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Abstract: Machine vision is essential for intelligent industrial manufacturing driven by Industry
4.0, especially for surface defect detection of industrial products. However, this domain is facing
sparse and imbalanced defect data and poor model generalization, affecting industrial efficiency and
quality. We propose a perceptual capsule cycle generative adversarial network (PreCaCycleGAN) for
industrial defect sample augmentation, generating realistic and diverse defect samples from defect-
free real samples. PreCaCycleGAN enhances CycleGAN with a U-Net and DenseNet-based generator
to improve defect feature propagation and reuse and adds a perceptual loss function and a capsule
network to improve authenticity and semantic information of generated features, enabling richer and
more realistic global and detailed features of defect samples. We experiment on ten datasets, splitting
each dataset into training and testing sets to evaluate model generalization across datasets. We train
three defect detection models (YOLOv5, SSD, and Faster-RCNN) with original data and augmented
data from PreCaCycleGAN and other state-of-the-art methods, such as CycleGAN-TSS and Tree-
CycleGAN, and validate them on different datasets. Results show that PreCaCycleGAN improves
detection accuracy and rate and reduces the false detection rate of detection models compared to
other methods on different datasets, demonstrating its robustness and generalization under various
defect conditions.

Keywords: industrial surface defects; defect sample augmentation; perceptual capsule cycle genera-
tive adversarial network; defect detection models

1. Introduction

Industry 4.0 is a new generation of industrial revolution with intelligent manufac-
turing as its core, which aims to achieve the integration of the physical world and the
virtual network world through the deep application of information and communication
technology and improve the sustainability and innovation of production [1]. Intelligent
manufacturing uses information technology, artificial intelligence, the Internet of things,
and other means to realize the digitalization, networking, automation, and intelligent man-
agement and control of the entire manufacturing process and flexibly adjust the production
scale and product structure according to market demand, which can effectively improve
resource utilization, reduce cost, ensure quality, enhance innovation ability, and promote
sustainable development [2,3]. With industry 4.0 promoting the intelligent transformation
of enterprises, machine vision has become widely used in various manufacturing pro-
cesses. Machine vision uses computer vision and image processing methods to analyze
and understand various images in industrial manufacturing [4]. It can perform functions
such as monitoring, detection, identification, and measurement of production processes.
Compared to manual vision, machine vision can effectively improve inspection speed
and accuracy and reduce human resources and human errors [5]. Machine vision has a
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broad range of applications in diverse fields, such as automotive manufacturing, electronic
components, food processing, textile printing and dyeing, and pharmaceutical and chem-
ical industries [6]. One of the important applications of machine vision is the detection
of surface defects in industrial products, where anomalies in material processing result
in undesirable phenomena on the product surface, such as cracks, scratches, pits, and
bubbles, which can impair the product appearance or function and may cause more serious
consequences. Hence, it is essential to identify and reject defective products in a timely and
accurate manner on the production line.

The difficulty of industrial defect detection lies in the fact that industrial products or
parts differ in their surface materials, shapes, colors, and other characteristics, and the types,
locations, sizes, and forms of defects also differ greatly [7]. Therefore, a general and flexible
method that can adapt to different inspection scenarios and needs is required. Traditional
industrial defect detection methods rely on techniques such as manual rules or template
matching [8], which necessitate artificially set thresholds or templates and are not only time-
consuming and labor-intensive but also difficult to adapt to different types and complexities
of defects. In recent years, deep learning methods [9] have achieved breakthroughs in the
field of computer vision and have demonstrated performance and potential to surpass
traditional methods in the field of industrial defect detection. Deep learning methods can
automatically learn high-level feature representations from large amounts of industrial
defect data and use neural network models for classification, localization, or segmentation
to accomplish defect detection tasks [10]. However, deep learning methods still encounter
two main challenges and problems in the field of industrial defect detection [11]. The
first challenge is the lack of industrial defect sample data [12]. Deep learning methods
depend on a large amount of labeled data to train models, but in industrial scenarios, it is
challenging to obtain sufficient and representative sample data due to the wide variety of
products, complex types of defects, and strict production processes. In particular, there is
a significant imbalance between normal and defective samples, which can lead to a bias
toward normal samples during model training and thus affect the model’s ability to identify
defective samples. The second challenge is the poor generalization ability of the model [10].
The lack of defective datasets results in poor model training, which requires a model with
strong generalization ability that can adapt to changes in different scenarios and maintain
high detection accuracy and robustness. However, in practical applications, it is difficult
to ensure good generalization ability of the model due to the quality and quantity of the
dataset as well as the structure and parameters of the model, which leads to false detection
or missed detection when the model is faced with new or unknown defects [13].

One of the key challenges for deep learning models of industrial defect detection is
how to obtain diverse and high-quality industrial sample datasets. Adversarial Generative
Networks (GAN) is an innovative and influential technique in deep learning, which consist
of two neural networks: a generator and a discriminator. They use adversarial training
to build unsupervised learning models that can learn and generate datasets with similar
distribution characteristics to the training data without relying on prior information. The
generator tries to produce samples that are indistinguishable from the real target samples,
while the discriminator tries to distinguish between the generated samples and the real
samples. The two networks compete with each other until they reach a Nash equilibrium.
Currently, GAN and their derived models have gradually become a research hotspot in
the field of data generation, mainly involving two research directions: models based on
network architecture and loss function and models based on domain crossing. Models
based on network architecture and loss function mainly improve the objective function
and network structure of the original GAN to solve problems such as unstable training,
mode collapse, etc., and improve the quality and diversity of the generated samples. The
generator tries to minimize the discrimination error of the discriminator for its generated
samples. The cGAN [14] proposed a GAN based on conditional probability distribution,
which can input additional labels, texts, or image information as conditions to the generator
and discriminator and improve the realism of the generated samples according to this



Electronics 2023, 12, 3475 3 of 28

information. The discriminator tries to maximize its ability to distinguish between real
samples and generated samples. AC-GAN [15] proposed a GAN based on an auxiliary
classifier, which adds an extra classifier in the discriminator to predict the category of the
input sample, and combines the classification loss and discrimination loss to optimize
the network. This can improve the quality and diversity of the generated samples and
also use category information to control the generation process. The objective function
of the original GAN is a minimax game, which has problems such as gradient vanishing,
saddle point, KL divergence asymmetry, etc. Therefore, WGAN introduced Wasserstein
distance as a measure between the real distribution and the generated distribution and gave
a simple and effective algorithm to optimize this distance. WGAN [16] can avoid gradient
vanishing and mode collapse and provide a meaningful indicator of training progress.
Models based on domain crossing mainly use the relationship or transformation rules
between different domains to achieve cross-domain generation tasks. In the original GAN
design, the generator can only map from a random noise space to a data space and cannot
achieve transformation between different data spaces. Pix2Pix [17] proposed a GAN based
on conditional GAN and U-Net structure, which can achieve supervised transformation
from one image domain to another image domain, such as from sketch to color image,
from day to night, etc. StarGAN [18] proposed a GAN based on conditional GAN and
CycleGAN structure, which can achieve unsupervised transformation between multiple
image domains, such as changing facial expressions, hairstyles, gender, etc. These methods
provide some pioneering suggestions for solving this kind of problem.

Although GAN has a wide range of applications in the sample augmentation field,
they mainly focus on domains such as face attribute transformation and landscape color
transformation. In the industrial defect detection field, due to difficulties such as lack of defect
samples, low visibility of defects, irregular shape, unknown type, etc., existing GAN-based
augmented samples are difficult to meet the task requirements of high accuracy and high
speed at the same time. Therefore, designing a GAN model that can synthesize realistic and
diverse defect samples with high fidelity and efficiency is a challenge in industrial defect
detection. To address this challenge, we propose a perceptual capsule cyclic generative
adversarial network (PreCaCycleGAN) for industrial defect sample augmentation, which
aims to learn a more realistic distribution of industrial defect data. Our method leverages
CycleGAN’s framework of bi-directional mapping and cyclic consistency loss and enhances
it with least-squares loss and perceptual loss function. Moreover, our method adopts an
optimized generator structure with U-Net and DenseNet modules, and a capsule network
with perspective invariance, to further improve the generator’s ability to learn the features of
industrial defect samples. The main contributions of our model are shown below:

(i) We design a generator model with U-Net network structure [19] and DenseNet [20]
modules to enhance the feature propagation and feature reuse of defects. This can
solve the gradient disappearance problem of deep networks and add perceptual loss
functions to enhance the feature and semantic information of generated images;

(ii) We use cyclic consistency loss, identity mapping loss, and least squares loss to construct
an adversarial training framework to achieve random changes in defect location and
shape, ensure the consistency between the generated samples and the real samples in the
non-defective region, improve the similarity between the generated samples and the real
samples, and avoid the mode collapse and gradient vanishing or oscillation problems;

(iii) We design a discriminator model with PatchGAN [21] and capsule network [22] using
dynamic routing protocols dual branches after the initial feature extraction, which can
effectively extract and retain the detailed features of defective samples, identify the
local and overall features of the samples, and improve the authenticity and diversity
of industrial defect generation samples;

(iv) We compare our method with other generation algorithms and validate it in the actual
industrial manufacturing defect detection model. We prove that our method has the
optimal performance improvement for the actual industrial manufacturing defect
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detection model and can effectively increase the generalization ability of the defect
detection model.

