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Abstract: As virtual reality and 3D-modeling technology continue to advance, the amount of digital
geometric media data is growing at an explosive rate. For example, 3D meshes, an important type of
digital geometric media, can precisely record geometric information on a model’s surface. However,
as the complexity and precision of 3D meshes increase, it becomes more challenging to store and
transmit them. The traditional method of compressing non-isomorphic 3D-mesh sequences through
frame-by-frame compression is inefficient and destroys the inter-frame correlations of the sequences.
To tackle these issues, this study investigates the generation of time-dependent geometric image
sequences for compressing non-isomorphic 3D-mesh sequences. Two methods are proposed for
generating such sequences: one through image registration and the other through parametrization-
geometry cooperative registration. Based on the experimental compression results of the video-coding
algorithms, it was observed that the proposed geometric image-sequence-generation method offers
superior objective and subjective qualities, as compared to the traditional method.

Keywords: non-isomorphic 3D-mesh sequence; geometric image sequence; image/video compression;
thin-plate spline (TPS)

1. Introduction

With the rapid development of computer graphics technology and 3D-modeling
technology, digital geometric media represented by 3D models simulating real objects
and their movements have become one of the new carriers for human beings to obtain
information [1,2]. It is widely used in various fields, such as medical imaging, scientific
exploration, engineering design, simulation games, movie special effects, etc., and it also
provides important technical support for virtual reality (VR) technology.

A 3D model can be used to simulate any physical object that exists in the physical
world as well as imaginary objects.It can be artificially synthesized by computer programs,
such as 3D-modeling software, or it can be obtained by capturing real objects in the real
world using professional perception devices, such as Cyberware 3D scanners [3,4] and
multi-view cameras [5]. Although 3D models can be expressed in various ways such
as metadata representation, surface representation, entity representation and high-level
structures representation (High-level structures) [6], the mesh form (especially the widely
used triangular mesh [7]) has become the most popular method for representing 3D models
and describing 3D objects, due to its simple structure and universal form.

With the rapid development of virtual reality technology and 3D-scanning technology,
3D-model collection, acquisition, and modeling are becoming more and more mature,
thus generating a large number of complex 3D-mesh data across various applications, and
the increasing complexity and accuracy has placed tremendous pressure on traditional
compression algorithms and processing techniques.
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In addition, with the widespread use of dynamic 3D meshes, the size of 3D-mesh
data in compression and transmission has grown dramatically. A 3D-mesh sequence is a
collection of continuous 3D meshes in the time domain obtained by sampling dynamic
meshes at a specific frame rate, and they are highly correlated in the time domain.However,
the 3D-mesh sequences generated by the capture of real objects by specialized percep-
tion equipment, the way in which the vertices of the frames are connected varies in the
time domain, and the temporal correlation of such mesh sequences is hidden. The tra-
ditional frame-by-frame compression method cannot effectively extract and exploit the
inter-frame correlations of mesh sequences, which reduces the compression efficiency
of non-isomorphic 3D-mesh sequences. How to extract and effectively utilize the inter-
frame correlation of non-isomorphic 3D-mesh sequences to achieve simple and efficient
compression has become a pressing problem in the field of digital geometric media.

Therefore, this study focused on the representation of geometric images, addressing
the problem that the traditional frame-by-frame compression of non-isomorphic 3D-mesh
sequences destroys the inter-frame correlations of the sequences, and we proposed a
geometric image-sequence-generation method for non-isomorphic 3D-mesh sequence
compression.

The main contributions of this study was as follows:

• Image registration for geometric-image-sequence generation: A non-rigid registration
of geometric image sequences generated by traditional methods using a thin-plate
spline function was proposed to generate geometric image registration sequences,
thereby improving the correlation between adjacent frames of geometric image se-
quences and enhancing the compression performance of the system.

• Parametrization-geometry cooperative registration for geometric-image-sequence
generation: We proposed a generation scheme of geometric image sequences by
parametrization-geometry cooperative registration, of which the core was blending
non-rigid registration into the geometric image-sequence generation process. This
scheme overcame the shortcoming of traditional parametrization, which damages
the temporal correlations of non-isomorphism 3D-mesh sequences, and improves the
compression performance.

• Validation and evaluation of effectiveness: We used the H.264 video-coding standard
to compress the geometric image sequences generated by our algorithms as well as
the traditional algorithm. The experimental results showed that the objective and
subjective qualities of the decoding and the reconstruction of the proposed methods
were better than those of the traditional method.

The other sections of this paper are organized as follows: Section 2 presents the
progress of related research; Section 3 introduces the preliminary knowledge; Section 4
introduces the methods of this study; Section 5 verifies and evaluates the effectiveness of
the methods through experiments; and Section 6 concludes this paper.

2. Related Work

With the rapid development of information technology and the wide application of
3D-video-capture equipment, the compression and coding of dynamic 3D-mesh data have
become a research hotspot in the field of 3D digital geometry media processing [8–15]. Time-
dependent 3D-mesh sequences are taken from dynamic 3D meshes that contain a significant
amount of redundant information, similar to 2D-video image sequences [16,17]. Three-
dimensional mesh-sequence-compression coding removes mesh-sequence redundancy
by methods such as prediction and transformation, specifically through the temporal
correlation of each frame of mesh.However, when 3D-mesh sequences are generated by the
capture of real objects by specialized perception equipment, the way in which the vertices
of each frame are connected varies in the time domain, and the temporal correlations of
such topologically non-isomorphic mesh sequences are hidden and difficult to compress
and encode.
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Previous research on the compression of non-isomorphic 3D-mesh sequences has
taken two routes: the traditional frame-by-frame encoding without changing the topology
and the uniform encoding of the normalized topology. The current status of research on
the two compression routes is briefly reviewed next.

2.1. Frame-by-Frame Encoding without Changing the Topology

Since the vertex connectivity of each frame of topologically non-isomorphic mesh
sequences is different, common practice is to use the intra-frame correlation of the 3D mesh
to encode the topology structure and the vertex position information of the static 3D mesh,
frame by frame [18–30]. In this compression method, each frame of mesh is compressed
completely independently, discarding the inter-frame correlations of the mesh sequences, so
there is much room for improvement in compression efficiency. In recent years, researchers
have tried to make inter-frame predictions of the vertex position information of the mesh
without changing the topology of each frame, and they have made some progress.

