
Citation: Zhao, Y.; Shi, B.; Zhang, Q.;

Yuan, Y.; He, J. Research on Cache

Coherence Protocol Verification

Method Based on Model Checking.

Electronics 2023, 12, 3420.

https://doi.org/10.3390/

electronics12163420

Academic Editor: Yue Wu

Received: 29 June 2023

Revised: 3 August 2023

Accepted: 9 August 2023

Published: 11 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Research on Cache Coherence Protocol Verification Method
Based on Model Checking
Yiqiang Zhao 1, Boning Shi 1, Qizhi Zhang 1, Yidong Yuan 1,2 and Jiaji He 1,*

1 School of Microelectronics, Tianjin University, Tianjin 300072, China; yq_zhao@tju.edu.cn (Y.Z.);
shiboning@tju.edu.cn (B.S.); qizhi_zhang@tju.edu.cn (Q.Z.); yuanyidong@sgchip.sgcc.com.cn (Y.Y.)

2 Beijing Zhixin Microelectronics Technology Co., Ltd., Beijing 100192, China
* Correspondence: dochejj@tju.edu.cn

Abstract: This paper analyzes the underlying logic of the processor’s behavior level code. It proposes
an automatic model construction and formal verification method for the cache consistency protocol
with the aim of ensuring data consistency in the processor and the correctness of the cache function.
The main idea of this method is to analyze the register transfer level (RTL) code directly at the
module level and variable level, and extract the key modules and key variables according to the code
information. Then, based on key variables, conditional behavior statements are retrieved from the
code, and unnecessary statements are deleted. The model construction and simplification of related
core states are completed automatically, while also simultaneously generating the attribute library
to be verified, using “white list” as the construction strategy. Finally, complete cache consistency
protocol verification is implemented in the model detector UPPAAL. Ultimately, this mechanism
reduces the 142 state-transition path-guided global states of the cache module to be verified into
4 core functional states driven by consistency protocol implementation, effectively reducing the
complexity of the formal model, and extracting 32 verification attributes into 6 verification attributes,
reducing the verification time cost by 76.19%.

Keywords: multi-core processor; cache coherence protocol; attribute extraction; formal verification

1. Introduction
1.1. Background

With the advent of the digital age, all data on human activities will be traceable.
A series of analysis and processing of these data constitutes an important part of human
civilization, while the computer, as a carrier of analytical data, also plays a very critical role.
The application of artificial intelligence [1] and cloud computing [2] is changing rapidly,
and computer technology has also undergone great changes.

The computational power of a computer system is usually increased in two ways: one
is to increase the arithmetic power of a single processor by enhancing the size and process
of the integrated circuit. However, as the transistor density increases, the consequent
heat dissipation problems make this method of increasing the performance of a single
processor no longer feasible. Another way to increase the computational power of a system
is to increase the number of processors. Multiple processors are processed in parallel and
placed on a single chip to increase the computational throughput of the overall system, a
construction we call a multiprocessor [3]. Multi-core processor systems are widely used
because of their fast computational speed and high resource utilization [4], becoming a
research hotspot [5].

Compared with traditional single-core processors, the data access and data synchro-
nization mechanisms of multiprocessors are more complex. The shared cache, as an
important part of the multiprocessor, connects the processor cores to the memory and
can be accessed by multiple processor cores. It plays the role of coordinating the data
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and instructions of each processor core. Due to the complexity of the mechanism and
the importance of its function, the multi-core shared cache system is more prone to re-
source conflicts and resource contamination, which can cause the processor to enter into
an abnormal working state, resulting in a series of serious consequences. In addition,
the cache coherence protocol plays an important stabilization role as a rule for updating
and transferring data in the cache. In order to guarantee the correctness of data and the
legitimacy of program execution in multi-core processor systems, the industry has started
to carry out the verification of cache design at the design stage.

1.2. Research Progress and Related Work

Multi-core processor refers to the two or more processor cores integrated in a chip
processor structure, also known as a single-chip multiprocessor, by the United States Stan-
ford University first proposed [6]. The processor is the most important core component
of a computer because of its sophisticated and complex structure and cumbersome manu-
facturing process. In order to ensure the functional completeness and safety of multi-core
processors, it is necessary to verify them thoroughly.

The execution trace-based modelwas analyzed to verified multicore and real-time
systems in 2022 [7]. In this paper, they present the use of model-based constraints on top of
user-space and kernel traces to provide weighted analysis results. Their algorithms were
applied to multiple traces showing common problems for multi-core real-time systems.
The experimental results show that the algorithms can quickly identify many different
types of problems with a low runtime. An integrated tool was described by Grevtsev [8]
for early analysis of performance, power, physical and thermal characteristics of multi-
core systems. It includes cycle-accurate, transaction-level SystemC-based performance
models of POWER processors and system components. Kouki proposed a rapid verification
framework for developing multicore [9]. The proposed method makes it possible to verify
both homogeneous and heterogeneous multi-core processors with the cache coherency
mechanism and to execute multithreaded programs without full system simulation.

With the increasing scale of multicore processors in recent years, the data interac-
tion between multicore and multithreading has become more and more complex, which
makes the maintenance of data in the cache more difficult. In order to ensure the effi-
ciency and correctness of multithreaded workloads in multicore processors, the functional
completeness and information correctness of caches have become a necessary condition
for the development of multicore processors. Thus, the verification of cache has gained
wide attention.