2. Related Work

Data augmentation is a common technique to enhance the performance and general-
ization ability of machine learning models by artificially creating new data to expand and
enrich the training dataset. Sample augmentation is a specific form of data augmentation
that is tailored to the characteristics and requirements of different domains or tasks. Data
augmentation has been widely applied in computer vision, especially for tasks such as
image classification, object detection, semantic segmentation, etc., where it can effectively
address the issues of data insufficiency, dataset imbalance, and overfitting. However, in
industrial defect detection, obtaining industrial defect samples is challenging due to the
high yield rate of intelligent manufacturing, which leads to the lack of quantity and di-
versity of defect samples. Moreover, industrial defect samples require manual inspection
and annotation by professionals, which is time-consuming and expensive. Furthermore,
industrial defect samples have high complexity and diversity and are often sensitive and
confidential, which restricts data sharing and communication and hinders the development
of the industrial defect detection field. Therefore, designing suitable data enhancement
techniques to overcome the data scarcity and imbalance problems in the industrial defects
domain and to improve the robustness and accuracy of industrial defects detection models
is an important and meaningful topic. We will review the current related research in data
augmentation from three perspectives: Model-free image augmentation, Model-based
image augmentation, and optimizing policy-based image augmentation, and analyze their
advantages and challenges in industrial defect samples.

2.1. Model-Free Image Augmentation

Model-free Image Augmentation (MIA) is a data augmentation method that does not
depend on any model training or optimization, and it augments the data by applying vari-
ous geometric or color transformations to the original image, such as rotation, translation,
scaling, cropping, flipping, brightness adjustment, contrast adjustment, etc. [23]. These
transformations can be done in image space or frequency domain and can be randomly
combined. However, these conventional transformation methods often only increase the
data quantity but not the data diversity and may cause information loss or distortion. To
address this issue, some researchers proposed methods such as CutMix [24], which mixes
different images; Random Erasing [25], which replaces pixel values with random rectangles;
Noise Injection [26], which adds random values from Gaussian distributions to an image;
and Copy-Paste [27], which randomly pastes instance targets on background images. These
methods can improve the data diversity and complexity by blending or erasing images,
but they can also lose the details and boundary information of the images, which can affect
the performance of the model for fine-grained target detection tasks.

MIA is a general and simple data augmentation method that can be applied to any
image data and task, but there are few studies on algorithms specifically designed for
industrial defect sample augmentation. Farady et al. [28] only proposed PreAugNet in
2023, which uses a Support Vector Machine (SVM) as a class boundary classifier to filter the
samples generated by MIA and combine them with the original ones. The limitations of
MIA for industrial defect sample augmentation are mainly divided into two aspects: on
the one hand, it cannot customize the transformations for a specific type of defects, and
it usually requires manual setting of the transformation types and parameters, which are
hard to adapt to different tasks and datasets. On the other hand, it can only transform the
original image in its spatial or frequency domain and cannot change the content or structure
of the image, so the difference between the generated samples and the original samples
is limited, and it cannot effectively extend the data distribution or cover a new feature
space to generate new samples. This cannot cope with the industrial defect images with
specific structures or constraints that are generated from complex and dynamic industrial
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defect scenarios, and excessive transformations may destroy the semantic information of
the image and thus compromise the quality and authenticity of the generated industrial
defect samples.

2.2. Optimizing Policy-Based Image Augmentation

Optimizing Policy-based Image Augmentation (OPIA) is an approach that uses an
optimization algorithm to search for the optimal data augmentation policy. OPIA is es-
sentially a sequence of MIA operations and their parameters, such as rotating 15 degrees
+ crop 0.8 + brightness adjustment 0.2, etc. OPIA can automatically find the best data
augmentation strategy for different datasets and tasks and can significantly improve the
model performance on a test set. Cubuk et al. [29] proposed AutoAugment, the first OPIA
method, which uses a reinforcement learning-based controller to select the optimal data
augmentation strategy, but it is very slow and computationally intensive. Cubuk et al. [30]
then proposed RandAugment based on the data augmentation strategy of the Neural
Network Architecture Search (NAS) method [31], which reduces the search space, makes
the search results more general and stable, and can adapt to models and datasets of differ-
ent sizes and complexities. Lim et al. [32] further improved AutoAugment by proposing
Fast AutoAugment, which uses Bayesian optimization and density matching to speed up
the search process and is three orders of magnitude faster than AutoAugment in search
time while achieving similar or better performance. Ho et al. [33] proposed Population-
Based Augmentation, which optimizes both the target network and the data augmentation
strategy, and PBA is four orders of magnitude faster than AutoAugment in search time
while achieving similar or better performance. Zhang et al. [34] proposed Adversarial
AutoAugment based on Adversarial Production Networks, which uses adversarial loss
and reinforcement learning to optimize the data augmentation strategy, and Adversarial
AutoAugment is 12 times faster than AutoAugment in search time while achieving the
best performance on multiple datasets. However, OPIA still depends on MIA as a trans-
formation operation and thus suffers from the same problems and limitations faced by
model-free image augmentation techniques. For industrial defect detection, no studies have
been found using optimization strategy-based image augmentation techniques to improve
model performance. This may be due to the lack of sufficiently large and high-quality
training data and feedback signals in industrial defect detection, which makes it difficult
for optimization strategy-based image augmentation techniques to effectively learn data
augmentation strategies or parameters.

2.3. Model-Based Image Augmentation

Model-based Image Augmentation (MBIA) is an approach that leverages deep learning
models to synthesize new data samples. With the advancement of deep learning, traditional
data augmentation methods are gradually replaced by data augmentation algorithms based
on deep learning frameworks. Deep learning models can learn latent feature distributions
from raw data and can generate new data samples from random noise or conditional
inputs. MBIA can effectively increase the size and diversity of datasets and can produce
high-quality and high-fidelity data samples. Kuo et al. [35] proposed FeatMatch based
on Convolutional Neural Networks (CNNs) [36], which replaces simple transformations
in image space with complex transformations generated in feature space to achieve data
augmentation effects in feature space, thus enhancing the data diversity and consistency.
However, the lack of interpretability of vector data in feature space leads to difficult and
time-consuming training. Therefore, Wong et al. [37] changed the perspective of data
augmentation to data space and found that data augmentation in data space is superior to
data augmentation in feature space. However, both data augmentation methods in feature
space and data space do not sufficiently learn the true distribution of the sample data,
which makes the data augmentation methods based on Adversarial Generative Networks
(GANs) [38] start to attract attention and research.
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GANs is a deep learning framework that consists of generative and discriminative
models that compete with each other. GANs can learn the underlying data distribution
from raw samples and generate novel samples with diverse attributes such as types, po-
sitions, sizes, and shapes. The generation and discrimination processes are driven by
a zero-sum game that ensures the progressive convergence between the generated and
authentic data distributions. However, the GAN training process faces many challenges
due to its non-convex and non-cooperative nature. Mode collapse, gradient vanishing, and
oscillatory disturbances are common problems that affect the quality and diversity preser-
vation in generated samples. Various GAN variants such as WGAN [16], LS-GAN [39],
and f-GAN [40] have introduced different loss functions and distance metrics to improve
the similarity between generated and real samples. Likewise, models such as cGAN [14],
AC-GAN [15], and InfoGAN [41] have modified the architectures of generators and discrim-
inators to increase the expressiveness and diversity of generative models. However, due to
the complex and variable features of industrial defects, relying only on GANs to generate
new industrial defect samples from random noise might lead to significant differences
or biases compared to real samples. The generated samples might lack plausibility or
credibility, which limits the application of GANs in industrial defect sample generation.

To endow GANs with more control mechanisms for sample generation, models such
as Pix2Pix [17] and CycleGAN [21] have used translation between different images to
impose constraints on generated samples, ensuring their closer approximation to real
images. Based on this idea, some researchers have explored industrial defect sample
generation. Qin et al. [42] proposed Tree-CycleGAN, a cyclic generative adversarial network
based on a symmetric tree structure. This method uses a tree-structured generator with
maximal diversity loss to enable one-to-many generation mappings. Using a tree-structured
reconstructor and dual discriminators, Tree-CycleGAN can generate multiple target domain
samples from a single source domain sample while preserving differences and cyclic
consistency across different branches. This method effectively alleviates the problem of
industrial defect sample insufficiency.