In 2007, Han et al. [31] studied the encoding of the vertex position information of non-
isomorphic 3D-mesh sequences, extended the block-matching-based motion-compensation
algorithm to 3D space, with reference to 2D-video-compression methods, and proposed
a non-isomorphic 3D-mesh sequence-compression method based on an extended block-
matching algorithm (EBMA). The method first decomposes the mesh model into several
surfaces based on cubic blocks, takes the previous frame of the mesh sequence as the
reference frame, and then searches the matching blocks in a space 4 times the size of the
reference frame by the normal direction and an area of the frame blocks to obtain the motion
vector of the current block. Since the topological non-isomorphism of each frame makes
the number of vertices in the current block different from those of the matching block, the
corresponding points of the minimum Euclidean distance are found within the matching
block to obtain the predicted residuals of the current block. Finally, differential pulse code
modulation (DPCM) is used to encode the motion vector, and Huffman coding is used to
encode the predicted residual coefficient after the discrete cosine transformation (DCT).
The experimental results have demonstrated that the partial frames of the experimental
sequence could achieve 10–18% encoding efficiency.

In 2008, Han et al. [32] studied the quantized encoding of vertex position informa-
tion of non-isomorphic 3D-mesh sequences. Two quantization levels were proposed for
spatiotemporal redundancy: For temporal redundancy, a coarse-level quantization was
performed based on the block separation and analyzed patterns of block changes; for spatial
redundancy, an efficient fine-level quantization was performed on the intra-frame block
vertex position data. Since the generated binary vertex position sequence contained a large
number of consecutive zeros, efficient compression could be performed using run-length
coding and arithmetic coding. The experimental results demonstrated that the experimental
sequences could achieve 1.9–16% encoding efficiency.

In 2010, Yamasaki and Aizawa [33] proposed a block-level-based intra-frame and inter-
frame coding method for non-isomorphic 3D-mesh sequences. This method decomposed
the mesh model into multiple block levels with approximately the same surface areas in
order to effectively exploit the spatial correlations between the block levels. For intra-
frame coding, the spectral values of the input data were computed using the Kirchhoff
matrix, and then the quantized spectral values were coded using Huffman coding and
output. For inter-frame encoding, the first frame of the mesh sequence was used as the
reference frame for the block-level matching, using principal component analysis (PCA).
The experimental results showed that the intra-frame and inter-frame compression method
based on the block level could achieve a code rate of 4–14 bpv (bits per vertex, in bpv) with
a root-mean-squared error of 0.01–0.02.

The block-level inter-frame predictive coding method described above was prone to
blocking artifacts during block-matching. Therefore, Doumanoglou et al. [34] proposed
a vertex-level-based inter-frame predictive coding method for non-isomorphic mesh se-
quences using a bone-matching and ICP (iterative closest point) algorithm. This method
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divided the mesh sequence into the I (intra) frame and EP (enhanced predicted) frame.
The I frame of the mesh was used as the reference frame of the EP-frame coding, and
it was compressed by the conventional static mesh-coding method. The EP frame used
the bone-matching and ICP algorithm to register the reference frame for the input mesh;
encoded and output the residual between the original mesh and the predicted mesh; and
then quantized and encoded the output through entropy constraints. To improve the
prediction, Doumanoglou et al. [35] mined the correlated activity-level properties of non-
isomorphic 3D-mesh sequences and proposed 2 I-frame selection methods based on the
skeletal-matching principle and the periodic performance-parameter selection.

The above-mentioned compression methods for non-isomorphic 3D-mesh sequences
have all adopted the traditional way of encoding, without changing the mesh topology.
Although the inter-frame correlation of a mesh sequence was exploited to encode the
position information of the mesh predictively, the literature [32–34] has also made some im-
provements and enhancements to the encoding of the mesh topology. All of these schemes
need to encode the topological connection information of each, frame by frame, which
affects the overall compression performance of a mesh sequence. Therefore, normalizing
the topological structure of each frame of a sequence has become a problem worthy of
further study in the field of non-isomorphic 3D-mesh sequence compression.

2.2. Normalized Topology Uniform Code

The normalization of each frame of the topologically non-isomorphic 3D-mesh se-
quence into the same topology can reduce the code rate of encoding the topological con-
nection information, frame by frame, so that the inter-frame correlation of a mesh can be
effectively applied to the topological compression of the non-isomorphic 3D-mesh sequence,
and the geometric data can be compressed using the conventional mesh-sequence-coding
algorithm, which improves the overall compression efficiency of the sequence. There are
two types of methods to unify the topology of the mesh sequence: registering the non-
isomorphic 3D-mesh sequence from the representation of the original mesh, and generating
the geometric image sequence from the representation of a geometric image.

2.2.1. Registration of Non-Isomorphic 3D Mesh Sequences

Establishing accurate point-to-point data correspondence between 2 completely differ-
ent 3D models is a very challenging task due to the large structural differences between the
individual samples of different models (especially face models) and the presence of non-
rigid deformation, etc. At present, in terms of 3D-data registration, registration algorithms
based on spatial transformation [36] are the most common. According to the different
properties of spatial transformation, 3D-data registration can be divided into registration
algorithms based on rigid deformation and registration algorithms based on non-rigid
deformation.

Rigid deformation refers to global transformations such as the model’s rotation, trans-
lation, and scaling. It is mainly used to change different viewing angles of the same model,
and the distance between two points in the model, before and after the transformation,
remains unchanged. The most typical rigid-deformation-registration algorithm is the
3D-body registration based on ICP (iterative closest point) [37]. This method uses rigid
deformation and a closest-point search to establish the point-to-point correspondence of
the dataset. Therefore, it can be applied to search matching of artificially synthesized
topologically isomorphic 3D-mesh sequence compression [38,39].

For models with large differences in complex surface personality (such as face data,
etc.), the global rigid deformation based on rotation, translation, and scaling can only
obtain a rough global registration [40]. Therefore, the distance between any 2 points in the
rigid deformation remains constant, which is not fully applicable to 3D-mesh sequence
registration compression with different topologies and complex surface geometry varia-
tions [34,35]. Therefore, the 3D-data-registration method based on non-rigid deformation
has gradually become a hotspot in the field of 3D-model processing research. Myronenko
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and Song [41] proposed a non-rigid registration algorithm based on coherent point drift
(CPD), which used a deterministic annealing EM algorithm to optimize the max-likelihood
estimation and thus obtained the point-to-point correspondence of two sample sets. Hu et
al. [42,43] conducted a non-rigid deformation study on 3D-face data based on the thin-plate
spline (TPS) function and obtained better matching results. After generating a topologically
isomorphic 3D-mesh sequence by registering the non-isomorphic mesh sequence, it could
be compressed based on common dynamic 3D-mesh-compression methods such as a priori
segmentation methods [44,45], principal component analysis (PCA) [46,47], spatiotemporal
prediction methods [48,49], wavelet transform methods [50,51], and MPEG [52].

In this study, non-rigid registration was introduced into the field of non-isomorphic
3D-mesh sequence compression, and the coding method based on prediction could make
full use of the temporal correlation of the sequence and effectively remove the inter-frame
redundancy of the mesh sequence.

