout, and Simulation, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
Ref. | Process | Iso. Element | Area | Scheme | Max. VDD (V) | Iso. Rating (kVrms) | Max. CMTI | Max. Speed (Gbps) | Delay (ns) | Energy @ 1 Mbps (pJ/b) |
---|---|---|---|---|---|---|---|---|---|---|
[9] | 0.35 | Cap. | - | Pulse | 5 | 2.28 (b) | - | 0.5 | 2 | 1200 |
[12] | 0.5 | Cap. | 60 (a) | Pulse | 1.8 | - | - | 0.26 | 15 | 99 |
[13] | 0.4 | Cap. | 37.5 | Pulse | 3.3 | 2.3 | - | 0.1 | 10 | 363 (d) |
[23] | 0.5 | Ind. | 11.98 | Pulse | 5 | 2.5 | 35 | 0.25 | 5.5 | 8000 |
[25] | 0.18 | Ind. | 12.26 | Pulse | 5 | 1 | 130 (c) | 0.5 | 3.2 | 5800 |
[26] | 0.25 | Ind. | 71.25 (a) | OOK | 5 | 3.34 | 650 | 0.08 | 15.5 | 9500 |
[27] | 0.18 | Ind. | - | OOK | 5 | 7.5 | 200 | 0.2 | 11 | 14,000 |
This work @ M1-M2 coils | 0.35 | Ind. | 75.36 | Pulse | 5 | 0.5 (b) | 0.5 | 0.6 | 0.8 | 8150 |
This work @ M1-M3 coils | 1 (b) | 0.5 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altoobaji, I.; Hassan, A.; Ali, M.; Nabavi, M.; Audet, Y.; Lakhssassi, A. A Fully Integrated 0.6 Gbps Data Communication System for Inductive-Based Digital Isolator with 0.8 ns Propagation Delay and 10−15 BER. Electronics 2023, 12, 3336. https://doi.org/10.3390/electronics12153336
Altoobaji I, Hassan A, Ali M, Nabavi M, Audet Y, Lakhssassi A. A Fully Integrated 0.6 Gbps Data Communication System for Inductive-Based Digital Isolator with 0.8 ns Propagation Delay and 10−15 BER. Electronics. 2023; 12(15):3336. https://doi.org/10.3390/electronics12153336
Chicago/Turabian StyleAltoobaji, Isa, Ahmad Hassan, Mohamed Ali, Morteza Nabavi, Yves Audet, and Ahmed Lakhssassi. 2023. "A Fully Integrated 0.6 Gbps Data Communication System for Inductive-Based Digital Isolator with 0.8 ns Propagation Delay and 10−15 BER" Electronics 12, no. 15: 3336. https://doi.org/10.3390/electronics12153336
APA StyleAltoobaji, I., Hassan, A., Ali, M., Nabavi, M., Audet, Y., & Lakhssassi, A. (2023). A Fully Integrated 0.6 Gbps Data Communication System for Inductive-Based Digital Isolator with 0.8 ns Propagation Delay and 10−15 BER. Electronics, 12(15), 3336. https://doi.org/10.3390/electronics12153336