Regarding the cache, as a buffer for data exchange, its data maintenance mechanism
obeys the cache coherence protocol, and the cache coherence protocol has also become
an important basis for ensuring the functional completeness of the cache. The cache
coherence protocol was first proposed in 1991 [10], and subsequent development over the
years has become a hotspot for research related to cache systems. In 2012, Shield John
et al. from the University of Queensland explored two different types of asymmetric
coherence strategies [11], which reduced the coherence cost of unshared data by 60%
with the bus-based asymmetric coherence strategy, effectively reducing the delay due to
coherent messages. In 2015, Joshi of Visvesvaraya National Institute of Technology Nagpur
presented a series of techniques to improve cache performance [12], focusing on the impact
of parameters such as the cache miss rate, average memory access time, execution time,
energy, area, scalability, etc., on the performance of caches. In 2021, Nair Arun et al.,
at the Grand Forks University of North Dakota, proposed a MOESIL cache coherence
protocol [13] that effectively reduces the off-target rate of the coherence protocol while
maintaining comparable energy consumption. In 2022, Derebasoglu of Bilkent University
proposed a software mechanism to improve the effectiveness of directory-based cache
coherence [14], resulting in a 13% reduction in coherence traffic. In the same year, Khalid
of the University of Jeddah gave an overview of the current problems and solutions to
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cache coherence [15], describing several approaches to cache coherence protocols for use in
distributed systems and analyzing which protocols are most suitable.

The traditional simulation-based verification method is time-consuming and does
not achieve full function coverage, making it unsuitable for complete cache coherence
protocol verification. The formal verification method, in contrast, is a mathematics-based
verification method that can cover all accessible states of integrated circuits and fully ensure
the system’s functional correctness.

Formal hardware verification can be traced back to at least 1979. Han of Xidian
University summarized the formal verification technology of hardware design that emerged
at the time [16], commented on its emergence reasons and main achievements, outlined
its main methods, and forecasted its future development trend. The formal verification
method is divided into three parts: equivalence testing [17], theorem proving, and model
checking [18,19]. The latter of these is a method for thoroughly detecting all of the accessible
states and behaviors in a given reaction system or model. It is widely used in verification
work because it is not only highly automated but it can also generate counterexamples
to inform the verifier of its specific situation [20,21]. At the moment, model checking is
primarily used for software verification, such as open-source code verification [22], the
static verification of application software [23], and so on. The security verification for
the system on the chip is usually the hardware verification for the processor [24]. Cache
coherence protocol research primarily focuses on protocol design and optimization [12],
such as the creation and execution of customizable cache coherency protocols for multi-core
processors [13], cache coherence protocols for optimizing process private data access [25],
and so on. In general, there have been few studies on the formal verification of the
cache coherence protocol, and the description of the circuit model state is relatively simple.
Because of the complexity of the processor structure, model generation not only necessitates
a high detector processing capacity but the explosion of the model state also complicates
verification. In a hardware formal verification effort, there is a paper which presented the
modeling and formal verification of the MESI cache coherence protocol [26]. The approach
is based on the developed series-parallel poset methodology. The advantage is the very
low space- and time complexity of the verification algorithms. The disadvantage is the very
low space- and time complexity of the verification algorithms.

For confronting complications with state explosion alongside the minimal verification
efficacy that can occur with traditional verification methods, this paper will perform
high-level formal modeling and will also functionally verify, through model-checking
technology, these cache coherence protocols. This paper will start with the behavioral
code of the processor system, analyze the key modules and critical variables of the circuit
without disturbing the original code logic thinking, and build a state reduction model
for the core state related to the protocol, which effectively reduces the model scale and
improves the modeling efficiency. Finally, in terms of verifying attribute extraction, this
paper abandons the verification idea of one thing and one discussion by analyzing the
verification model of one thing and one discussion. Not only that but this paper also fully
automates the work of model construction and verification tool adaptation, and verifies the
cache consistency function of the processor system via positive and negative proofs. The
work in this paper has two advantages in the study of verification of conformance protocols:
One is the automation of the modeling and verification attribute library construction, which
makes the verification of hardware a very simple task. The verifier only needs to identify
the functions and circuits to be verified in order to perform the verification, and does not
need to be very skilled in testing. The other is the simplification of both modeling and
attribute aspects in this paper, where fewer test vectors and more focused models make
verification efficient.

2. Principle

The functional verification of a multi-core shared cache system using a finite state
machine is investigated in this paper. The high-level applicable verification research on
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multi-core cache consistency is carried out in the research process, which is based on the
multi-core shared cache structure, with the finite state machine as the modeling form and
model checking as the technical method.

2.1. Multi-Core Processor

Multi-core processor refers to two or more processor cores integrated in a chip pro-
cessor structure, also known as a single-chip multiprocessor. The key to the design of
a multiprocessor architecture is to ensure that the interconnections and communication
mechanisms between the cores are stable and correct, and that the interconnections are
implemented through buses or cross switches. Different processor architectures need to
choose different interconnections by weighing their complexity and scalability [27,28].