2.2.2. Generating Geometric Image Sequences

The use of mesh parametrization methods allows for the mapping of 3D meshes
to 2D planes, enabling them to be effectively compressed by image-coding algorithms,
such as wavelet transforms [53]. Briceño et al. [54] parameterized the selected reference
frame for an artificially synthesized dynamic 3D mesh and then applied the generated
parametrization result to other frames of the mesh, thus generating a geometric image
sequence (geometric video). Using the geometric image sequence to normalize the 3D-mesh
sequence could utilize the existing mature video-coding algorithm effectively. However,
their method was only suitable for topologically isomorphic dynamic meshes, and for
topologically non-isomorphic mesh sequences, the parametrization method in [54] did
not work. Subsequent studies [55,56] for the parametrization of non-isomorphic mesh
sequences have primarily been based on the matching of the feature blocks of the original
mesh, followed by parametrization to generate geometric image sequences (e.g., typical
features of human motion and facial expressions, etc.). Hou et al. [57,58] proposed a two-
dimensional geometric video coding and compression framework using geometric image
sequences generated by the above parametrization method, based on the premise that the
low-rank features of dynamic meshes and the intrinsic structure remained unchanged.

In addition, topologically non-isomorphic 3D-mesh sequences could be parametrically
mapped, frame by frame, to the 2D plane using a method suggested in the literature [53]
to generate a geometric image sequence of normalized representation, which could then
be compressed using existing mature video-coding algorithms, reducing the compression
complexity of non-isomorphic 3D-mesh sequences. At the same time, a frame-by-frame
parametrization method can make the generated geometric image sequence conform
to the geometric characteristics of the original mesh in space. However, because this
parametrization method mapped each frame of the non-isomorphic mesh sequence to the
2D plane separately, no correspondence could be established between the same feature
vertices in each frame. Therefore, the conventional geometric image sequences generated
by frame-by-frame parametrization could not maintain the temporal correlations of the
original non-isomorphic mesh sequences, which reduced the compression efficiency.

Therefore, there is an urgent need for a method to generate time-dependent geometric
image sequences that can adequately maintain both the original mesh geometric features
and the inter-frame correlations of the mesh sequences, in order to effectively improve
the compression performance of non-isomorphic 3D-mesh sequences, based on geometric
image representation.

3. Preliminary Knowledge

Gu et al. [53] proposed geometric images, a fully normalized 3D-mesh representa-
tion, so that the topology of the 3D-mesh was obtained using the pixel adjacencies of the
image array, and the vertex coordinates were computed by coordinate-mapping through
the 3 color values of the geometric image. Then, Briceño et al. [54] proposed geometry
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video, which parameterized the selected reference frame and applied the generated param-
eterized results to other frames of the mesh, and finally, a sequence of geometric images
was generated after resampling and quantization. However, their method was only for
synthetic topologically isomorphic dynamic meshes, and for topologically non-isomorphic
mesh sequences, the parametrization method of the literature [54] did not work. Therefore,
the non-isomorphic 3D-mesh sequence would need to use a frame-by-frame parametriza-
tion method to generate a geometric image sequence. The traditional frame-by-frame
parametrization [53] to generate a geometric image sequence is described as follows:

Given a sequence of triangular mesh {H1, H2, . . . , Hs}, the triangular mesh at the kth
frame can be represented as Hk = {Vk, Fk}k=1,2,... ,s. The mesh Hk consists of 2 types
of geometric data, including the set of 3D coordinates Vk of the vertices and the topo-
logical connection relation Fk between them, where Vk = {Vki|Vki = (xki, yki, zki)}i=1,... ,sk

,

Fk =
{

fkj| fkj =
(
vki1 , vki2 , vki3

)}
j=1,... ,tk

. In this study, the traditional geometric stretching

parametrization method [59] was used to map the mesh Hk onto the parameter domain,
frame by frame. The parametric coordinate L of the Hk vertices is given by Equation (1)
and was obtained by minimizing the geometric stretching function of all triangular surface
pieces in the parametric domain.

L2(Hk) =
∑Tkj∈Hk

(
Γkj

2+γkj
2

2 area
(

Tkj

))
∑Tkj∈Hk

area
(

Tkj

) (1)

where Tkj represents the jth parameter triangle on the mesh Hk at the kth frame. area
(

Tkj

)
is the surface area of the triangle Tkj, and Γkj, γkj represent the max and minimum sin-
gular values, respectively, of the Jacobi matrix, obtained by affine mapping of the vertex
parameter coordinates of the parameter triangle Tkj.

The parameterized mesh was resampled to generate a m1 × m2 resolution mesh,
which was then quantized into a sequence of n-bit pixel bit-depth geometric images

{G1, G2, . . . , Gs}, where Gk =
{

Gk
uv|Gk

uv =
(

rk
uv, gk

uv, bk
uv

)}v=1,... ,m2

u=1,... ,m1
, and r, g, b ∈ [2n − 1].

The vertices of each frame of the reconstructed mesh were represented by the pixel points
of each frame of the geometric image sequence, and the coordinates of the vertices could
be calculated from the three color values of the geometric image by coordinate mapping.
The pixel adjacencies of the geometric image sequence were consistent for each frame
of the image array. It had been stipulated that each pixel point Gk

uv in each frame had
to be connected with its surrounding 6 neighboring pixel points, and each point in the
mesh had to be connected with 6 adjacent vertices regularly to form 6 adjacent triangular
face slices, and this adjacency relationship represented the topology of the reconstructed
mesh sequence.

Taking a set of face-mesh smile-expression sequences as an example (row 1 of Figure 1),
the process of traditional frame-by-frame parametrization to generate geometric image
sequences and reconstruct mesh sequences is shown in Figure 2, and the generated geo-
metric image sequences are shown in the second row of Figure 1. The 3D-mesh sequence
expressed by the unified geometric image sequence had the same topological connection
relationship in each frame, thus solving the problem that time-dependent compression
could not be directly applied to topologically non-isomorphic 3D-mesh sequences, and at
the same time, the burden of compression was reduced because the regular topology did
not require channel coding in the compression process. However, it was obvious in Figure 1
that the topological non-isomorphism of each frame led to a large difference between
the adjacent frames of the generated geometric image sequence (line 2 of Figure 1). As a
result, the feature vertices of the mesh represented by the pixel points of each frame were
not aligned, which destroyed the temporal correlation of the non-isomorphic 3D-mesh
sequence and limited the performance of the compression.
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Figure 1. Row 1: the original 3D-mesh sequence. Row 2: the geometric image sequence generated by
the traditional method.

Figure 2. The process of generating geometric image sequences.