Similarly, Song et al. [43] introduced CycleGAN-TSS, a Texture Self-Supervised Cycle-
GAN that leverages texture information as a self-supervisory signal to guide the generator
in acquiring enhanced shadow features. Compared to traditional CycleGAN, CycleGAN-
TSS can produce more realistic shadow images, thereby improving road crack detection
performance. Niu et al. [44] proposed a method that combines CycleGAN with a Defect
Attention Module (DAM). This adaptive method adjusts the weights of defect regions and
integrates structural similarity (SSM) into the original L1 loss to formulate the Defect Cycle
Consistency Loss (DCL). By using grayscale and structural features, this method enhances
the simulation of internal defect structures. Notably, unlike other GAN-based methods,
this method yields clearer and more authentic defect images, thereby enhancing defect
detection accuracy. In a different contribution, SHAO et al. [45] introduced DuCaGAN,
a Dual Capsule Generative Adversarial Network based on CycleGAN. DuCaGAN uses
the Dual Capsule Network (DCN) [22] to generate diversified and high-fidelity industrial
defect samples, which can be used for practical industrial data augmentation.

All these methods address the problem of industrial defect sample augmentation to
some extent, but in real industrial manufacturing applications, they often suffer from low
quality, low diversity, and low fidelity and do not adequately reflect the data distribution of
the real industrial defect samples, which affects the detection accuracy and generalization of
the deep learning-based defect detection model. Therefore, MBIA needs to design appropriate
network structures and loss functions to adapt to different data characteristics and task
requirements and balance the relationship between quality and diversity of generated samples
while avoiding training difficulties such as mode collapse and gradient vanishing.
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3. The Proposed Model
3.1. Overall Structure

To address the challenge of small sample sizes in industrial defect detection and to
address the shortcomings of the current model-based image augmentation methods, we
present a model PreCaCycleGAN that leverages defect-free samples to synthesize defective
samples based on CycleGAN, as illustrated in Figure 1.
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Figure 1. Schematic diagram of PreCaCycleGAN structure.

The framework includes two generators DP2N (Positive Sample to Negative sample)
and DN2P (Negative sample to Positive Sample), and two discriminators DP2N and DN2P.
The generators are optimized based on the U-Net network structure, and the perceptual
loss function is incorporated as a constraint to enhance the feature and semantic quality
of the generated images. In the discriminator, we employ capsule networks to learn more
refined global spatial features based on PatchGAN. Furthermore, we replace the Sigmoid
cross-entropy loss function with least squares to overcome the gradient vanishing problem
during training and prevent mode collapse and training instability.

3.2. Generator Structure

The generator G architecture is illustrated in Figure 2. Initially, the input image is
subjected to channel expansion by a convolution layer employing convolution operation, and
the convolution kernel of this layer possesses a size of 3 × 3 and a stride of 1. Subsequently,
the feature map is aggregated and reconstructed by four times downsampling and four times
upsampling, and ultimately the defective samples are synthesized by the activation layer. To
augment the local detail feature extraction of the defective samples and enhance the network
training efficiency and accuracy, we incorporate the summation operation with the antecedent
layer prior to transmitting to the subsequent layer in the first three layers of downsampling
and amalgamate with the residual module [46] to further ascertain the feature integrity of the
samples in the downsampling process. We adopt the DenseNet Block [20] in the converter
layer in lieu of the ResNet structure to considerably diminish the parameter and computation
overheads. In the upsampling process, we exploit the upsampling module to accomplish
the stitching of the downsampled feature maps of the corresponding scales through skip
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connections and fuse the features by the residual module based on the nearest interpolation
upsampling before conveying them to the next layer.
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3.3. Discriminator Structure

We proposed a discriminator D with a PatchGAN and a capsule network with two
branches [22] to optimize the discriminative output, as illustrated in Figure 3. The input
image undergoes three feature extraction layers and then bifurcates into two branches for
the output. The first branch employs the original PatchGAN discriminator structure to
assess the local authenticity of the image. The second branch utilizes the capsule network
to achieve sample discrimination and evaluate the global consistency of the image.
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To better preserve the spatial information of industrial defect samples, we employed
vector encoding of the primary capsule layer and the digit capsule layer to represent
the probability of feature existence and spatial information in the capsule network. This
enhances the realism and diversity of the generated defect samples, as well as their inter-
pretability and controllability. We also employed a dynamic routing mechanism between
two consecutive capsule layers to iteratively learn and predict the features of the lower
layer and achieve an adaptive feature combination. The dynamic routing relationship
between capsule i in layer l and capsule j in layer (l + 1) is depicted in Equation (1).

ûj|i = Wij · ui (1)

where the output of capsule i is ui, the weight matrix between capsule i and capsule j is Wij,
and the prediction vector from capsule i to capsule j is ûj|i. The discriminator only needs to
output two types of data, true or false, and j takes the value {0,1}. i is then determined by
the total number of master capsules and takes the value {1 ≤ i ≤ 4096|i∈N}.

After the prediction vectors are input to the dynamic routing incentive mechanism,
for each prediction vector, a routing weight needs to be defined, which is the log prior
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probability between capsule i and capsule j. The coupling coefficient is obtained using
softmax, as shown in Equation (2).

cij =
exp
(
bij
)

Σkexp
(
bij
) (2)

where cij is the coupling coefficient of the prediction vector and bij is the routing weight. Since
there is no initial routing preference, the initial routing weight of each capsule is the same,
and the sum of the coupling coefficients of all prediction vectors is 1, so the initial value of bij
is set to 0. So the output sum sj of capsule j in the (l + 1)th layer is shown in Equation (3).

sj = Σicij · ûj|i (3)

where sj is the output vector of layer j, representing the sum probability of all weighted
prediction vectors in this layer, and it is necessary to use the squash function for sj to ensure
that the probability takes values between [0, 1], as shown in Equation (4).

vj =
‖sj‖2

1 + ‖sj‖2 ·
sj

‖sj‖
(4)

where, vj is the predicted probability output of layer j after compression, and in the calcula-
tion, in order to prevent the denominator from being 0, the denominator is preprocessed by
adding ε, where ε is taken as 10−8, as shown in Equation (5).

‖s‖ ≈
√

∑
i

s2
j + ε (5)

The routing iteration protocol is represented by the dot product of the output vector
and the prediction vector, and the larger the dot product represents the smaller the pinch
angle, which proves that the consistency of the output vector and the prediction vector is
better, and the protocol aij is shown in Equation (6).

aij = vj · ûj|i (6)

The dynamic routing incentive mechanism is a cyclic structure, so the routing weights
bij need to be updated before the next cycle, and the formula is shown in Equation (7).

bij ← bij + aij (7)

We used aij to measure the consistency between the output vector and the prediction
vector. The higher the aij, the higher the coupling coefficient cij is updated, and the higher
the probability that capsule i is assigned to capsule j. This means that capsule j is more
likely to be activated and to represent the existence of an entity. The dynamic routing
mechanism replaces the scalar output feature detector of the convolutional neural network
with a vector output, replaces the max pooling layer with a routing protocol mechanism,
and optimizes the discriminative output. The number of routing iterations is denoted by r;
here, r = 3. The algorithm of the dynamic routing mechanism is shown in Algorithm 1.

The dynamic routing mechanism processes each capsule in the primary capsule layer
and then iteratively learns and predicts the features of the next layer. The activation capsule
vector for each layer is found, and the output value of the primary capsule layer is obtained
by continuous iterative updates.
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Algorithm 1 Dynamic Routing Algorithm

1. Input: vector neuron prediction capsule ûj|i, iteration number r
2. Output: vector neuron output vector vj

3. Routing weights initialization assignment: bij ← 0
4. for k in r do
5. Coupling coefficients corresponding to all prediction capsules: cij ← so f tmax(bi)

6. Weighted summation of all prediction capsules: sj ← Σicij · ûj|i

7. Normalized compression of pairs: vi ← squash
(

sj

)
8. Update routing weights: bij ← bij + aij

9. end for

3.4. Loss Function

The CycleGAN model generation involves two types of loss functions: the adversarial
loss function and the reconstruction loss function. The adversarial loss function aims to
minimize the discrepancy between the data distributions of the generated image and the
target domain, thus producing more realistic images. The reconstruction loss function
ensures that the mapping relation between the source and target domains is consistent
and aligned. To enhance the quality of the industrial defect images, we incorporate the
perceptual loss function and the capsule loss function based on the U-Net structure and
the capsule network structure. We also add the identity mapping loss to better capture the
industrial defect features. The overall loss function is given by Equation (8).