Depending on the kernel organization, multi-core shared cache systems are usually
classified into multi-ported uniform cache access (UCA) and non-uniform cache access
(NUCA). As shown in Figure 1, UCA has only one L2 cache, which is interconnected with
the L1 cache through a bus or a cross switch, and this L2 cache is evenly shared by all
processor cores. The latency of L2 cache accesses is the same for each processor core. NUCA
has multiple L2 caches, and each processor core has a corresponding private L2 cache,
which is directly interconnected with the processor cores and accesses the other processor
cores or memory data through a bus or a cross switch.

Figure 1. Multicore processor architecture.

Different levels of caches have different management areas and speeds. The L1 cache
is privately owned by each processor core, and the processor core can only process the
data in the first-level cache, while the distance of the cache from the processor core has
a positive correlation with the data throughput speed of the cache. Then, the L1 cache is
the fastest cache, and this structure can effectively allocate data to improve the resource
utilization and computing efficiency of the processor system. The L1 cache is the fastest
cache, and this structure can allocate data efficiently and improve the resource utilization
and computational efficiency of the processor system. However, when different processor
cores read, write and modify the data in a uniform location in the memory, it may cause
a series of disordered competition and conflict. In order to ensure that data reading and
writing are carried out in an orderly and correct manner, it is necessary to ensure that the
copies of data in the caches at all levels are consistent with the data in the memory, and
therefore the cache coherence protocol emerged.

2.2. Multi-Core Shared Cache Structure and Cache Coherence Protocol

Due to the complex communication mechanisms of multicore processors, cache co-
herence plays a crucial role in maintaining coordination. The essence of a cache coherence
protocol is to specify an additional set of rules for cache access and data updates throughout
the system [29]. For ease of exposition, the discussion in this subsection is all about the
L2 non-uniform cache system, in which the private L1 cache and the shared L2 cache are
interconnected by a bus in this system architecture. In the processor system, assume that
there is a variable a with a value of 0. Both processor core 1 and processor core 3 acquire
the value of variable a and generate the corresponding copy, respectively. At this time,
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processor core 1 modifies the content of the copy of variable a to 1. Before this copy value is
written back, the content of the copy of variable a in processor core 3 is still 0, so the value
of variable a is in conflict. When the private caches of two processor cores fetch the same
variable, if additional consistency rules are not set, it may lead to incorrect execution results.

In order to ensure that the data in each cache are consistent while still maintaining
high CPU processing speed, current processors use two types of cache coherency protocol
implementations: the bus listening protocol [30] and the directory-based protocol [31].
Among them, the one using bus interconnection is the bus listening protocol; the intercon-
nection using L2 cache directory records is the directory-based protocol. And the most
mainstream cache coherence protocol is the MESI protocol. The protocol is named after the
possible states of the cache line, and the cache lines are coordinated to interconnect with
each other in different states to ensure the correctness of the data [32].

As shown in Figure 2, if a wants to read this cache line, it needs to issue a GETE
or GETS request to receive permission to read the latest valid data, and after the request
passes, the state of this cache line will be converted to the E state or the S state, and then
the processor core can read the contents of the cache line directly; if the processor core
corresponding to this cache line wants to modify this cache line, it needs to issue a GETM
request to get the permission to write, and after the request passes, the state of this cache
line is changed to the E state or the S state. If the processor core corresponding to the cache
line wants to modify the cache line, it needs to issue a GETM request to receive the write
permission, and after the request is passed, the state of the cache line will be converted to
the M state, and then the processor core can modify its content.

Figure 2. MESI cache coherence protocol.

If a L1 cache holds a cache line in state E, the corresponding processor core can read
the contents of the cache line directly. If the processor core corresponding to this cache
wants to modify the cache line, it needs to issue a GETM request to obtain write permission.
After the request passes, the state of the cache line is converted to the M state, and the
processor core can modify its content arbitrarily.

If a L1 cache holds a cache line in state S, the corresponding processor core can read the
contents of the cache line directly. If the processor core corresponding to this cache wants
to modify the cache line, it needs to issue a GETE request to receive the write permission
first. After the request is passed, the state of the cache line will be changed to state E to
prepare for the modification action of the processor core, and at the same time, other caches
holding the same copy of the data will receive a PUTS command to change the state of their
corresponding cache line to state I.

If a L1 cache holds a cache line in state M, the corresponding processor core can modify
the contents of the cache line arbitrarily, and the contents of the cache line are unique. If the
processor core corresponding to this cache wants to save the cache line, it needs to issue a
GETE request to receive the write-back permission. After the request passes, the L1 cache
reports upwards so that the contents of the L2 cache and the memory are synchronized
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with it, and the state of the cache line is converted to the E state so that other processor cores
are able to read the latest contents of the cache line. If the processor core corresponding to
this cache does not want to save the cache line, it needs to issue a PUTM request to receive
the privilege to abort the change, and after the request is passed, the state of the cache line
will be changed to state I, and the contents of the cache line will be invalidated.

2.3. Model Checking Verification Principle

Model checking is a verification method that detects all of the system model’s behav-
iors. Model checking is not only more automated than other verification methods but it can
also traverse all of the model’s reachable states, resulting in comparatively more complete
system verification.