Therefore, we proposed to generate time-dependent geometric image sequences for
use in the compression task of non-isomorphic 3D-mesh sequences in order to reduce
the inter-frame redundancy of the geometric image sequences. The generation method
included two schemes of image registration and parametrization-geometry cooperative reg-
istration, which used TPS transformation to register geometric image sequences generated
by traditional methods [53] and incorporated non-rigid registration into the geometric-
image-sequence generation process to generate registered geometric image sequences,
which were finally compressed by a mature video-coding algorithm to effectively improve
the coding efficiency of non-isomorphic 3D-mesh sequences.

4. Proposed Method
4.1. Image Registration for Geometric Image Sequence Generation

Based on the characteristics of non-isomorphic 3D-mesh sequences, we proposed a
geometric-image-sequence generation method based on image registration. The method
first generated a geometric image sequence using the traditional mesh parametrization,
and then the generated geometric image sequence was non-rigidly registered using the
TPS function to generate the registered geometric image sequence.

A 3D-mesh sequence {H1, H2, . . . , Hs} was found, and the original geometric image
sequence {G1, G2, . . . , Gs} was generated by traditional frame-by-frame parametrization
and resampling quantization. To facilitate the compression, we divided the geometric
image sequences into groups of pictures (GOP), each of which had a TPS-transformed
reference I-frame (denoted as GI) and a current i-frame (denoted as Gi).
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Define such a mapping:
Γ(P) = PA + KW (2)

where P is the homogeneous coordinate (x, y, z, 1) of the vertices in 3D space, A and W are
the affine transformation matrix of 4× 4 and the non-affine transformation matrix of r× 4,
respectively, and k = (k1(P), . . . , kr(P)) is the kernel function matrix ki(P) = ‖P− Pi‖, i =
1, 2, . . . , r of the TPS transformation.

Given the reference frame geometry image GI and the current frame geometry image
Gi , we defined the set of homogeneous coordinates of GI and Gi as L1 and L2, respectively:{

L1 = {Puv|Puv = (xuv, yuv, zuv, 1)}v=1,... ,m
u=1,... ,n

L2 =
{

Ppq|Ppq = (xpq, ypq, zpq, 1)
}q=1,... ,m

p=1,... ,n
(3)

We obtained a subset T1 by uniform sampling in the set L1 and searched for its closest
point set T2 in the set L2:{

T1 = {puivi |puivi = (xuivi , yuivi , zuivi , 1), ui ∈ {1, . . . , n}, vi ∈ {1, . . . , m}, i = 1, . . . , r}
T2 =

{
ppiqi |ppiqi =

(
xpiqi , ypiqi , zpiqi , 1

)
, pi ∈ {1, . . . , n}, qi ∈ {1, . . . , m}, i = 1, . . . , r

} (4)

We took T1 and T2 as the control points of the TPS transformation and brought them
into Equation (2), so that the transformation Γ satisfied the interpolation condition at 2 sets
of T1 and T2 corresponding points. Therefore, we could obtain:

ppiqi = Γ(puivi ) (5)

where i = 1, . . . , r. Here, we assumed that Equation (5) held strictly, substituted (2) into (5),
and since W was a non-affine transformation matrix, TT

1 W = 0:K J1

JT
1 0

[W
A

]
=

[
J2
0

]
(6)

where, J1 =


xu1v1 yu1v1 zu1v1 1
xu2v2 yu2v2 zu2v2 1
. . . . . . . . . . . .

xurvr yurvr zurvr 1

, J2 =


xp1q1 yp1q1 zp1q1 1
xp2q2 yp2q2 zp2q2 1
. . . . . . . . . . . .

xprqr yprqr zprqr 1

.

The kernel function K of the TPS transformation was defined by
K =

{
Kij|Kij =

∥∥∥puivi − pujvj

∥∥∥}. Since K was an invertible matrix, A and W could be

approximated by:
[

W
A

]
≈
[

K J1
JT
1 0

][
J2
0

]
. The TPS transformation matrices A and W were

thus obtained, and then the TPS transformation was applied to the global Ppq = Γ(Puv), that

is to, obtain the set of homogeneous coordinates L
′
=
{

P
′
uv|P

′
uv =

(
x
′
uv, y

′
uv, z

′
uv, 1

)}v=1,... ,m

u=1,... ,n

after geometric image transformation, where L
′

is the approximate point set of L2 . For
each pixel point P

′
uv on L

′
, the pixel point with the minimum Euclidean distance in L2 was

found as the corresponding point P
′
uv = Pp0q0 by Pp0q0 = arg minpq

∥∥∥P
′
uv − Ppq

∥∥∥, and the
search process was accelerated using KD-tree. We referred to this process as closest-point

matching. Thus, the set L
′
2 =

{
P
′
uv|P

′
uv =

(
x
′
uv, y

′
uv, z

′
uv, 1

)}v=1,... ,m

u=1,... ,n
, consisting of vertices

P
′
uv, was obtained, whose corresponding image G

′
i was an approximate result of Gi and, at

the same time, maintained a geometric correlation with GI ,GI = {Puv|Puv = (xuv, yuv, zuv)}v=1,... ,m
u=1,... ,n

G
′
i =

{
P
′
uv|P

′
uv = (x

′
uv, y

′
uv, z

′
uv)
}v=1,... ,m

u=1,... ,n

(7)
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The framework of the above registration geometric image sequence is shown in
Figure 3.

Figure 3. The framework of geometric image sequence registration based on TPS.

4.2. Parametrization-Geometry Cooperative Registration for Geometric Image Sequence Generation

The application of TPS transformation to register the geometric image sequences
provided an effective solution for the compression of the non-isomorphic 3D-mesh se-
quences, but there was still room for improvement in the compression efficiency because
the geometric-image-sequence generation and the non-rigid registration process were inde-
pendent of each other. Therefore, we integrated the idea of geometric image registration
based on TPS transformation into the generation process of geometric image sequences and
proposed a single-reference frame and a double-reference frame parametrization-geometry
cooperative registration method for generating geometric image sequences.

4.2.1. Single-Reference Frame Parametrization

For topologically non-isomorphic 3D-mesh sequences, since the traditional parametriza-
tion method only considered the spatial correlation of the mesh sequences (refer to Figure 4a,
it could not establish a corresponding relationship between the same feature vertices of the
reconstructed mesh sequences, which destroyed the temporal correlations of the original
mesh sequences. Therefore, we proposed the integration of the TPS transformation with
the geometric-image-sequence generation process (refer to Figure 4b, to fully exploit the
inter-frame correlation of the mesh sequence and effectively utilize the temporal corre-
lations of the non-isomorphic 3D-mesh sequence in order to generate a time-dependent
geometric image sequence.

(a) (b)

Figure 4. The correlations in the generation procedure of geometry images (a) The traditional method
(b) The proposed method.

