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Abstract: With the widespread popularity of smart home devices and the emergence of smart home
integration platforms such as Google, Amazon, and Xiaomi, the smart home industry is in a stage
of vigorous development. While smart homes provide users with convenient and intelligent living,
the problem of smart home devices leaking user privacy has become increasingly prominent. Smart
home devices give users the ability to remotely control home devices, but they also reflect user home
activities in traffic data, which brings the risk of privacy leaks. Potential attackers can use traffic
classification technology to analyze traffic characteristics during traffic transmission (e.g., at the traffic
exit of a smart home gateway) and infer users’ private information, such as their home activities,
causing serious consequences of privacy leaks. To address the above problems, this paper focuses on
research on privacy protection technology based on traffic obfuscation. By using traffic obfuscation
technology to obscure the true traffic of smart home devices, it can prevent malicious traffic listeners
from analyzing user privacy information based on traffic characteristics. We propose an enhanced
smart home traffic obfuscation method called SHTObfuscator (Smart Home Traffic Obfuscator) based
on the virtual user technology concept and a virtual user behavior construction method based on
logical integrity. By injecting traffic fingerprints of different device activities into the real traffic
environment of smart homes as obfuscating traffic, attackers cannot distinguish between the real
device working status and user behavior privacy in the current home, effectively reducing the effect
of traffic classification attack models. The protection level can be manually or automatically adjusted,
achieving a balance between privacy protection and bandwidth overhead. The experimental results
show that under the highest obfuscation level, the obfuscation method proposed in this paper can
effectively reduce the classification effect of the attack model from 95% to 25%.

Keywords: smart home privacy; traffic obfuscation; traffic fingerprint

1. Introduction

In recent years, the smart home industry is in a rapid development stage. According
to research conducted by relevant institutions, it is predicted that by 2025, 21.3% of house-
holds worldwide will use smart home devices, and the total number of smart home devices
will reach 5.44 billion units [1]. While smart home devices provide users with convenient
and intelligent living experiences, they also pose privacy risks by reflecting users’ home
activities in traffic data. Smart home devices are typically limited in functionality and de-
signed for specific purposes. The changes in traffic patterns are highly correlated with user
behavioral activities. Potential attackers can exploit this by performing traffic classification
attacks to identify the activity states of users’ devices, as illustrated in Figure 1, particularly
in the traffic exit of smart home gateways. Therefore, it is relatively easy to identify user
activities and infer privacy information from smart home traffic data, leading to significant
privacy risks in this regard.

Electronics 2023, 12, 3477. https://doi.org/10.3390/electronics12163477 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12163477
https://doi.org/10.3390/electronics12163477
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12163477
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12163477?type=check_update&version=1


Electronics 2023, 12, 3477 2 of 24Electronics 2023, 12, x FOR PEER REVIEW  2  of  25 
 

 

 

Figure 1. Overview of the privacy threat model. 

Relevant studies [2] have shown that even with data encryption, attackers can infer 

users’ privacy-sensitive  information  from  traffic data, as each device has unique  traffic 

characteristics and corresponding activity events. Information such as device types, ac-

tions, statuses, and user behaviors can be deduced from the traffic, making it possible to 

identify user activity even during interactions with smart home devices, such as convers-

ing with voice assistants, opening/closing smart door locks, or watching smart TVs. De-

tecting changes  in  traffic rates, averages, and other  features can reveal user behavioral 

patterns and activity states. In specific cases, even the traffic variations in a smart light can 

provide  insights  into  a household’s daily  routines,  including when users  come home, 

when children go to bed, or whether a user stays up  late. Such privacy-sensitive  infor-

mation can potentially facilitate further attacks, such as break-ins when no one is home, 

crimes targeting individuals living alone, or the sale of personal information to criminals 

for profit. 

Previous traffic classification techniques for smart home traffic have primarily relied 

on  the concept of  traffic fingerprints according  to  [3–6]. Based on relevant  information 

about smart home devices and their operational traffic data, traffic data are transformed 

into representative feature vectors. These feature vectors are used to construct traffic fin-

gerprints for each device and even for specific device behaviors within the target house-

hold. By matching and detecting traffic fingerprints, the behavior of devices can be iden-

tified, and user privacy can be inferred. 

In  this paper, we focus on  the side channel attacks where adversaries monitor  the 

incoming/outgoing network  traffic  to/from smart homes,  infer activities of smart home 

devices with traffic classification algorithms, and gain advantages in conducting subse-

quent severe attacks. We propose the use of traffic obfuscation techniques at the traffic exit 

of smart home gateways to obfuscate the actual traffic generated by devices, thereby pre-

venting attackers from inferring users’ privacy information based on traffic characteristics. 