LPreCaCycleGAN = LGAN(GP2N , DP2N , X, Y) + LGAN(GN2P, DN2P, Y, X)
+λ1Lcycle(GP2N , GN2P, X, Y) + λ2Lidentity(GP2N , GN2P, X, Y)
+λ3Lperceptual(GP2N , GN2P, X, Y)

(8)

Standard generative adversarial networks adopt a binary, zero-sum game, which
poses a very large very small game problem [38]. In this game, the generator and the
discriminator compete to reach the final Nash equilibrium, as shown in Equation (9). The
CycleGAN model employs the Sigmoid cross-entropy loss function as the adversarial loss
function, which is suitable for logical classification problems. However, this loss function
can cause gradient vanishing problems in the training of generative adversarial networks,
affecting model convergence and optimization. To address this issue, we use the least
squares method as the adversarial loss function and combine it with the edge loss of the
capsule network. This improves the stability and convergence of the training and ensures
the authenticity and diversity of the generated samples. The model training loop consists
of defective industrial samples and non-defective industrial samples that are mutually
generated with the same two parts of the loss function. As an example, we introduce the
following formulas to generate defective samples (y) from non-defective samples (x) by
using the generator GP2N and the discriminator DP2N , and we show the adversarial loss
function in Equation (10).

G∗, D∗ = arg min
G

max
D

L(GP2N , DP2N , GN2P, DN2P, X, Y) (9)

LGAN(GP2N , DP2N−1, DP2N−2, X, Y)
= Ex∼Pdata(x)

[
(DP2N−1(G(x))− 1)2

]
+Ey∼Pdata(y)

[
(DP2N−1(y)− 1)2

]
+ Ex∼Pdata(x)

[
(DP2N−1(G(x)))2

]
+λEy∼Pdata(y)[−LMDP2N−2(y), T = 1]
+λEx∼Pdata(x)[−(DP2N−2(G(x))), T = 0]

(10)
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where DP2N−1 is the discriminator branch that uses the PatchGAN structure and DP2N−2
is the discriminator branch that uses the capsule network. The first part on the right-hand
side of the equal sign is the loss function corresponding to the generator, and its optimiza-
tion objective is to make the value DP2N−1(G(x)) of the discriminator that discriminates
the generated image approach 1. The second and third parts are the loss functions cor-
responding to the discriminator, and their optimization objective is to make the value of
the discriminator that discriminates the real image DP2N−1(G(x)) approach 1, and the
value of the discriminator that discriminates the generated image DP2N−1(G(x)) approach
0. The fourth and fifth parts are the edge loss functions, and λ is a hyperparameter that
indicates the relative importance of the edge loss in the improved adversarial loss. The
capsule discriminator only needs to determine whether the input image is a real image or a
generated fake image, which is defined in Equation (11).

LM(k, v) = TK max
(
0, m+ − ‖vk‖

)2
+ λ(1− TK)max

(
0, ‖vk‖ −m−

)2 (11)

where vk (see Equation (4)) is the output vector of the discriminator layer of the capsule
network. k = 0 for real data, or k = 1 for generated false data. TK = 1 if it is desired for the
discriminator or generator to determine that this is true data at this point, or TK = 0 if it is
desired for the discriminator to determine that this is generated false data at this point. m+

and m− are the baselines for determining whether the input image is true or false. If the
mode of the vector is larger than m+, 0 is returned; if the mode of the vector is smaller than
m+, the square of the difference between the two is returned; if the mode of the vector is
smaller than m−, 0 is returned; if the mode of the vector is larger than m−, the square of the
difference between the two is returned.

In order to avoid the pattern collapse problem in the process of fighting against the
loss function to reach Nash equilibrium, we add the perceptual loss function to enhance
the feature and semantic information of the generated image during the generator training
to make the generated image more realistic and clear. The formula is shown in Equation
(12), where φ is the pre-trained VGG19 feature extractor.

Lperceptual(GP2N , GN2P, X, Y) = ‖φ(x)− φ(GP2N(GN2P(x)))‖2
2 + ‖φ(y)− φ(GN2P(GP2N(y)))‖2

2 (12)

Identity loss and loop loss are used to ensure that the generated industrial defect images
are consistent with the input industrial defect-free images in terms of content and structure,
and the constraint generator generates industrial defect samples on the same background as
the input defect-free samples, and the formulas are shown in Equations (13) and (14).

Lcycle(GP2N , GN2P, X, Y) = Ex∼Pdata(x)‖GP2N(GN2P(x))− x‖1 + Ey∼Pdata(y)‖GN2P(GP2N(y))− y‖1 (13)

Lidentity(GP2N , GN2P, X, Y) = Ex∼Pdata(x)‖GN2P(x)− x‖1 + Ey∼Pdata(y)‖GP2N(y)− y‖1 (14)

The training process of the PreCaCycleGAN model is shown in Algorithm 2. Unlike the
standard CycleGAN model, in order to ensure the convergence and accuracy of the model,
we get the optimal training steps through experiments. In steps 3 to 6, we update the
optimized generator GP2N , discriminator DP2N , generator GN2P, discriminator DN2P, to
obtain the final industrial defect sample generation model.
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Algorithm 2 PreCaCycleGAN Algorithm

Optimization Objective: generator GP2N , discriminator DP2N , generator GN2P, discriminator
DN2P

1. Initialize all network and hyperparameters
2. for number of epochs do

Draw a minibatch of samples {x(1), . . . . . . , x(m)} from domain X
Draw a minibatch of samples {y(1), . . . . . . , y(m)} from domain Y

3. Calculate generator GP2N loss and update all parameters of the generator GP2N by
minimizing the generator loss

4. Calculate generator DP2N loss and update all parameters of the generator DP2N by
minimizing the generator loss

5. Calculate generator GN2P loss and update all parameters of the generator GP2N by
minimizing the generator loss

6. Calculate generator DN2P loss and update all parameters of the generator DN2P by
minimizing the generator loss

7. end for
8. end for

4. Validation Experiments

To assess the effectiveness of PreCaCycleGAN-generated defect samples in enhancing
the generalization performance of real industrial defect detection models, we employed the
DAGM 2007 dataset as an experimental platform. DAGM 2007 [47] is a publicly accessible
dataset of texture surface images with various types of defects, which simulates the real-
world defect detection problem with high complexity and diversity. We compared the defect
samples produced by PreCaCycleGAN with those produced by Tree-CycleGAN [42] and
CycleGAN-TSS [43] and applied them to three state-of-the-art defect detection models that
are widely adopted in practice, namely YOLOv5 [48], SSD [49], and Faster-RCNN [50]. We
evaluated the impact of PreCaCycleGAN-generated defect samples on the generalization
performance of defect detection models by measuring the mAP, false detection rate, and
other metrics of the three generative models on different defect detection models and
datasets. All experiments were conducted on a single NVIDIA GeForce GTX 3060 GPU.

The training process lasted for 150 iterations with a batch size of 1. The learning
rate was initially set to 0.0002 and was linearly decayed starting from the 100th iteration.
The hyperparameters in the loss function were empirically determined. We set λ1 to 10,
λ2 to 0.5, λ3 to 0.02, m+ in the capsule network to 0.9, m− to 0.1, and λ to 0.5, respectively,
and used the Adam optimizer with default parameters for gradient computation. The
comparison plots of defects generated by the three generative models are shown in Figure 4.

Visually, compared to the other two models, the PreCaCycleGAN model with DenseNet
incorporated into the U-Net network exhibits more diverse defect sample generation in four
datasets: (b), (h), (i), (j). Moreover, in three datasets: (a), (e), (f), and (g), our model with a
two-branch discriminator demonstrates a more refined feature representation. However, in
the remaining dataset, our defect generation performance is not clearly superior to that of the
other models.

Although our model appears to improve defect generation diversity and feature
quality compared to the existing models from visual inspection, the generated defect
samples need to be tested on actual industrial inspection models to verify their effectiveness.
Therefore, we need further quantitative data to support the current superiority of our model.
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Figure 4. (a–e) represent the datasets of Class 1–Class 5, respectively. Comparison of generation
defects of PreCaCycleGAN with different generative models on different datasets. Red boxes identify
the defects in the images and are shown zoomed in adjacent positions. In (a,b,e), it can be clearly
found that PreCaCycleGAN is able to generate more realistic and diverse defects, while the other
models suffer from blurring and distortion. (f–j) represent Class 5–Class 10 datasets, respectively. In
(h–j), it can be clearly found that PreCaCycleGAN is able to generate a wider variety and a larger
number of defects, while the other models can only generate a single defect.
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4.1. Detection Model Training Validation

To validate the effectiveness of our model-generated defect samples in real industrial
manufacturing, we selected three models YOLOv5 [48], SSD [49], and Faster-RCNN [50],
which are currently widely used in industrial inspection, for generating images for general-
ization enhancement of the detection model. In the training set, we designed three types of
training sets De-Train A, De-Train B, and De-Train C, for different datasets, where De-Train
A consists of 700 defect-free samples and 100 real defect samples, De-Train B consists of
700 defect-free real samples and 100 synthetic defect samples generated by different models,
De-Train C consists of 700 defect-free samples, 50 real defect samples and 50 synthetic
defect samples generated by different models. Tables 1–3 show the corresponding detection
accuracies for the three training sets De-Train A, De-Train B, and De-Train C.

Table 1. Training detection accuracy of De-Train A.