Model checking consists primarily of three steps: modeling, attribute writing, and
verification. Modeling is the process of transforming a system to be verified into a formal
model that detection tools can recognize. In model checking, attributes are used to declare
the properties that the verifier wants to prove. Natural language attributes, in general,
must be expressed using logical languages that are compatible with model-checking tools.
During the verification process, all of the written attributes and the model to be verified
are entered into the model-checking tool, and their passability is judged one by one: the
representative meets the verification attribute, failure to pass indicates that this verification
attribute is not met, and a counterexample is generated for the verifier to analyze the cause
of the error.

Model checking has some limitations when dealing with large-scale systems. Most
importantly, a ‘state explosion’ may occur during modeling. This state refers to the system
model’s possible situation, whereas the model to be detected is an exhaustive list of the
system’s possible state space. The corresponding state explosion is a phenomenon in
which the state quantity within the complete system undergoes exponential growth in
correlation with the number of system units. The larger the circuit scale corresponding to
the digital integrated circuit, the more complex the structure. An in-depth formal analysis
of a multi-core shared cache system, which contains a large number of logic units, control
units, memory, and bus modules, will inevitably encounter the problem of state-space
explosion. As a result, while modeling the system, we must overcome the limitations of
state space and simplify it in order to alleviate the problem of state explosion.

3. Method
3.1. Circuit State Machine

The circuit state machine, also called the finite state machine, is a state model descrip-
tion of a temporal circuit [33]. Unlike combinational logic, a circuit whose output is only
related to the inputs, for temporal logic, its output is not only related to the inputs but is
also affected by the previous state. As shown in Figure 3, a combinational logic circuit and a
memory circuit together form a temporal logic circuit, and the output of the combinational
logic circuit is partially fed back to the input of the combinational logic circuit through
the memory circuit, and again through the combinational logic circuit, which will have an
effect on the output of the combinational logic circuit.

Figure 3. MESI cache coherence protocol.

For today’s digital integrated circuits, even the outputs of combinational circuits are
affected by timing logic. Therefore, in practice, finite state machines can be used not only to
describe timing logic circuits but also for digital circuits that contain both timing logic and
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combinational logic. There are many kinds of logic representations of finite state machines,
the most mainstream of which are state transfer diagrams and state transfer tables. Shown
in Figure 4 and Table 1 (“-” in the table means that the state remains unchanged) are a
typical finite state machine state transfer diagram and state transfer table with two ways of
expression, both by the initial state, a number of intermediate states, the end of the state,
as well as the state of the transfer between the states.These transfer conditions are usually
control signals, and when these control signals reach a specific value of the state, the circuit
will make changes to the relevant data and other actions so that the circuit enters into a
new state.

Figure 4. State transfer diagram.

Table 1. State transfer table.

Condition1 Condition2

State1 State2 -
State2 - -

In the process of exploring the state description of a circuit, it can be found that the
number of states of a circuit is exponentially related to the triggers. For example, if a circuit
contains N flip-flops, the states of these flip-flop originals are either “0” or “1”, which means
that the whole circuit contains a total of 2N states. Therefore, when analyzing large-scale
integrated circuits, there is a possibility of state explosion due to limited resources, making
it difficult to model and analyze the circuit. Therefore, for larger scale circuits, it is necessary
to divide them into modules or subdivided functional levels.

The RTL code of circuit design, which is at a high level in the production design flow
of integrated circuits, expresses the expected function of the circuit by means of behavioral
statements, and is an important node to undertake the functional design and the physical
implementation of the circuit. In this paper, we will carry out research on formal modeling
techniques for the RTL code of circuits.

Assuming that the RTL code of a complete circuit system is denoted as V, where each
of the registers with different functions is denoted as v, and the hardware implementation
that connects these registers is denoted as vin, Equation (1) shows the complete system
code composition:

V := v1 ∧ v2 ∧ . . . ∧ vn ∧ vin (1)

By denoting the internal state transfer relation of a register variable as f and its internal
state as m, the transfer of a single register variable is as in Equation (2):

v
f→ m (2)

By denoting the internal state transfer relation of a register variable as f and its internal
state as m, the transfer of a single register variable is as in Equation (3):

V F→ M (3)

The finite state machine of a circuit system is a description of the state of the entire
system, and therefore, the states of all the register variables together constitute the overall
state of the circuit system, as in Equation (4):

M := m1 ∪m2 ∪ . . . ∪mn (4)

The signal that can cause state m of a single register to shift is noted as sig, whereupon
the logic cell can move to the next state m′ when a particular signal reaches a particular
value, as in Equation (5):
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m
sig→ m′ (5)

The signal that can cause a shift in the global state of the circuit system is noted as
SIG, and so SIG can be expressed as Equation (6):

SIG := sig1 ∪ sig2 ∪ . . . ∪ sign (6)

The overall state M of the circuit system moves to the next state M′ when it receives
the global signal SIG as in Equation (7):

M SIG→ M′ (7)

Taking the global state M of the circuit system as a finite state and the global signal
SIG as a finite state transfer condition, the global finite state machine of the circuit system
is shown in Equation (8):

M1
SIG1→ M2

SIG2→ M3 → . . .→Mn (8)

3.2. Model Construction

In contrast to the modeling method that only analyzes register units in netlist files,
the modeling method proposed in this paper can directly analyze behavior files and
automatically generate formal models. This method not only preserves the circuits’ original
functional behavior information but also applies to combinational logic. In this paper, the
logic analysis of behavior-level circuits is performed, and functional construction based
on behavior-level circuits is realized, effectively reducing the modeling difficulty and
improving the modeling efficiency.