To identify the appropriate timing for traffic injection, we adopted the concept of virtual 

users. The concept of virtual users in this research is inclined towards constructing a log-

ically coherent and realistic user behavior pattern  that  is projected onto  the household 

traffic, rather than a combination of individual or a few device behaviors. This approach 

aims to ensure that the injected false traffic is more deceptive, thereby preventing attackers 

from extracting genuine user privacy information. The key challenge lies in developing 

an adaptive strategy for generating virtual user behaviors. 

Furthermore, considering the cost and bandwidth constraints in real smart home en-

vironments, another significant research focus in recent years has been on achieving a de-

fense mechanism that can be adjusted based on the current network conditions. For ex-

ample, one approach proposes adjusting  the  intensity of noise addition by altering  the 

privacy budget [7], allowing users to select an appropriate defense level according to their 

specific circumstances. This addresses the practicality of implementing effective defense 

measures while considering the limitations of smart home environments. 

Overall, we  propose  an  enhanced  smart  home  traffic  obfuscation method  called 

SHTObfuscator (Smart Home Traffic Obfuscator). The method utilizes the concept of vir-

tual users and injects obfuscated traffic to construct a “realistic” user behavior trajectory 

within the smart home traffic data. Additionally, a smart home traffic privacy protection 

system, SHTProtector (Smart Home Traffic Protector), is designed and implemented. The 

functionality of each module in the system is tested through experiments, validating the 

Figure 1. Overview of the privacy threat model.

Relevant studies [2] have shown that even with data encryption, attackers can infer
users’ privacy-sensitive information from traffic data, as each device has unique traffic
characteristics and corresponding activity events. Information such as device types, actions,
statuses, and user behaviors can be deduced from the traffic, making it possible to identify
user activity even during interactions with smart home devices, such as conversing with
voice assistants, opening/closing smart door locks, or watching smart TVs. Detecting
changes in traffic rates, averages, and other features can reveal user behavioral patterns
and activity states. In specific cases, even the traffic variations in a smart light can pro-
vide insights into a household’s daily routines, including when users come home, when
children go to bed, or whether a user stays up late. Such privacy-sensitive information
can potentially facilitate further attacks, such as break-ins when no one is home, crimes
targeting individuals living alone, or the sale of personal information to criminals for profit.

Previous traffic classification techniques for smart home traffic have primarily relied on
the concept of traffic fingerprints according to [3–6]. Based on relevant information about
smart home devices and their operational traffic data, traffic data are transformed into
representative feature vectors. These feature vectors are used to construct traffic fingerprints
for each device and even for specific device behaviors within the target household. By
matching and detecting traffic fingerprints, the behavior of devices can be identified, and
user privacy can be inferred.

In this paper, we focus on the side channel attacks where adversaries monitor the
incoming/outgoing network traffic to/from smart homes, infer activities of smart home
devices with traffic classification algorithms, and gain advantages in conducting subsequent
severe attacks. We propose the use of traffic obfuscation techniques at the traffic exit of smart
home gateways to obfuscate the actual traffic generated by devices, thereby preventing
attackers from inferring users’ privacy information based on traffic characteristics. To
identify the appropriate timing for traffic injection, we adopted the concept of virtual users.
The concept of virtual users in this research is inclined towards constructing a logically
coherent and realistic user behavior pattern that is projected onto the household traffic,
rather than a combination of individual or a few device behaviors. This approach aims
to ensure that the injected false traffic is more deceptive, thereby preventing attackers
from extracting genuine user privacy information. The key challenge lies in developing an
adaptive strategy for generating virtual user behaviors.

Furthermore, considering the cost and bandwidth constraints in real smart home
environments, another significant research focus in recent years has been on achieving a
defense mechanism that can be adjusted based on the current network conditions. For
example, one approach proposes adjusting the intensity of noise addition by altering the
privacy budget [7], allowing users to select an appropriate defense level according to their
specific circumstances. This addresses the practicality of implementing effective defense
measures while considering the limitations of smart home environments.

Overall, we propose an enhanced smart home traffic obfuscation method called SHTO-
bfuscator (Smart Home Traffic Obfuscator). The method utilizes the concept of virtual users
and injects obfuscated traffic to construct a “realistic” user behavior trajectory within the
smart home traffic data. Additionally, a smart home traffic privacy protection system, SHT-
Protector (Smart Home Traffic Protector), is designed and implemented. The functionality
of each module in the system is tested through experiments, validating the feasibility and
effectiveness of the SHTObfuscator approach. The specific research work is as follows:

The contribution of this paper is as follows:
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(1) The proposal of an enhanced smart home traffic obfuscation method called SHTOb-
fuscator based on the virtual user technology concept. By injecting traffic fingerprints
of different device activities into the real traffic environment, we effectively reduce
the effect of traffic classification attack models.

(2) A smart home traffic privacy protection system SHTProtector is designed and im-
plemented. Experiments of device identification monitoring, device fingerprint ex-
traction, traffic obfuscation effect and traffic obfuscation overhead are carried out in
the real environment of smart home, and the effectiveness of the proposed method
is verified.