Dataset YOLOv5-mAP@0.5 SSD-mAP@0.5 Faster-RCNN-mAP@0.5

Class1 0.667 0.545 0.634
Class2 0.784 0.735 0.791
Class3 0.723 0.661 0.754
Class4 0.542 0.596 0.552
Class5 0.654 0.614 0.629
Class6 0.735 0.663 0.671
Class7 0.720 0.597 0.714
Class8 0.584 0.493 0.563
Class9 0.702 0.695 0.712

Class10 0.715 0.733 0.701

Table 2. Training detection accuracy of De-Train B.

Model YOLOv5-mAP@0.5 SSD-mAP@0.5 Faster-RCNN-mAP@0.5

Tree-CycleGAN [42]Class1 0.670 0.552 0.646
CycleGAN-TSS [43]Class1 0.692 0.562 0.654

PreCaCycleGANClass1 0.723 0.596 0.682
Tree-CycleGAN [42]Class2 0.811 0.781 0.828
CycleGAN-TSS [43]Class2 0.794 0.762 0.817

PreCaCycleGANClass2 0.834 0.798 0.842
Tree-CycleGAN [42]Class3 0.732 0.711 0.795
CycleGAN-TSS [43]Class3 0.751 0.729 0.806

PreCaCycleGANClass3 0.763 0.726 0.811
Tree-CycleGAN [42]Class4 0.560 0.622 0.578
CycleGAN-TSS [43]Class4 0.584 0.652 0.596

PreCaCycleGANClass4 0.576 0.645 0.602
Tree-CycleGAN [42]Class5 0.679 0.639 0.654
CycleGAN-TSS [43]Class5 0.664 0.618 0.635

PreCaCycleGANClass5 0.674 0.643 0.651
Tree-CycleGAN [42]Class6 0.746 0.687 0.695
CycleGAN-TSS [43]Class6 0.763 0.709 0.727

PreCaCycleGANClass6 0.791 0.728 0.745
Tree-CycleGAN [42]Class7 0.731 0.622 0.739
CycleGAN-TSS [43]Class7 0.729 0.625 0.736

PreCaCycleGANClass7 0.761 0.667 0.763
Tree-CycleGAN [42]Class8 0.608 0.539 0.593
CycleGAN-TSS [43]Class8 0.592 0.533 0.596

PreCaCycleGANClass8 0.614 0.548 0.602
Tree-CycleGAN [42]Class9 0.729 0.736 0.754
CycleGAN-TSS [43]Class9 0.731 0.733 0.751

PreCaCycleGANClass9 0.736 0.745 0.763
Tree-CycleGAN [42]Class10 0.747 0.765 0.738
CycleGAN-TSS [43]Class10 0.731 0.775 0.745

PreCaCycleGANClass10 0.756 0.781 0.749
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Table 3. Training detection accuracy of De-Train C.

Model YOLOv5-mAP@0.5 SSD-mAP@0.5 Faster-RCNN-mAP@0.5

Tree-CycleGAN [42]Class1 0.712 0.586 0.679
CycleGAN-TSS [43]Class1 0.763 0.603 0.684

PreCaCycleGANClass1 0.796 0.634 0.735
Tree-CycleGAN [42]Class2 0.856 0.826 0.868
CycleGAN-TSS [43]Class2 0.839 0.817 0.862

PreCaCycleGANClass2 0.881 0.832 0.887
Tree-CycleGAN [42]Class3 0.777 0.756 0.840
CycleGAN-TSS [43]Class3 0.796 0.774 0.851

PreCaCycleGANClass3 0.808 0.771 0.856
Tree-CycleGAN [42]Class4 0.605 0.667 0.623
CycleGAN-TSS [43]Class4 0.629 0.687 0.641

PreCaCycleGANClass4 0.621 0.690 0.647
Tree-CycleGAN [42]Class5 0.724 0.684 0.699
CycleGAN-TSS [43]Class5 0.709 0.663 0.678

PreCaCycleGANClass5 0.719 0.688 0.694
Tree-CycleGAN [42]Class6 0.791 0.732 0.740
CycleGAN-TSS [43]Class6 0.808 0.757 0.772

PreCaCycleGANClass6 0.835 0.776 0.790
Tree-CycleGAN [42]Class7 0.776 0.667 0.784
CycleGAN-TSS [43]Class7 0.774 0.670 0.781

PreCaCycleGANClass7 0.805 0.712 0.809
Tree-CycleGAN [42]Class8 0.653 0.584 0.638
CycleGAN-TSS [43]Class8 0.637 0.578 0.641

PreCaCycleGANClass8 0.659 0.592 0.646
Tree-CycleGAN [42]Class9 0.774 0.781 0.799
CycleGAN-TSS [43]Class9 0.776 0.779 0.796

PreCaCycleGANClass9 0.783 0.788 0.807
Tree-CycleGAN [42]Class10 0.772 0.790 0.763
CycleGAN-TSS [43]Class10 0.756 0.792 0.776

PreCaCycleGANClass10 0.781 0.806 0.780

Out of the 60 results from De-Train B training and De-Train C training, PreCa-
CycleGAN achieved 51 top scores, and the results in the items that did not achieve top
scores were very close to the top scores. In general, the detection accuracy was improved
by 3–5% using De-Train B to train the dataset than using De-Train A to train the dataset,
while the detection accuracy was improved by 8–10% using De-Train C to train the dataset
than using De-Train A to train the dataset, which proves that the defect samples generated
by different models all have a significant impact on the generalization and accuracy of the
detection model. The improvement is evident, especially when the mixture of generated
defect samples and real defect samples is used to train the detection model, which is
consistent with the current actual industrial manufacturing situation.

We further compared the defect samples generated by PreCaCycleGAN with those gen-
erated by Tree-CycleGAN and CycleGAN-TSS and found that PreCaCycleGAN-generated
defect samples exhibited better detail features for detection model learning in differ-
ent datasets. Taking the YOLOv5 detection model as an example, we observed that
PreCaCycleGAN-generated defect samples improved the detection accuracy by about
4% in (a), (b), (f), (g), and by 1–2% in the remaining datasets, compared to the other
two generative models. This proves that our model can generate images with more de-
tailed defect features and defect diversity. The same trend was observed in both SSD and
Faster-RCNN detection models, demonstrating that our model-generated images can be
practically applied to industrial defect detection models and show good generalization.

4.2. Detection Model Test Validation

To further verify the generalization improvement of the generated images to the
detection model, test sets are constructed to show the application performance of the
detection model in multiple dimensions and to demonstrate the practicality of our model
to generate defective samples. In the validation set, we also set three types of test sets
De-Test A, De-Test B, and De-Test C, for different datasets, where De-Test A is composed of
120 defect-free samples and 60 real defect samples, De-Test B is composed of 120 defect-
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free real samples and 60 fake defect samples generated by different models. De-Test C
is composed of 120 defect-free samples, 30 real defective samples, and 30 fake defective
samples generated by different training sets and training models correspondingly. During
the experiments, we used the three most important metrics in real industrial manufacturing,
data detection accuracy (DDA), defect detection rate (DDR), and false detection rate (FDR),
to measure the detection accuracy [51]. Among them, the data detection accuracy is the
percentage of the sum of correctly detected defect data and defect-free data in the total
data volume, the defect detection rate is the percentage of correctly detected defects in
the total defect data, and the false detection rate is the percentage of incorrectly detected
defect-free samples as defective samples among all samples detected as defective, as shown
in Equations (15)–(17).

DDA =
TP + TN

TP + TN + FP + FN
(15)

DDR =
TP

TP + FN
(16)

FDR =
FP

TP + FP
(17)

where TP is the number of correctly detected sample defects in the testing process, TN is
the number of correctly detected true defect-free samples, FP is the number of incorrectly
detected true defect-free samples as defective samples, and FN is the number of incorrectly
judged defects as true sample backgrounds. The IOU of the detection model in the testing
process is set to 0.25. The results of the validation set of (a)–(j) are shown in Tables 4–14.

Table 4. Indicators for each detection model in De-Test A.