In this paper, the automatic modeling process will be divided into three parts: behavior-
level module information analysis, tracking effective state and transition conditions based
on critical variables, and standardizing output as shown in Figure 5.

Figure 5. Automated formal modeling process.

3.2.1. RTL Code Information Analysis

For specific verification, not all register variables in the cache system circuit are
necessary, so unnecessary register variables or even unnecessary modules need to be
screened and removed. Due to the complexity of the IC system, this paper screens the
circuit at the module level as well as the register level based on the functional information
of the system, and retains only the parts related to the functional verification requirements
for model construction so as to facilitate the efficiency of the subsequent verification.

In the process of high-level verification research on the function of the integrated
circuit system, in addition to clarifying the functional information to be verified, it is also
necessary to clarify the responsibilities of the modules and parts of the system circuit
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so as to facilitate the construction of an accurate model of the system. Taking the multi-
core shared cache system with uniform cache access as an example, when exploring the
functional verification of the cache coherence protocol, it is necessary to firstly clarify in
which module the hardware implementation of the cache coherence protocol is embodied,
assuming that the state of the cache module in the circuit system is recorded as Mcache, and
the states of other irrelevant modules are recorded as M1, M2, M3 . . . . . . , . . . , then the state
of the whole circuit system is as in Equation (9):

M := Mcache ∪M1 ∪M2 ∪ . . . ∪Mn (9)

In the cache module, there exists again the coherence protocol-related specific register
(usually a concatenation of several register units) state, which is noted as mcorhenrency, and
the other irrelevant register states are noted as m1, m2, m3,. . . , then the state of the whole
cache module is as in Equation (10):

Mcache := mcorhenrency ∪m1 ∪m2 ∪ . . . ∪mn (10)

It is clear that neither the state of irrelevant modules nor the state of irrelevant registers
affects the exploration of coherence protocols, and so analyzing the state of irrelevant
registers would result in a certain degree of wasted resources. Therefore, for the verification
of a specific function, only the state of the relevant registers needs to be modeled, and so
for the verification of the cache coherence protocol function, only the relevant register state
mcorhenrency needs to be modeled.

In timing logic circuits, it is necessary to specify the names S1 and S2 of the relevant
register variables before and after the timing, where S1 represents the state before the
register variable is assigned, i.e., the previous state of the finite state machine, and S2
represents the state after the register variable is assigned, i.e., the state of the finite state
machine after a state jump occurs due to the input of a certain condition. Among them,
variable S1 and variable S2 are not necessarily specific to a particular register but can be
a combination or partially intercepted combination of multiple variables in the circuit;
however, they need to cover the full functional expression, and are the basis for the
subsequent construction of functionally relevant state models.

3.2.2. Behavioral Tracking of Key Variables

Second, key variables must be tracked. In RTL circuits, variable S1 and variable S2
are noted as key variables affecting the consistency of the multi-core shared cache, which
will be traced in the following for circuit behavior. The main idea of this part is to filter
the states and conditions involving the key variables, and complete the construction of
the formal model using only the S1 and S2 variable names and initial codes as inputs. As
shown in Figure 6, it is necessary to first intercept the portion containing the occurrence
of the assigned statement of variable S2 as a valid code segment, and then carry out the
aggregation and collation of the condition information with the circuit behavior, and finally
generate a number of sets of sufficient conditions oriented to the transfer of the state, the
specific process being as follows.

Variable S1 is used as a possible start state in a conditional statement and variable S2
is used as a possible end state in an assignment statement. Firstly, the range of values of
the two variables is determined. Secondly, the different states associated with different
assignments of the variables are defined. Thirdly, the global behavior is then traced
according to the key state. Finally, the start state, end state and transfer conditions for the
state transfer are summarized in the form of a state machine.
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Figure 6. Tracking of key variables.

3.2.3. Normalized Output

Normalized output is the final step in formal modeling. Following the completion of
the preceding operations, the system obtains several S2 assignment statements and their
corresponding sufficient conversion condition statements, which must then be normalized
by a finite state machine. The finite state machine is made up of three parts: the initial state,
the end state, and the meeting of specific conditions that can result in transformation. This
paper’s output format is as follows:

S1−− > S2 :: C1 :: C2 :: . . . :: Cn (11)

where S1 represents the initial state, such as the condition before the logical jump; S2
represents the end state, including the condition after the logical jump; and C1, C2, . . ., Cn
represent transformation conditions, and all conditions are in a parallel “AND” relationship.
This state transition’s preliminary condition is state1, the end condition is state2, and
the transformation conditions are A = value2 and condition1, so the output of the state
transition should be

state1−− > state2 :: A == value2 :: condition1 (12)

For any S2 assignment statement, you can obtain one or several state-transition state-
ments as shown in the above formula, traverse all S2 assignment statements appearing in
behavioral code, and output them line by line according to the format, and then you can
obtain a standardized finite state machine model.