Given a non-isomorphic 3D-mesh sequence GOM of length s, {Hk = (Pk, Fk)}s
k=1,

where Pk is the set of vertex positions of the kth frame of mesh and Fk is the set of topological
triangles of the kth frame of mesh, each GOM included 1 I-frame HI , s− 1 P-frames HP. The
I-frame was used as the initial reference frame of the TPS transformation, and the P-frame
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was used as the target frame of the TPS transformation. To match the video-coding order,
we used the first frame of mesh as the I-frame for the parametric cooperative registration.
The order of parametrization is shown in Figure 5, using the I-frame or the previously
transformed P-frame as the reference frame.

(a) (b)

Figure 5. Two structures of single-reference frame parametrization (a) Use the I-frame as the reference
frame (b) Use the I-frame or the previously transformed P-frame as the reference frame.

There was a reference frame of mesh H1 = (P1, FI) and a target frame of mesh
H2 = (P2, F2), where H1 could be either the I-frame of mesh (PI , FI) or the previous TPS-
transformed mesh

(
P
′
, FI

)
, where the vertex position sets are P1 = {pi|pi = (xi, yi, zi)}i=1,... ,n1

,

P2 =
{

pj|pj = (xi, yi, zi)
}

j=1,... ,n2
,n1 6= n2. First, we selected the control points T1 uniformly

from P1 and found the corresponding point set T2 in P2. We substituted the homogeneous
coordinate sets of T1, T2 into the TPS transformation Γ(p) = pA + KW to obtain the trans-
formation matrixes A, W, and then we applied the TPS transformation to the global P1, P2 to
obtain the vertex position set P

′
=
{

p
′
i|p
′
i =

(
x
′
i , y
′
i, z
′
i

)}
i=1,... ,n1

that was globally aligned

with P1.
To map (P1, FI),

(
P
′
, FI

)
, (P2, F2) to the parameter domain, their parameter positions

needed to be calculated. According to the literature [49], the parameter positions of P1, P2 were cal-
culated by Equation (1), R1 = {ri|ri = (ai, bi)}i=1,... ,n1

and R2 =
{

r
′′
j |r
′′
j =

(
a
′′
j , b

′′
j

)}
j=1,... ,n2

,

where a, b represent the horizontal and vertical axis parameter positions. For P
′
, one could

directly apply the parameter position of P1, so R
′
= R1, or one could find the parameter

coordinates R
′
=
{

r
′
i |r
′
i =

(
a
′
i, b
′
i

)}
i=1,... ,n1

of P
′
, according to Equation (1). Experimen-

tally, it was shown that the parameter positions obtained by applying the latter were

more suitable for P
′
, which led to the parameter positions

 R1 = {ri|ri = (ai, bi)}i=1,... ,n1

R
′
=
{

r
′
i |r
′
i =

(
a
′
i, b
′
i

)}
i=1,... ,n1

and R2 =
{

r
′′
j |r
′′
j =

(
a
′′
j , b

′′
j

)}
j=1,... ,n2

for P1, P
′

and P2. Then, P1 and P
′

were interpolated

into a regular mesh set

 Q1 = {quv|quv = (xuv, yuv, zuv)}v=1,... ,m2
u=1,... ,m1

Q
′
=
{

q
′
uv|q

′
uv =

(
x
′
uv, y

′
uv, z

′
uv

)}v=1,... ,m2

u=1,... ,m1

With m1 ×m2 resolu-

tion and to facilitate subsequent closest point matching, P2 was up-sampled by a factor

of m and interpolated into a mesh set Q2 =
{

q
′′
st|q

′′
st =

(
x
′′
st, y

′′
st, z

′′
st

)}t=1,... ,(m2×m)

s=1,... ,(m1×m)
with

((m1 ×m)× (m2 ×m)) resolution. For each parameter vertex q
′
uv on Q

′
in the parameter

domain, the vertex q
′′
st with the minimum Euclidean distance was found as the correspond-

ing vertex in Q2 by q
′′
s0t0

= arg minst

∥∥∥q
′
uv − q

′′
st

∥∥∥ so that q
′
uv = q

′′
s0t0

, and the search process
was accelerated using KD-tree to complete the local closest point matching in the target
frame. Thus, the set Q

′
2, consisting of the vertex q

′
uv, was obtained. Then, Q1 and Q

′
2 were

quantized into n-bit-deep geometric images

 G1 = {Guv|Guv = (ruv, guv, buv)}v=1,... ,m2
u=1,... ,m1

G2 =
{

G
′
uv|G

′
uv =

(
r
′
uv, g

′
uv, b

′
uv

)}v=1,... ,m2

u=1,... ,m1

,

which generated time-dependent geometric images G1, G2. The above algorithms were
sequentially applied to the GOM of the non-isomorphic mesh sequence to obtain the
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registered geometric image sequence {G1, G2, . . . , Gk}s
k=1. See Figure 6 for the specific

parametrization-geometry cooperative registration framework.

Figure 6. The framework of parametrization-geometry cooperative registration using a single-
reference frame based on TPS.

4.2.2. Double-Reference Frame Parametrization

Considering the double-reference frames in the 3D-mesh sequence registration mode
could effectively improve the registration accuracy. Inspired by this, we proposed the
application of the TPS transformation to the non-isomorphic 3D-mesh sequence for the
double-reference frame registration and then to fuse it with the geometric-image-sequence
generation process in order to generate a time-dependent geometric image sequence.
This scheme made full use of the spatiotemporal correlations of the mesh sequences and
effectively maintained the intra-frame and inter-frame correlations of the non-isomorphic
3D-mesh sequences by optimally matching the approximate mesh sets of the double-
reference frames.

Given a non-isomorphic 3D-mesh sequence GOM of length s, {Hk = (Pk, Fk)}k=1,... ,s,
where Pk is the set of vertex positions of the kth frame and Fk is the set of topological
triangles of the kth frame, each GOM consisted of one I-frame HI , multiple P-frames HP
and B-frames HB. The I-frame was used as the initial reference frame for TPS transformation,
and the P-frame and B-frame were used as the target frames. As shown in Figure 7, the
double-reference frame parametrization sequence consisted of 3 structures: structure 1 was
a P-frame using an I-frame or the previous parameterized P-frame as the reference frame,
and a B-frame using an I-frame and the previous parameterized P-frame or 2 adjacent
P-frames together as the reference frame; structure 2 was a P-frame using an I-frame or the
previous parameterized P-frame as the reference frame, and a B-frame using an I-frame and
the previous parameterized B-frame or the previous parameterized P-frame and B-frame
together as the reference frame; structure 3 was a P-frame using an I-frame and the previous
parameterized P-frame together as the reference frame.