Model
YOLOv5 SSD Faster-RCNN

DDA DDR FDR DDA DDR FDR DDA DDR FDR

Class 1 88.89% 66.67% 0.00% 81.67% 46.67% 3.45% 87.78% 63.33% 0.00%
Class 2 93.89% 81.67% 0.00% 92.22% 76.67% 0.00% 91.67% 75.00% 0.00%
Class 3 89.44% 73.33% 6.38% 88.33% 71.67% 8.51% 90.56% 75.00% 4.26%
Class 4 79.44% 46.67% 15.15% 81.11% 50.00% 11.76% 80.56% 48.33% 12.12%
Class 5 86.67% 68.33% 10.87% 85.00% 66.67% 14.89% 86.11% 68.33% 12.77%
Class 6 90.56% 73.33% 2.22% 88.89% 70.00% 4.55% 89.44% 71.67% 4.44%
Class 7 88.89% 71.67% 6.52% 87.78% 70.00% 8.70% 88.89% 71.67% 6.52%
Class 8 84.44% 65.00% 15.22% 81.11% 58.33% 20.45% 84.44% 65.00% 15.22%
Class 9 83.89% 68.33% 19.61% 84.44% 70.00% 19.23% 85.56% 71.67% 17.31%
Class 10 92.22% 76.67% 0.00% 92.78% 78.33% 0.00% 92.22% 76.67% 0.00%

Table 5. Class 1 test result.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

YOLOv5

De-Train B
Tree-CycleGAN [42] 88.46% 69.35% 4.44% 90.06% 73.77% 4.26%
CycleGAN-TSS [43] 88.40% 68.85% 4.55% 90.61% 75.41% 4.17%

PreCaCycleGAN 89.62% 71.43% 2.17% 92.86% 80.65% 1.96%

De-Train C
Tree-CycleGAN [42] 90.11% 72.58% 2.17% 92.27% 78.69% 2.04%
CycleGAN-TSS [43] 91.21% 74.19% 0.00% 93.37% 80.33% 0.00%

PreCaCycleGAN 91.89% 76.92% 0.00% 94.54% 84.13% 0.00%
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Table 5. Cont.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

SSD

De-Train B
Tree-CycleGAN [42] 81.87% 51.61% 8.57% 82.32% 52.46% 8.57%
CycleGAN-TSS [43] 82.87% 52.46% 5.88% 83.43% 54.10% 5.71%

PreCaCycleGAN 85.25% 58.73% 2.63% 85.71% 59.68% 2.63%

De-Train C
Tree-CycleGAN [42] 83.52% 53.23% 2.94% 84.53% 55.74% 2.86%
CycleGAN-TSS [43] 84.07% 54.84% 2.86% 85.08% 57.38% 2.78%

PreCaCycleGAN 86.49% 61.54% 0.00% 87.43% 63.49% 0.00%

Faster-RCNN

De-Train B
Tree-CycleGAN [42] 87.36% 66.13% 4.65% 88.40% 68.85% 4.55%
CycleGAN-TSS [43] 88.40% 68.85% 4.55% 88.95% 70.49% 4.44%

PreCaCycleGAN 90.16% 73.02% 2.13% 90.66% 74.19% 2.13%

De-Train C
Tree-CycleGAN [42] 88.46% 67.74% 2.33% 89.50% 70.49% 2.27%
CycleGAN-TSS [43] 89.56% 69.35% 0.00% 90.61% 72.13% 0.00%

PreCaCycleGAN 90.81% 73.85% 0.00% 92.35% 77.78% 0.00%

Table 6. Class 2 test result.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

YOLOv5

De-Train B
Tree-CycleGAN [42] 95.14% 86.15% 0.00% 96.15% 88.71% 0.00%
CycleGAN-TSS [43] 94.54% 84.13% 0.00% 95.58% 86.89% 0.00%

PreCaCycleGAN 96.50% 91.25% 0.00% 96.86% 91.55% 0.00%

De-Train C
Tree-CycleGAN [42] 96.26% 89.55% 0.00% 97.81% 93.65% 0.00%
CycleGAN-TSS [43] 95.65% 87.50% 0.00% 97.24% 91.80% 0.00%

PreCaCycleGAN 97.52% 93.90% 0.00% 98.96% 97.26% 0.00%

SSD

De-Train B
Tree-CycleGAN [42] 93.51% 81.54% 0.00% 94.51% 83.87% 0.00%
CycleGAN-TSS [43] 92.35% 79.37% 1.96% 92.82% 80.33% 2.00%

PreCaCycleGAN 94.00% 85.00% 0.00% 94.76% 85.92% 0.00%

De-Train C
Tree-CycleGAN [42] 94.12% 83.58% 0.00% 95.08% 85.71% 0.00%
CycleGAN-TSS [43] 93.48% 81.25% 0.00% 94.48% 83.61% 0.00%

PreCaCycleGAN 95.05% 87.80% 0.00% 95.34% 87.67% 0.00%

Faster-RCNN

De-Train B
Tree-CycleGAN [42] 92.43% 80.00% 1.89% 93.41% 82.26% 1.92%
CycleGAN-TSS [43] 91.80% 77.78% 2.00% 92.82% 80.33% 2.00%

PreCaCycleGAN 94.00% 85.00% 0.00% 94.76% 85.92% 0.00%

De-Train C
Tree-CycleGAN [42] 93.58% 82.09% 0.00% 94.54% 84.13% 0.00%
CycleGAN-TSS [43] 92.93% 79.69% 0.00% 93.37% 80.33% 0.00%

PreCaCycleGAN 95.05% 87.80% 0.00% 95.85% 89.04% 0.00%

Table 7. Class 3 test result.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

YOLOv5

De-Train B
Tree-CycleGAN [42] 95.14% 86.15% 0.00% 96.15% 88.71% 0.00%
CycleGAN-TSS [43] 94.54% 84.13% 0.00% 95.58% 86.89% 0.00%

PreCaCycleGAN 96.50% 91.25% 0.00% 96.86% 91.55% 0.00%

De-Train C
Tree-CycleGAN [42] 96.26% 89.55% 0.00% 97.81% 93.65% 0.00%
CycleGAN-TSS [43] 95.65% 87.50% 0.00% 97.24% 91.80% 0.00%

PreCaCycleGAN 97.52% 93.90% 0.00% 98.96% 97.26% 0.00%
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Table 7. Cont.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

SSD

De-Train B
Tree-CycleGAN [42] 93.51% 81.54% 0.00% 94.51% 83.87% 0.00%
CycleGAN-TSS [43] 92.35% 79.37% 1.96% 92.82% 80.33% 2.00%

PreCaCycleGAN 94.00% 85.00% 0.00% 94.76% 85.92% 0.00%

De-Train C
Tree-CycleGAN [42] 94.12% 83.58% 0.00% 95.08% 85.71% 0.00%
CycleGAN-TSS [43] 93.48% 81.25% 0.00% 94.48% 83.61% 0.00%

PreCaCycleGAN 95.05% 87.80% 0.00% 95.34% 87.67% 0.00%

Faster-RCNN

De-Train B
Tree-CycleGAN [42] 92.43% 80.00% 1.89% 93.41% 82.26% 1.92%
CycleGAN-TSS [43] 91.80% 77.78% 2.00% 92.82% 80.33% 2.00%

PreCaCycleGAN 94.00% 85.00% 0.00% 94.76% 85.92% 0.00%

De-Train C
Tree-CycleGAN [42] 93.58% 82.09% 0.00% 94.54% 84.13% 0.00%
CycleGAN-TSS [43] 92.93% 79.69% 0.00% 93.37% 80.33% 0.00%

PreCaCycleGAN 95.05% 87.80% 0.00% 95.85% 89.04% 0.00%

Table 8. Class 4 test result.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

YOLOv5

De-Train B
Tree-CycleGAN [42] 79.44% 50.00% 18.92% 80.56% 53.33% 17.95%
CycleGAN-TSS [43] 80.56% 51.67% 16.22% 81.67% 55.00% 15.38%

PreCaCycleGAN 81.22% 54.10% 15.38% 81.77% 55.74% 15.00%

De-Train C
Tree-CycleGAN [42] 82.32% 52.46% 8.57% 83.43% 55.74% 8.11%
CycleGAN-TSS [43] 84.07% 56.45% 5.41% 84.53% 57.38% 5.41%

PreCaCycleGAN 83.61% 55.56% 5.41% 83.98% 55.74% 5.56%

SSD

De-Train B
Tree-CycleGAN [42] 81.67% 53.33% 13.51% 82.22% 55.00% 13.16%
CycleGAN-TSS [43] 83.33% 56.67% 10.53% 83.89% 58.33% 10.26%

PreCaCycleGAN 83.43% 57.38% 10.26% 83.98% 59.02% 10.00%

De-Train C
Tree-CycleGAN [42] 84.53% 57.38% 5.41% 86.19% 62.30% 5.00%
CycleGAN-TSS [43] 85.71% 59.68% 2.63% 86.74% 62.30% 2.56%

PreCaCycleGAN 85.25% 58.73% 2.63% 86.74% 62.30% 2.56%

Faster-RCNN

De-Train B
Tree-CycleGAN [42] 80.56% 50.00% 14.29% 81.67% 53.33% 13.51%
CycleGAN-TSS [43] 80.56% 50.00% 14.29% 81.67% 53.33% 13.51%

PreCaCycleGAN 81.77% 54.10% 13.16% 82.32% 55.74% 12.82%

De-Train C
Tree-CycleGAN [42] 83.43% 55.74% 8.11% 83.98% 57.38% 7.89%
CycleGAN-TSS [43] 84.62% 58.06% 5.26% 85.08% 59.02% 5.26%

PreCaCycleGAN 84.70% 57.14% 2.70% 85.64% 59.02% 2.70%

Table 9. Class 5 test result.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