3.3. Generation of Attribute Library to Be Verified

For a formal verification system for model checking, the verifier needs to write the
verification properties according to the structure of the system to be verified. The method
of describing the verification properties needs to combine the model structure with the
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verification topic, and at the same time, the reliability of the whole model system needs to
be taken into account. In the process of writing the description of validation attributes for
the system, the natural language is generally written according to the validation objective,
and then the attributes described in the natural language are translated into the formal
description language adapted by the validation tool by combining the specific model and
validation method, and finally the formal description language is written into the validation
system of the formal model so as to validate the passability of each attribute.

In the following, from the introduction of the formal description language, this section
proposes an attribute extraction method based on “whitelisting” and “blacklisting” for the
cache consistency protocol model, which solves the problem of “one issue” of the current
formal validation attributes and effectively improves the validation efficiency.

The verification attribute is a direct factor in determining whether the verification
system can meet the verification requirements. The extraction process is divided into two
parts: writing natural language in accordance with the verification target and writing logical
language in accordance with the natural language. The following is the basic formula for a
logic language based on computation tree logic (CTL):

A[]Process.state1 (13)

A <> Process.state1 (14)

E[]Process.state1 (15)

E <> Process.state1 (16)

Process.state1−− > Process.state2 (17)

where A stands for all paths, E stands for the existence of a path, [] stands for all states on
the path, < > stands for a future state, Process stands for a certain model, state1 and state2
stand for certain states in a certain model, –> stands for the logical state of “causing”, and
the logical language expression with the same meaning as -> is A [](Process.state1 imply
A<> Process.state2).

For a cache-consistent functional verification system, the traditional approach requires
traversing all the paths in the circuit model and determining the correctness of the state
transfer conditions and state accessibility one by one, implying that as many paths exist
in the system as there are verification attributes to write.However, the time cost of this
“one-issue” verification approach is high, and the number of paths in the formal model
is nearly square to the number of states in the model, making it cumbersome to write
attributes for all paths in a large-scale model.

Based on the analysis of the original circuit function and the in-depth discussion of the
functional model, this thesis proposes a functional verification attribute extraction method
combining “white list” and “black list” guided by the verification objectives. The method
starts from the three aspects of state accessibility, no deadlock and functional completeness,
and creates a functional verification attribute library for the system based on the structural
characteristics of the formal model.

The test of circuit reliability depends on whether the system satisfies the following
three conditions after the design is completed:

1 State reachability: for every state in the formal model, there exists at least one path that
enables the model to reach that state. This property is mandated by the verification
system and is one of the properties that the verifier expects to pass, so it can be
described as a “whitelisted” property based on the content of the property. All
states in the model are reachable, corresponding to the formal language format of
Equation (18), where k represents the state number, which is the same as the number
of states in the model:

E <> Process.statek (18)
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Assuming that the model has n states, we need to write n state accessibility attributes,
perform n times of attribute verification, and use the concatenated set of all the attributes
passed as the “white list” attribute library of state accessibility. However, if the “whitelisted”
attribute pool of the forward test is large, it is possible to reverse test the attributes, replacing
the pass test for state reachability with a fail test for state unreachability, i.e., to determine
whether any state in the model is unreachable, and this attribute is the one that the verifier
expects to fail. The formal language can be transferred to generate a library of “whitelisted”
attributes. The corresponding formal language format is as in Equation (19):

A[]not Process.statek (19)

Similarly, a union set is taken for an n-th attribute description, with the difference that
the formal linguistic format of such a union set of negative attribute descriptions is as in
Equation (20):

A[]((not Process.state1) and (not Process.state2) and . . . (not Process.staten))) (20)

So this attribute description statement can be used as a “whitelist” attribute library for
state reachability, and the volume is changed from n to 1, which means that only one pass
can be performed, and attribute failure means that the circuit model to be verified meets
the “state reachability” criteria. The attribute does not pass, which means that the circuit
model to be verified satisfies the “state reachability”.

2 No deadlock: For the whole formal model system, there cannot exist any inescapable
path loop or single state, so that the model cannot reach any state other than this loop
path state under any condition, resulting in the circuit being trapped in a dead loop
and unable to operate normally. This property is definitely expressed as a dead loop,
which is not expected by the verifier, and can therefore be described as a “blacklist”
property according to its content: if the formal model may enter any inescapable
path loop or single state, then there is a risk that the model will enter a dead loop,
and the circuit will not function properly. The function is also at some risk of being
paralyzed. Because of the importance of the absence of dead cycles to the model, there
is a property description Formula (21) in the CTL formal language system specifically
for dead cycles:

A[]not deadlock (21)

The verifier can include the failure of this attribute in the “blacklist” attribute library
of the verification system to determine the risk of deadlock in the circuit model.

3 Functional completeness: For all validation targets of the formal model, their passes
are consistent with the design goals of the circuit system, and can satisfy all rele-
vant functions expected from the circuit. All verification attributes describing the
expected functionality are expected to be passed by the verifier, and therefore, the
functional verification attributes can be included in the “whitelist” attribute library.
Such functional goal-oriented verification attributes are more targeted and efficient in
the verification process, and unnecessary paths can be discarded. However, the state
and condition descriptions in such verification attributes are usually relative to the
whole model, and can be refined and generalized in the actual analysis process. As
shown in the figure, suppose there are n states in the formal model, which are denoted
as s1, s2. . . sn, then the formal linguistic representation of the entire state machine set S
of the formal model is as in Equation (22):

S := s1 ∧ s2 ∧ . . . ∧ sn (22)

Noting the conditional statement in the formal model as consk, the condition of any
state transfer path in the formal model satisfies Equation (23):

Pathj−k = cons1 ∩ cons2 ∩ . . . consn (23)
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In formal models of real circuits, states and conditional statements are usually linked, and
there may be situations where a particular class of conditions will cause the system to enter a
particular state, which can be extracted inductively from the validation attributes, which are
classified into a total of three, and will be explored in the following paper, one by one.