(a) (b)

(c)

Figure 7. The structures of double-reference frames parametrization (a) Structure 1 (b) Structure 2
(c) Structure 3.
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Assuming two reference frames of meshes Hre f 1
= (P1, FI), Hre f 2

= (P2, FI) and a
target frame of mesh Hcrr = (Pcrr, Fcrr), Hre f 1

and Hre f 2
could be the initial reference I-

frames of meshes (PI , FI), or the P-frame or B-frame of meshes
(

P
′
, FI

)
, transformed by

TPS, yielding sets of mesh vertex positions P1 = {p1i|p1i = (x1i, y1i, z1i)}i=1,... ,n1
, P2 =

{p2i|p2i = (x2i, y2i, z2i)}i=1,... ,n1
, Pcrr =

{
pj|pj =

(
xj, yj, zj

)}
j=1,... ,n2

, where n1 6= n2. Firstly,
the control points T1, T2 were evenly selected from the reference frames P1, P2, and the
corresponding point sets Tcrr1 , Tcrr2 were found in Pcrr. The homogeneous coordinate
sets of these two sets of control points were substituted into the TPS transformation
Γ(p) = pA + KW, and the transformation matrixes (A1, W1), (A2, W2) were obtained.
Then, the TPS transformation was applied globally to obtain the vertex position set
P
′
1 =

{
p
′
1i|p

′
1i =

(
x
′
1i, y

′
1i, z

′
1i

)}
i=1,... ,n1

, which was globally aligned with P1, and P
′
2 ={

p
′
2i|p

′
2i =

(
x
′
2i, y

′
2i, z

′
2i

)}
i=1,... ,n1

, which was aligned with P2.

Next, we performed a double-reference frame-optimization-matching on the two
corresponding vertex position sets of the current frame and set the balance coefficients
γ; then, we used a linear combination:

P
′γ
crr = γP

′
1 + (1− γ)P

′
2 (8)

where γ = 0 : 10−n : 1, n is the number of combination levels. By mapping
(

P
′γ
crr, F1

)
,

(Pcrr, F2) to the parameter domain through Equation (1), we obtained their parameter posi-
tions, R

′γ
crr =

{
r
′
i |r
′
i =

(
a
′
, b
′
)}

i=1,... ,n1
and Rcrr =

{
rj|rj =

(
aj, bj

)}
j=1,... ,n2

, and then inter-

polated P
′γ
crr into the parameter mesh coordinates of m1 × m2 resolution

Q
′γ
crr =

{
q
′
uv|q

′
uv =

(
x
′
uv, y

′
uv, z

′
uv

)}v=1,... ,m2

u=1,... ,m1
, and Pcrr was up-sampled by a factor of m and

interpolated into a parameter domain mesh coordinate set of ((m1 ·m)× (m2 ·m)) resolu-
tion Qcrr = {qst|qst = (xst, yst, zst)}t=1,... ,(m2·m)

s=1,... ,(m1·m)
, for each parameter vertex

q
′
uv on Q

′γ
crr =

{
q
′
uv|q

′
uv =

(
x
′
uv, y

′
uv, z

′
uv

)}v=1,... ,m2

u=1,... ,m1
. In the parameter domain, we found

the vertex qst of the minimum Euclidean distance in Qcrr by qs0t0 = arg minst

∥∥∥q
′
uv − qst

∥∥∥ as

the corresponding vertex q
′
uv = qs0t0 , and then we obtained the set

_
Q
′γ

crr, consisting of the
new vertex coordinate values q

′
uv. Then, by calculating the Hausdorff distance dγ between

_
Q
′γ

crr and the original mesh parameter domain coordinate Qcrr under different γ, γ at the
minimum distance dγ

min was the optimal equilibrium coefficient γopt. The optimal set of
vertex coordinates P

′
opt was obtained by the following equation:

P
′γ
opt = γoptP

′
1 + (1− γopt)P

′
2 (9)

Furthermore, the optimal parameter domain coordinate
_
Q
′opt

crr could be obtained as well.

Then, we quantized
_
Q
′opt

crr into an n-bit-deep geometric image

Gcrr =
{

G
′
uv|G

′
uv =

(
r
′
uv, g

′
uv, b

′
uv

)}v=1,... ,m2

u=1,... ,m1
. We applied the above algorithms to the en-

tire non-isomorphic mesh sequences GOM to obtain time-dependent geometric image
sequences {G1, G2, . . . , Gk}k=1,... ,s. See Figure 8 for a specific parametrization-geometry
cooperative registration framework.
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Figure 8. The framework of parametrization-geometry cooperative registration using double-
reference frames based on TPS.

5. Experiments and Evaluation
5.1. General Idea of the Experiment

We verified the compression performance of the non-isomorphic 3D-mesh sequence
based on the registration-based geometric image sequence through experiments, and
the experimental results and related analysis will also be provided. We selected four
face-expression sequences (Happy_M003, Fear_M024, Surprise_M028, Happy_F001) as ex-
perimental samples from the BU-4DFE face database [60], and we set the mesh sequence
GOM length to be odd in order to facilitate the double-reference frame parametrization. In
the experiment, we randomly selected nine frames in the mesh sequence as a GOM. In the
experiment, the traditional parametrization, image registration, and the parametrization-
geometry cooperative registration in this study were applied to the experimental sequence.
The resolution of the generated geometric image was set to 256× 256, and the up-sampling
factor on the parametric mesh was 4. To the best of our knowledge, the current mature
video compression technology HEVC inter-frame compression supported up to 12-bits,
and H.264 inter-frame compression supported up to 14-bits, so the experiments quantized
the parameter coordinates to 14-bits. After generating the geometric image sequence, it
was compressed using the H.264 video-coding standard.

5.2. Time-Dependent Geometric Image Sequence Performance

To illustrate the significance of generating time-dependent geometric image sequences
in this study, Happy_M003 was used as an example to compare the results and performance
of the different parametrization. In Figure 9, row 1 is the original non-isomorphic 3D-mesh
sequence, row 2 is the parametric position of the traditional parametrization, row 3 is the
detail view of the enlarged parametric positions of the traditional parametrization, row 4 is
the geometric image sequence generated by the traditional parametrization, row 5 is the
geometric image residual image sequence generated by the traditional parametrization, row
6 is a sequence of geometric images generated by image registration, row 7 is a sequence of
geometric image residual images generated by image registration, row 8 is a parameterized
position for parametrization-geometry cooperative registration, row 9 is the detail view of
the enlarged parameterized position for parametrization-geometry cooperative registration,
and row 10 is a sequence of geometric images generated by parametrization-geometry
cooperative registration.