YOLOv5

De-Train B
Tree-CycleGAN [42] 89.56% 74.19% 6.12% 90.61% 77.05% 6.00%
CycleGAN-TSS [43] 88.95% 72.13% 6.38% 90.06% 75.41% 6.12%

PreCaCycleGAN 90.31% 77.63% 3.28% 91.19% 79.45% 3.33%

De-Train C
Tree-CycleGAN [42] 91.80% 77.78% 2.00% 92.82% 80.33% 2.00%
CycleGAN-TSS [43] 90.81% 76.92% 3.85% 91.76% 79.03% 3.92%

PreCaCycleGAN 92.75% 82.76% 0.00% 93.72% 83.10% 0.00%
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Table 9. Cont.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

SSD

De-Train B
Tree-CycleGAN [42] 87.36% 70.97% 10.20% 88.40% 73.77% 10.00%
CycleGAN-TSS [43] 86.19% 68.85% 12.50% 87.29% 72.13% 12.00%

PreCaCycleGAN 88.27% 76.32% 7.94% 89.12% 78.08% 8.06%

De-Train C
Tree-CycleGAN [42] 90.16% 74.60% 4.08% 90.61% 75.41% 4.17%
CycleGAN-TSS [43] 89.19% 73.85% 5.88% 89.01% 72.58% 6.25%

PreCaCycleGAN 91.79% 81.61% 1.39% 91.10% 77.46% 1.79%

Faster-RCNN

De-Train B
Tree-CycleGAN [42] 89.01% 72.58% 6.25% 90.06% 75.41% 6.12%
CycleGAN-TSS [43] 87.85% 70.49% 8.51% 88.95% 73.77% 8.16%

PreCaCycleGAN 90.31% 77.63% 3.28% 90.67% 78.08% 3.39%

De-Train C
Tree-CycleGAN [42] 90.71% 76.19% 4.00% 91.71% 78.69% 4.00%
CycleGAN-TSS [43] 90.27% 75.38% 3.92% 91.21% 77.42% 4.00%

PreCaCycleGAN 92.27% 82.76% 1.37% 92.15% 80.28% 1.72%

Table 10. Class 6 test result.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

YOLOv5

De-Train B
Tree-CycleGAN [42] 91.85% 79.69% 3.77% 90.71% 80.95% 8.93%
CycleGAN-TSS [43] 91.76% 79.03% 3.92% 92.86% 82.26% 3.77%

PreCaCycleGAN 92.90% 80.95% 1.92% 93.96% 83.87% 1.89%

De-Train C
Tree-CycleGAN [42] 93.01% 81.82% 1.82% 93.48% 84.38% 3.57%
CycleGAN-TSS [43] 93.99% 82.54% 0.00% 95.05% 85.48% 0.00%

PreCaCycleGAN 95.85% 89.04% 0.00% 96.79% 91.04% 0.00%

SSD

De-Train B
Tree-CycleGAN [42] 89.13% 73.44% 6.00% 88.52% 77.78% 12.50%
CycleGAN-TSS [43] 90.11% 74.19% 4.17% 90.66% 77.42% 5.88%

PreCaCycleGAN 91.26% 76.19% 2.04% 92.31% 79.03% 2.00%

De-Train C
Tree-CycleGAN [42] 92.47% 80.30% 1.85% 91.30% 81.25% 7.14%
CycleGAN-TSS [43] 91.80% 77.78% 2.00% 93.41% 80.65% 0.00%

PreCaCycleGAN 93.26% 82.19% 0.00% 94.12% 83.58% 0.00%

Faster-RCNN

De-Train B
Tree-CycleGAN [42] 90.76% 76.56% 3.92% 89.62% 79.37% 10.71%
CycleGAN-TSS [43] 91.21% 77.42% 4.00% 91.76% 79.03% 3.92%

PreCaCycleGAN 91.80% 77.78% 2.00% 92.86% 80.65% 1.96%

De-Train C
Tree-CycleGAN [42] 92.47% 80.30% 1.85% 92.39% 82.81% 5.36%
CycleGAN-TSS [43] 93.44% 80.95% 0.00% 95.05% 85.48% 0.00%

PreCaCycleGAN 94.30% 84.93% 0.00% 95.19% 86.57% 0.00%

Table 11. Class 7 test result.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

YOLOv5

De-Train B
Tree-CycleGAN [42] 91.21% 79.03% 5.77% 91.76% 80.65% 5.66%
CycleGAN-TSS [43] 91.76% 79.03% 3.92% 92.31% 80.65% 3.85%

PreCaCycleGAN 92.93% 81.25% 1.89% 93.99% 84.13% 1.85%

De-Train C
Tree-CycleGAN [42] 92.82% 80.33% 2.00% 94.48% 85.25% 1.89%
CycleGAN-TSS [43] 93.44% 80.95% 0.00% 95.05% 85.48% 0.00%

PreCaCycleGAN 95.19% 86.57% 0.00% 96.22% 89.23% 0.00%
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Table 11. Cont.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

SSD

De-Train B
Tree-CycleGAN [42] 89.01% 74.19% 8.00% 89.56% 75.81% 7.84%
CycleGAN-TSS [43] 89.56% 74.19% 6.12% 90.11% 75.81% 6.00%

PreCaCycleGAN 91.30% 78.13% 3.85% 91.80% 79.37% 3.85%

De-Train C
Tree-CycleGAN [42] 91.16% 75.41% 2.13% 92.82% 80.33% 2.00%
CycleGAN-TSS [43] 91.26% 76.19% 2.04% 92.86% 80.65% 1.96%

PreCaCycleGAN 93.05% 80.60% 0.00% 94.05% 83.08% 0.00%

Faster-RCNN

De-Train B
Tree-CycleGAN [42] 91.76% 80.65% 5.66% 92.31% 82.26% 5.56%
CycleGAN-TSS [43] 91.76% 79.03% 3.92% 92.86% 82.26% 3.77%

PreCaCycleGAN 92.93% 81.25% 1.89% 93.99% 84.13% 1.85%

De-Train C
Tree-CycleGAN [42] 93.37% 81.97% 1.96% 95.03% 86.89% 1.85%
CycleGAN-TSS [43] 93.99% 82.54% 0.00% 95.60% 87.10% 0.00%

PreCaCycleGAN 95.19% 86.57% 0.00% 96.22% 89.23% 0.00%

Table 12. Class 8 test result.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

YOLOv5

De-Train B
Tree-CycleGAN [42] 87.63% 75.76% 12.28% 88.04% 76.56% 12.50%
CycleGAN-TSS [43] 86.34% 73.02% 14.81% 86.89% 74.60% 14.55%

PreCaCycleGAN 87.75% 79.76% 10.67% 88.32% 80.52% 11.43%

De-Train C
Tree-CycleGAN [42] 90.43% 77.94% 5.36% 90.81% 78.46% 5.56%
CycleGAN-TSS [43] 88.17% 74.24% 9.26% 89.13% 76.56% 9.26%

PreCaCycleGAN 91.24% 84.54% 4.65% 90.55% 81.48% 5.71%

SSD

De-Train B
Tree-CycleGAN [42] 82.80% 68.18% 19.64% 83.15% 68.75% 20.00%
CycleGAN-TSS [43] 81.97% 65.08% 21.15% 83.06% 68.25% 20.37%

PreCaCycleGAN 85.29% 76.19% 13.51% 85.28% 75.32% 14.71%

De-Train C
Tree-CycleGAN [42] 86.70% 72.06% 10.91% 87.03% 72.31% 11.32%
CycleGAN-TSS [43] 85.48% 69.70% 13.21% 85.87% 70.31% 13.46%

PreCaCycleGAN 88.02% 79.38% 7.23% 88.06% 77.78% 8.70%

Faster-RCNN

De-Train B
Tree-CycleGAN [42] 86.02% 72.73% 14.29% 86.41% 73.44% 14.55%
CycleGAN-TSS [43] 85.79% 71.43% 15.09% 86.34% 73.02% 14.81%

PreCaCycleGAN 87.25% 78.57% 10.81% 87.31% 77.92% 11.76%

De-Train C
Tree-CycleGAN [42] 88.83% 75.00% 7.27% 89.73% 76.92% 7.41%
CycleGAN-TSS [43] 88.71% 74.24% 7.55% 89.67% 76.56% 7.55%

PreCaCycleGAN 90.32% 82.47% 4.76% 90.55% 81.48% 5.71%

Table 13. Class 9 test result.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

YOLOv5

De-Train B
Tree-CycleGAN [42] 84.49% 73.13% 18.33% 85.48% 75.76% 18.03%
CycleGAN-TSS [43] 84.78% 73.44% 18.97% 85.71% 75.81% 18.97%

PreCaCycleGAN 87.08% 82.02% 13.10% 87.06% 81.48% 14.29%

De-Train C
Tree-CycleGAN [42] 88.89% 78.26% 10.00% 90.32% 81.82% 10.00%
CycleGAN-TSS [43] 88.71% 77.27% 10.53% 89.67% 79.69% 10.53%