1© Initial state induction: There may exist certain sets of states in the formal model, and
there exists a certain condition that enables the model to enter a certain state from a
set of states. For example, there exists a set of states denoted as S1 , which contains
the sub-states s1 and s2, respectively, and so the formal linguistic expression for the
set of states S1 is as in Equation (24):

S1 := s1 ∧ s2 (24)

At this time, there exists a transfer condition denoted as consj, and a state other than
the state set S1 is denoted as sj. When the system model is currently in any one of the states
in the state set S1 and satisfies the condition, the model will enter state sj. For this case, this
paper will focus on the initial state and the end state of the validation attributes involved
in the generalization of the results of the generalization of the formula ( refeqq), written
into the “white list” attribute library:

(s1 or s2) and consj −− > sj (25)

2© Transfer condition induction: There exist certain sets of state transfer conditions in
a formal model, any one of which can enable the model to move from one state
to another. For example, there exists a set of state transfer conditions denoted as
CON1, which contains the sub-state transfer conditions cons1 and cons2, respectively,
whereupon the formal linguistic expression for the set of state transfer conditions
CON1 is expressed as Equation (26):

CON1 = cons1 ∪ cons2 (26)

At this point, the initial state of the state transfer condition connection is noted as s5,
and the end state is noted as s6. When the system model is currently in state s5 and satisfies
any one of the conditions in the set of state transfer conditions, the model will enter state s6.
For this case, we will summarize the state transfer conditions of the involved validation
attributes and write them into the “whitelist” attribute library, and the formal language
expression of the summarization result is as in Equation (27):

s5 and (cons1 and cons2)−− > s6 (27)

The above two generalizable cases are not mutually exclusive; in the process of
extracting attributes from the actual validation model, there may be cases where attributes
are applicable to multiple extraction methods, i.e., the initial state, the end state and the
state transfer condition can be generalized at the same time, and the specifics need to be
analyzed according to the actual situation of the model.

3.4. The Whole Process Automation

As shown in Figure 7, this paper generates a tool-recognizable verification model
based on behavioral hardware language in an automated form and constructs a functional
model-checking interface.

This paper obtained the standard state transition file during the modeling process in
Section 2.1, which can then be converted into the model language. A complete model is
divided into four parts in the visual model tool: parameter declaration, position declaration,
transition condition declaration, and attribute declaration. The parameter declaration
section declares all conditional statements’ judgment signals and writes them into the <
declaration > section. State positions are planned in the position declaration section as a
square matrix based on the number of states and written into < location >. For example,
eight states are placed in a 3× 3 square matrix. Each state is connected in a directed manner
in the transition condition declaration part, and the corresponding conditions are declared
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and written into the < transition > part. The attribute declaration section is where you write
the attribute to be verified into the < query > section in a logical language.

Figure 7. The whole process automation.

4. Experimental Results and Analysis

This paper uses the multi-core processor system designed by Zhai Shaomin and others
at Xidian University as the benchmark circuit [34], which is a processor system with four
processor cores and a secondary cache, to validate how effective the suggested process
truly is. The processor core can be understood as the system’s central processing unit,
responsible for data processing and operation. The first-level cache is divided into two
parts: data cache and instruction cache, which are used to temporarily store the data that
the processor core is processing. The secondary cache is directly connected to the memory,
which is closer to the memory and has more storage space but a slower data reading speed.
Memory is the primary component used to store data.

In terms of verification tools, this paper uses UPPAAL [35], an automated verification
tool, as the model-checking verification object. UPPAAL is a model-checking tool based on
time automata developed jointly by Uppsala University’s School of Information Technology
and Aalborg University’s School of Computing Science. This tool can not only automatically
verify the system but it also has a clear and understandable user graphical interface and can
generate a visual state transition process diagram while verifying the system thoroughly.

The editor, simulator, and verifier are the three components of UPPAAL. The editor, for
example, is used to edit the model, from which an intuitive state transition diagram can be
generated. The simulator can simulate how the state transition model jumps, and it can also
create the counterexample diagram. The verifier is the component that produces verification
results and writes verification attributes. The verifier can judge whether the verification
attributes pass one by one, and if the attributes fail, a counterexample is generated in
the simulator.

4.1. Model Construction Results Based on Cache Consistency

The variables responsible for coordinating the consistency of multi-core cache are in
the data cache in the processor structure adopted in this paper, which is not only responsible
for data pre-writing, data cache, and other contents but also has the content of coordinating
cache consistency. Its signal transmission and reception are usually accompanied by data
reading and writing or storage, so this paper chooses to construct a formal model for the
data cache part.