First, the mesh sequence maps each frame of the 3D-mesh to a 2D plane, frame by
frame, through traditional parametrization. The position coordinates of the parameter field
of the model Happy_M003 are shown in the second row of Figure 9. Since the sequence was
modeled by real objects scanned by professional equipment, the vertex connectivity of each
frame of mesh was different, and it could be clearly seen that the vertices were not aligned,
and the details are shown in the third row of Figure 9. Then, the 3 coordinate components
(x, y, z) were resampled and interpolated into the parameter coordinates of 256× 256 and
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quantized into 14-bit-deep color geometric image components (r, g, b), thus generating
the traditional geometric image sequence (see row 4 of Figure 9). It could be seen that
in the geometric image sequence generated by traditional parametrization, although the
specifications of each frame were consistent, the 3D-vertex coordinates represented by the
pixel values of the corresponding pixels were not aligned.

The next step was to register the geometric image sequences generated by the tra-
ditional parametrization method. We selected 200 pixels in the geometric image of the
reference frame as the local control points of the TPS transformation, generated the global
transformation matrix A, W through the TPS transformation, and then acted on the ref-
erence frame image to generate the transformed image of the current frame. Finally, the
closest-point local fine-matching was performed in the original image of the current frame
to find the corresponding point, and the geometric image sequence that was time-correlated
with the reference frame image was generated, and then transformed and registered, frame
by frame, to generate the registered geometric image sequence (see row 6 of Figure 9).

To verify the correlation between the adjacent frames of the geometric image sequence
after the image registration, the residual images of the adjacent frames were generated in
this study. The residual images between the adjacent frames of the original geometric image
sequence are shown in row 5 of Figure 9, and the residual images between the adjacent
frames of the registered geometric image sequence are shown in row 7 of Figure 9, from
which it could be clearly observed that the residual images between the adjacent frames of
the registered geometric image sequence were smaller than the residual images between
the adjacent frames of the original geometric image sequence. The root-mean square (rms)
between the adjacent frames of the geometric image sequence before and after registration
was also calculated, given the two geometric images G = {Quv = (xuv, yuv, zuv)}v=1,... ,m

u=1,... ,n ,

G
′
=
{

Q
′
uv =

(
x
′
uv, y

′
uv, z

′
uv

)}v=1,... ,m

u=1,... ,n
. The rms and max pixel-point distance between the

adjacent frames were given by Equations (10) and (11):

drms =
1

nm

(
n

∑
u=1

m

∑
v=1

∥∥∥Quv −Q
′
uv

∥∥∥2
) 1

2

(10)

dmax = max
1≤u≤n

max
1≤v≤m

∥∥∥Quv −Q
′
uv

∥∥∥ (11)

The results of calculating the rms between the adjacent frames of the original geometric
image sequence of the model Happy_M003 and the rms between the adjacent frames of the
registered geometric image sequence and the max pixel-point distance are shown in Table 1.
It could be clearly seen that both the rms and the max pixel-point distance of the adjacent
frames of the geometric image sequence after registration were smaller than the original
geometric image sequence. By comparing the above residual image and rms, we could
clearly see that the correlation between adjacent frames of the registered geometric image
sequence was better than that of the original geometric image sequence, which indicated
that the registered geometric image sequence could improve the compression performance
of the system.

Table 1. The rms and max pixel-wise distance between the adjacent frames of Happy_M003.

Datatype 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9

rms of the original geometric image sequence 3223 723 581 1522 1856 19,182 1834 2843
rms of the registered geometric image sequence 247 194 129 210 361 340 269 250
max of the original geometric image sequence 11,950 5772 5406 9075 6495 38,980 17,519 15,461

max of the registered geometric image sequence 1843 2077 1200 1777 1657 1771 3334 1817
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Figure 9. The geometric image sequences generated by different methods (Happy_M003). The number
on the left of the figure shows the number of rows.

A single-reference frame parametrization was used as an example to compare the
geometric image sequence generated by the traditional parametrization when applied to
the model Happy_M003. The 200 vertices in the first frame of the mesh were selected as
the local control points of the TPS transformation, and their corresponding points in the
current frame were found, and the TPS transformation was performed to generate the
global transformation matrixes A, W. We applied the transformation matrixes globally to
generate a set of transformation vertex coordinates for the current frame, mapped them to
the 2D-parameter domain, generated the position coordinates of the parameter domain
(see row 8 of Figure 9). The details are displayed in row 9. Subsequently, these results
were resampled and interpolated to 256× 256 parameter coordinates, and the correspond-
ing points were found in the current frame, 1024× 1024 parametric coordinates, using
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closest-point local-fine-matching, and quantized into color geometric image components
(r, g, b) 14-bit-deep, and then we obtained the geometric image sequence generated by
parametrization-geometry cooperative registration (see row 10 of Figure 9). By comparing
the mesh parameter coordinates of the traditional parametrization (see row 2 of Figure 9)
and its detailed images (see row 3 of Figure 9), it was obvious that the inter-frame cor-
relations of the geometric image sequence generated by the parametrization-geometry
cooperative registration based on the TPS transformation in this study were significantly
better than those of the traditional parametrization method.

In the double-reference-frame parametrization mode, the first parametrization used
the first GOM frame as the initial reference I-frame and then selected 200 vertices in the
transform vertex parameter coordinate sets of the 2 reference frames as the local control
points of the TPS transformation according to different parametrization structures, gen-
erated 2 parameter domain position coordinates according to the single-reference frame
parametrization mode, and then performed double-reference-frame optimization matching
to generate the optimal transform vertex parameter coordinate set, resampled and interpo-
lated into 256× 256 parameter coordinates. Subsequently, the closest point local fine match-
ing was used to find the corresponding point in the current frame 1024× 1024 parametric
coordinates and quantized it into 14-bit-deep color geometric image components (r, g, b),
thus generating a time-dependent geometric image sequence by double-reference frame
parametrization-geometry cooperative registration.

5.3. Compression Performance

Subsequently, four face expression sequences were used as experimental samples. The
geometric image sequences generated by traditional parametrization, the geometric image
sequences generated by image registration, and the geometric image sequences generated
by parametrization-geometry cooperative single-reference and double-reference frame
registration were synthesized into videos with a frame rate of 9 Hz, and the motion-search-
window radius of the traditional parametric geometric image sequence was halved and
applied to the registration-generated geometric image sequence. The reference software
JM19.0 for the H.264 video-coding standard was used for compression, and finally, the de-
compressed video was decomposed into geometric image sequences and then reconstructed
into 3D-mesh sequences. The objective quality of the reconstructed mesh sequences was
measured by the PSNR value with the original mesh sequences. Usually, after compression,
the 3D-mesh sequence would differ to some extent from the original 3D-mesh sequence.
We used PSNR to measure the quality of the 3D-mesh sequence, reconstructed after com-
pression, thereby measuring the compression quality. The higher the PSNR value, the closer
the compressed 3D-mesh sequence was to the original mesh sequence, and the smaller the
distortion, the higher the compression quality. The code rate indicated the size state of the
3D-mesh sequence after compression, i.e., how many bits, and the smaller the code rate
was, the smaller the 3D-mesh sequence was after compression. Table 2 and Figure 10 show
the results of PSNR comparison before and after compression of non-isomorphic 3D-mesh
sequences at different code rates (bits per vertex, in bpv).