PreCaCycleGAN 91.03% 86.41% 6.32% 91.22% 85.88% 7.59%
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Table 13. Cont.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

SSD

De-Train B
Tree-CycleGAN [42] 86.10% 77.61% 17.46% 86.56% 78.79% 17.46%
CycleGAN-TSS [43] 85.33% 75.00% 18.64% 86.26% 77.42% 18.64%

PreCaCycleGAN 87.56% 83.15% 12.94% 87.56% 82.72% 14.10%

De-Train C
Tree-CycleGAN [42] 89.95% 81.16% 9.68% 90.32% 81.82% 10.00%
CycleGAN-TSS [43] 89.25% 78.79% 10.34% 90.22% 81.25% 10.34%

PreCaCycleGAN 91.48% 87.38% 6.25% 91.71% 87.06% 7.50%

Faster-RCNN

De-Train B
Tree-CycleGAN [42] 88.24% 82.09% 15.38% 88.71% 83.33% 15.38%
CycleGAN-TSS [43] 88.04% 81.25% 16.13% 88.46% 82.26% 16.39%

PreCaCycleGAN 89.47% 86.52% 11.49% 90.05% 87.65% 12.35%

De-Train C
Tree-CycleGAN [42] 92.06% 85.51% 7.81% 91.94% 84.85% 8.20%
CycleGAN-TSS [43] 91.94% 84.85% 8.20% 92.39% 85.94% 8.33%

PreCaCycleGAN 93.27% 90.29% 5.10% 93.66% 90.59% 6.10%

Table 14. Class 10 test result.

Model Train Dataset Test Dataset
De-Test B De-Test C

DDA DDR FDR DDA DDR FDR

YOLOv5

De-Train B
Tree-CycleGAN [42] 92.86% 80.65% 1.96% 93.92% 83.61% 1.92%
CycleGAN-TSS [43] 92.43% 80.00% 1.89% 93.41% 82.26% 1.92%

PreCaCycleGAN 94.47% 86.08% 0.00% 94.71% 85.51% 0.00%

De-Train C
Tree-CycleGAN [42] 94.57% 84.38% 0.00% 95.03% 85.25% 0.00%
CycleGAN-TSS [43] 94.09% 83.33% 0.00% 95.08% 85.71% 0.00%

PreCaCycleGAN 95.02% 87.65% 0.00% 95.81% 88.73% 0.00%

SSD

De-Train B
Tree-CycleGAN [42] 92.86% 80.65% 1.96% 93.37% 81.97% 1.96%
CycleGAN-TSS [43] 94.05% 83.08% 0.00% 94.51% 83.87% 0.00%

PreCaCycleGAN 94.47% 86.08% 0.00% 94.71% 85.51% 0.00%

De-Train C
Tree-CycleGAN [42] 94.57% 84.38% 0.00% 95.58% 86.89% 0.00%
CycleGAN-TSS [43] 94.62% 84.85% 0.00% 95.63% 87.30% 0.00%

PreCaCycleGAN 95.52% 88.89% 0.00% 96.34% 90.14% 0.00%

Faster-RCNN

De-Train B
Tree-CycleGAN [42] 92.86% 80.65% 1.96% 93.92% 83.61% 1.92%
CycleGAN-TSS [43] 93.51% 83.08% 1.82% 93.96% 83.87% 1.89%

PreCaCycleGAN 93.97% 84.81% 0.00% 94.71% 85.51% 0.00%

De-Train C
Tree-CycleGAN [42] 94.57% 84.38% 0.00% 95.03% 85.25% 0.00%
CycleGAN-TSS [43] 94.62% 84.85% 0.00% 95.08% 85.71% 0.00%

PreCaCycleGAN 95.02% 87.65% 0.00% 95.29% 87.32% 0.00%

4.3. Discussion

Out of 360 test results consisting of ten datasets, three generation models, and three
detection models, our algorithm achieved 354 optimal results. Overall, the detection mod-
els trained with our model-generated defects mixed with real defects, YOLOv5 detection
models in ten datasets compared to the original detection models, CycleGAN-TSS gen-
eration models and Tree-CycleGAN generation models improved the detection accuracy
by 5.75%, 1.16% and 1.26% on average, respectively, and the average improvement in
detection rate by an average of 14.94%, 3.60% and 3.55% improvement, and 5.44%, 1.22%
and 1.63% decrease in false detection rate; SSD detection model compared to the original
detection model, CycleGAN-TSS generation model and Tree-CycleGAN generation model
detection accuracy improved by 5.46%, 1.23% and 1.27% on average, respectively, with an
average improvement of detection rate by 13.73%, 3.76% and 3.35% on average, and the
false detection rate by 6.74%, 1.89% and 2.42%; Faster-RCNN detection model compared
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to the original detection model, CycleGAN-TSS generation model and Tree-CycleGAN
generation model detection accuracy by 5.64%, on average, respectively 0.88% and 1.42%,
the average improvement in detection rate is 14.54%, 3.22% and 3.62% on average, and the
false detection rate is decreased by 5.64%, 0.89% and 2.26%.

The test results show that compared with the two generation models of Tree-CycleGAN
and CycleGAN-TSS, our model can extract the local and global features of defects more
effectively and improve the fineness of features by adding perceptual functions and cap-
sule discriminators for (d) and (i), which are datasets with complex backgrounds and
obscure performance of defective features, Class4 and Class9 detection results are shown in
Figures 5 and 6. The false detection rate of the original Faster-RCNN model in (d) is 12.12%,
the false detection rate of the Tree-CycleGAN model that detects mixed samples after mixed
sample training is 7.89%, and the false detection rate of the CycleGAN-TSS model is 5.26%,
and our model can reduce the false detection rate to 2.70%; in (i) The false detection rate of
the original YOLOv5 model is 19.61%, and the false detection rate of the Tree-CycleGAN
model that detects mixed samples after mixed sample training is 10.00%, and the false
detection rate of the CycleGAN-TSS model is 10.53%, and our model can reduce the false
detection rate to 7.59%.
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Figure 5. Class 4 test results, Wherein B-B stands for the meaning of the results tested on model
DE-Test B trained using DE-Train B, B-C stands for the meaning of the results tested on model DE-Test
C trained using DE-Train B, C-B stands for the meaning of the results tested on model DE-Test B
trained using DE-Train C, and C-C stands for the meaning of the results tested on model DE-Test C
trained using DE-Train C.
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For datasets with obvious defect features like (b) and (f), our model combines U-Net
and DenseNet to enhance the defect feature representation of the samples and improve
the learning ability of the defect detection model for defect features, Class2 and Class6
detection results are shown in Figures 7 and 8. the detection rate of the original YOLOv5
model in (b) is 81.67%, and the detection of the mixed samples after training of the mixed
samples Tree. The detection rate of the original YOLOv5 model in (f) is 73.33%, and the
detection rate of the Tree-CycleGAN model for detecting mixed samples after training of
mixed samples is 91.80%, and our model can improve the detection rate to 97.26%, with
a detection rate of 84.38%, and the CycleGAN-TSS model with a false detection rate of
85.48%, our model was able to improve the detection rate to 91.04%.
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The comparison experiments show that our model can generate high-quality defect
samples on different types of defect datasets, and mixing and matching real defect samples
can further improve the generalization ability and robustness of the defect detection model,
which can effectively identify defects with obscure features in complex backgrounds and
further enhance the authenticity and diversity of defect features.

Subsequent IOU value optimization for our optimal model for actual industrial defect
detection, and finally, when the IOU value is 0.15, the false detection rate is 0%, and the
average accuracy rate of various data sets reaches 98.73%. The experiments show that the
defect samples generated by our model are better than those generated by the current defect
sample generation model and can be practically applied to industrial defect detection, which
can effectively improve the robustness and generalization of the defect detection model.
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5. Conclusions

In this work, we design PreCaCycleGAN, a model-based image-enhanced adversarial
generative network for industrial defect sample augmentation, which aims to address
the problem of defect data scarcity in industrial defect detection by current deep learning
methods and to improve the generalization and robustness of the defect detection model
in real industrial manufacturing. We show that our model uses the DenseNet module
to enhance the U-Net network to synthesize defect samples and that the defect samples
synthesized on different datasets are more realistic and faithful to the defect samples.
We also show that our model uses a dual-branch discriminator and an added damage
function to make the defect details more refined. We compare the augmentation effect of
PreCaCycleGAN on different detection models with the state-of-the-art industrial defect
sample generation models and demonstrate that our model has better defect sample
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generation diversity. However, our proposed method still has some limitations in practical
industrial defect detection applications. On the one hand, it is not very effective in some
industrial scenarios with limited resources or high-efficiency requirements. On the other
hand, the generated industrial defect samples still need manual annotation. In the future,
we will reduce the algorithm complexity to further lower the computational overhead in
defect sample generation, and integrate the annotation algorithm to achieve automatic
annotation of the generated defect samples, so as to better adapt to the industrial defect
detection application scenarios.
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