The data cache is modeled globally without discrimination using the method described
above, and there are 142 states. There are nearly 142142 state transition routes among 142
states for the function of cache consistency. Every attribute determination in the process of
state accessibility-oriented function verification must traverse a model with over 20,000
possible routes. The MESI cache coherence protocol only cares about whether the four
states of MESI can jump correctly after receiving the instruction. As a result, the number
of state transition routes is reduced from 142142 to 32. The behavior of related modules
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reveals that MESI corresponds to a pair of two-bit variables: state_in and state_out, with
value ranges of 00, 01, 10, and 11, representing the four states I, E, S, and M, respectively.
Among these are the variables state_in, which depicts the state before the logical action
jumps, and state_out, which represents the state after the jump. We only need to calibrate
and track these two variables to finish the full-automatic formal model construction with
cache consistency as the function orientation (see Figure 8 for a schematic diagram of
model points).

Figure 8. Cache consistency model.

4.2. Verification Result of MESI Function Based on White List

The four states in Figure 4 correspond to the four states of MESI of the cache coherence
protocol, respectively. In order to verify whether its functionality meets the cache coherence
protocol, it is necessary to first explore the natural language attributes of the cache coherence
protocol. Table 2 illustrates the conversion conditions of cache coherence protocol in natural
language by verifying the attribute “white list” :
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Table 2. “White list” attribute library in natural language.

Initial State End State Transfer Condition

I or E E Local processor core read operation

/ 1 S Check the same data reading operation with
other processors locally.

S I Other processor core writes operations
/ M Local processor core writes operation
M E Local processor core writeback operation
/ I Empty operation

1 “/” in the table stands for any state.

Table 2 contains 32 attributes to be verified, which represent the directed transition and
transition conditions among all cache states. However, there is a problem with some specific
operations, in that a single event is discussed numerous times. For example, regardless of
the initial state of the cache, when the processor core is emptying the cache, the end state of
the cache will become the I state. As a result, this paper analyzes the typical characteristics
of the verification target, uses the end state as the fixed result orientation, extracts the initial
conditions with repeated transfer conditions, and finally generates the attribute library to
be verified with a volume of 6, reducing the verification process time cost.

After completing the analysis and conversion from natural language to logical lan-
guage, it must be entered into the verifier and verified. Passing indicates that the circuit
satisfies the verification attribute, while failing indicates that the verification attribute is
not satisfied. The verification used in this paper is both positive and negative, in that the
forward verification determines whether the function is correct, and the reverse verification
generates counterexamples and displays the function execution process in the simulator
interface. Table 3 shows the positive and negative verification attributes as well as the
verification results:

Table 3. Verification results.

Initial State End State Verification Result Time (s)

I or E E PASS 0.003
/ S PASS 0.001
S I PASS 0.002
/ M PASS 0.002
M E PASS 0.002
/ I PASS 0.001

No deadlock A[] not deadlock Pass 0.003

State reachability A[] ((not P1.M) and (not P1.E) and
(not P1.S) and (not P1. I)) NOT PASS 0.001

The pass/fail results all meet the expectations, proving that the cache design satisfies
state reachability, no deadlock, and consistency completeness. In the validation results of
the circuit cache consistency completeness, it can be found that all the consistency protocol
judgment validations are passed. This means that the cache is designed to transfer data
with complete rules, which ensures that the system is well organized. In the deadlock
exploration of this circuit, we obtain the conclusion that no deadlock is found. Due to the
comprehensive formal verification, we can be confident that the circuit will not fall into a
deadlock state. During the verification of the state reachability of the circuit, we perform
an iterative verification of the possible states. The query is also simplified using a form of
reverse validation, and the validation results show NOT PASS as expected. Thus, we can
learn that the consistency protocol of the cache circuit design is complete and can serve as
a stabilization.

By counting the verification time, it can be learned that the whole process of verifying
the functionality of the conformance protocol of the model takes a total of 15 ms. In total,
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32 functionality-complete attributes generated by the model are returned to the beginning,
along with 4 state-reachable attributes, and they are verified one by one. The validation
time is then counted and totaled as 6 ms as shown in Figure 9. Attribute extraction enables
the validation process to save a total of 76.19% of the time.

Figure 9. Comparison of time before and after simplification.

There are two reasons why the validation is so efficient: one is that we simplified the
model, which makes the tool need to take fewer paths in the validation process; the other is
that we simplified the validation attributes, which means that a single validation statement
can validate multiple attributes at the same time, which effectively saves the validator’s
time cost.

5. Conclusions

This paper proposes an automatic multi-core cache consistency verification method
based on behavior-level code to address the low efficiency of cache consistency verification.
By analyzing the code’s behavior characteristics, this method can automatically build a for-
mal model of cache consistency and generate the model interface and verification interface
in UPPAAL, a verification tool. This paper’s investigational findings demonstrate how this
process reduces the number of states that need to be analyzed by 97%, completes the auto-
matic construction of formal models with low resource overhead, effectively optimizes the
extraction of verification attributes, reduces the time cost of the verification attribute library
by 76.19%, and performs accurate and complete high-level cache consistency verification
by generating counterexamples.

The work in this paper has two advantages in the study of the verification of confor-
mance protocols: one is the automation of the modeling and verification attribute library
construction, which makes the verification of hardware a very simple task. The verifier
only needs to identify the functions and circuits to be verified in order to perform the
verification, and does not need to be very skilled in testing. The other is the simplification
of both modeling and attribute aspects in this paper, where fewer test vectors and more
focused models make verification efficient.
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