Table 2. The performance data of compression for different models.

Model

Traditional
Parametrization [53]

Registered Geometric
Image Sequences

Single-Reference
Frame Parametrization

Double-Reference
Frame Parametrization

PSNR 1 Code Rate PSNR Code Rate PSNR Code Rate PSNR Code Rate

Happy_M003

55.19 8.02 55.63 10.3 57.23 7.92 58.91 7.97
55.13 5.09 55.58 6.96 57.21 4.51 58.81 4.53
55.06 3.07 55.41 3.57 57.10 2.35 58.59 2.38
54.98 1.76 55.03 1.32 56.78 1.24 58.13 1.24
54.77 0.96 54.57 0.49 56.31 0.67 57.20 0.66

Average Value 55.03 3.78 55.24 4.53 56.93 3.34 2 58.33 3.36
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Table 2. Cont.

Model

Traditional
Parametrization [53]

Registered Geometric
Image Sequences

Single-Reference
Frame Parametrization

Double-Reference
Frame Parametrization

PSNR 1 Code Rate PSNR Code Rate PSNR Code Rate PSNR Code Rate

Fear_M024

55.05 7.54 55.34 10.22 55.96 7.23 56.56 7.16
55.04 4.81 55.31 6.62 55.98 4.25 56.51 4.22
54.86 2.85 55.20 3.44 55.87 2.30 56.38 2.27
54.69 1.62 54.8 1.30 55.63 1.22 56.00 1.20
54.19 0.88 54.31 0.53 55.08 0.64 55.54 0.63

Average Value 54.77 3.54 54.99 4.42 55.70 3.13 56.20 3.10

Surprise_M028

54.06 8.10 54.56 10.76 54.23 8.26 55.06 8.21
54.12 5.17 54.53 7.42 54.29 4.98 55.05 4.85
54.06 3.09 54.40 3.95 54.22 2.67 54.96 2.58
53.96 1.76 54.14 1.51 54.18 1.41 54.81 1.35
53.47 0.95 53.44 0.54 53.70 0.75 54.06 0.71

Average Value 53.93 3.81 54.21 4.84 54.13 3.61 54.79 3.54

Happy_F001

58.26 9.30 58.38 11.02 58.38 9.48 58.42 8.93
58.25 5.95 58.39 7.86 58.40 5.75 58.45 5.29
58.16 3.56 58.13 4.35 58.28 3.03 58.30 2.71
58.05 2.03 57.63 1.61 58.00 1.57 57.98 1.39
57.49 1.10 56.81 0.58 57.36 0.80 57.27 0.71

Average Value 58.04 4.39 57.87 5.08 58.08 4.13 58.09 3.81
1 PSNR: peak signal-to-noise ratio. 2 Values in bold refer to the smallest code rate and the largest PSNR in the average value.

(a) (b)

(c) (d)

Figure 10. PSNR curves of the reconstructed mesh sequences with different methods. The traditional
parameterization is based on [53]. (a) Experimental sample Happy_M003 (b) Experimental sample
Fear_M024 (c) Experimental sample Surprise_M028 (d) Experimental sample Happy_F001.
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It could be seen that at different code rates, in the most of the test sequences, the
geometric image sequences generated by registration had better compression performance
than those generated by the traditional frame-by-frame parametric method [53], where the
overall compression performance of the parametrization-geometry cooperative double-
reference frame registration method was better than the other methods.

Finally, the subjective quality of the reconstructed meshes of the 2 experimental se-
quences is shown in Figures 11 and 12. In Figure 11, the first column is the original mesh,
the second column is the compressed geometric image sequence reconstruction mesh gen-
erated by traditional parametrization [53] (The total code rate of the sequence is 8.02 bpv),
and the third column is the compressed geometric image sequence reconstruction mesh
generated by parametrization-geometry cooperative single-reference frame registration
(the total code rate of the sequence was 7.92 bpv). The first column in Figure 12 shows
the original mesh, the second column is the compressed geometric image sequence recon-
struction mesh generated by traditional parametrization [53] (The total code rate of the
sequence is 7.54 bpv), and the third column is the compressed geometric image sequence
reconstruction mesh generated by parametrization-geometry cooperative single-reference
frame registration (the total code rate of the sequence was 7.23 bpv). It could be clearly
seen that in the case of comparable or slightly better subjective quality, the total code rate
of compressing the reconstructed 3D-mesh sequences of the geometric image sequence
generated by parametrization-geometry cooperative registration was smaller than the
total code rate of the geometric image sequences generated by the traditional method.
It showed that the size of the compressed geometric image sequence generated by the
parametrization-geometry cooperative registration was smaller than that of the geometric
image sequence generated by the traditional method.

Figure 11. Subjective quality comparison of the fourth frame of Happy_M003.
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Figure 12. Subjective quality comparison of the second frame of Fear_M024.

Overall, the compression performance of the geometric image sequences generated
by image registration and the geometric image sequences generated by parametrization-
geometry cooperative registration was better than that of the geometric image sequences
generated by traditional parametrization, among which the geometric image sequences
generated by parametrization-geometry cooperative double-reference frame registration
had the best compression performance. Within the context of the explosive growth trend
of digital geometric media, it brings a positive impact on the storage and transmission
of 3D meshes, an important data type of digital geometric media, and contributes to the
development of non-isomorphic 3D-mesh data compression.

6. Conclusions

We focused on the problem of the compression of non-isomorphic 3D-mesh sequences
based on geometric image representation and proposed two registered geometric-image-
sequence generation methods for the task of compression of non-isomorphic 3D-mesh
sequences, including non-rigid registration of geometric image sequences generated by
traditional parametrization using TPS function and parametrization-geometry cooperative
single-reference or double-reference frame registration by applying TPS transformation.
The geometric correlations of topologically non-isomorphic 3D-mesh sequences were effec-
tively maintained. Finally, mature video compression algorithms were applied to compress
the geometric image sequences generated by traditional parametrization and those gener-
ated by the proposed methods in this paper. The compression experimental results showed
that the subjective and objective qualities of the decoding and the reconstruction of the
proposed methods in this study were better than those of the traditional methods, which
facilitated the storage and transmission of non-isomorphic 3D-mesh data.
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