(3) Achieved the balance between privacy preserving and communication overhead in
accordance with the network condition.

The organizational structure of this paper is as follows. We introduce the related work
of traffic obfuscation for smart homes in Section 2, and the motivation in Section 3. We
propose the design and simulation of our mechanism in Section 4 and the experimental
evaluation in Section 5. We conclude this paper in Section 6.

2. Related Work

Attackers can infer the privacy of smart homes through traffic classification. However,
traffic obfuscation techniques can confuse real traffic, thereby preventing attackers from
inferring users’ private information based on traffic characteristics. Current research on
smart home traffic obfuscation techniques, both domestically and internationally, mainly
includes packet padding, traffic shaping, fake traffic injection, and virtual user.

Yao ZJ [8] proposed an evaluation framework for assessing the effectiveness of traffic
obfuscation methods. The evaluation metrics for traffic obfuscation methods include
stealthies, computational overhead, and deployment difficulty.

Stealthies refers to the ability of network traffic to be obfuscated in order to evade de-
tection by observers. Computational overhead refers to the number of resources consumed
during the obfuscation process, including computational time, number of computations,
and required physical resources. Additionally, the deployment difficulty of obfuscation
techniques is also an important factor that affects user experience. Therefore, when se-
lecting suitable traffic obfuscation techniques, it is necessary to consider a comprehensive
range of factors, including stealthies, computational overhead, and deployment difficulty.

In order to minimize privacy breaches in smart homes, in 2019, Nicolazzo S et al. [9]
proposed a privacy-preserving solution for mitigating feature disclosure in a multiple
IoT environment, which draws inspiration from concepts in database theory, specifically
k-anonymity and t-closeness. Additionally, in 2022, Corradini E et al. [10] proposed a
two-tier Blockchain framework to increase the security and autonomy of smart objects in
the IoT by implementing a trust-based protection mechanism. They have implemented
robust privacy measures to safeguard the personal information of IoT devices.

Packet padding primarily targets attack methods that rely on packet size features,
while traffic shaping focuses on overall statistical features of data flows, including temporal
patterns, periodicity, and rates of traffic.

In 2018, Pinheiro A J et al. [11] summarized and compared the obfuscation strategies
for packet length, and proposed a lightweight packet filling mechanism, which adopted
the combination of maximum filling and random filling, and reduced the accuracy of traffic
classification algorithm from 92% to 30.38% at the cost of delay increase of approximately
19.8%. The limitation lies in less experimental settings and the need to use VPN.

In 2019, Apthorpe et al. [12] improved and proposed a new traffic shaping algorithm
Stochastic Traffic Padding (STP), which allowed users to make a trade-off between cost
and privacy. STP performed traffic shaping during user activities and selectively injected
confused traffic in other time periods, which improved the disadvantage of constant rate
traffic classifier that the cost of no user activities was too high.

Xiong et al. [13] introduced the concept of differential privacy for data packet padding.
The authors employed a differential privacy model to obfuscate the traffic of each smart
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home device. They adjusted the level of obfuscation flexibly by defining different pri-
vacy levels, allowing for different obfuscation strengths for low-bandwidth and high-
bandwidth devices. This approach aimed to meet the usage requirements of different smart
home users.

In 2020, Pinheiro et al. [14] improved upon the static data packet padding mechanism
proposed in 2018. To address the high overhead issue, they proposed an adaptive data
packet padding method based on Software-Defined Networking (SDN). This method
adjusts the number of inserted data packets based on changes in the utilization of the
home network. The padding mechanism is set by an SDN application that monitors
network traffic variations, with the goal of dynamically balancing privacy protection and
communication overhead.

Wang et al. [15] introduced the concept of differential privacy for traffic obfuscation.
The authors modeled the distribution of packet inter-arrival times and packet sizes and used
privacy parameters to determine the level of privacy protection provided by differential
privacy. The advantage of this method is its controllable overhead. However, the drawback
is that the obfuscation noise increases the latency of the data packets, which may impact
the normal operation of devices.

In 2021, Prates N et al. [16] proposed a defense mechanism that combines active
monitoring and passive defense. It includes two modules: a vulnerability monitoring
module that collects traffic from smart home devices and extracts requests exchanged
between the devices and the gateway along with their timestamps. Possible privacy leaks
are inferred using time-based statistical algorithms. The traffic shaping module introduces
delays to the traffic of devices experiencing privacy leaks, making it difficult for attackers
to perform inference attacks. The limitation of this method is also the lack of in-depth
exploration of the impact of delays on the normal operation of devices.

In traffic shaping methods, there are also smart home traffic obfuscation schemes based
on adversarial learning, which typically utilize Generative Adversarial Networks (GANs),
Deep Convolutional GANs (DCGANs), and similar techniques to generate obfuscation
noise for traffic. Relevant research in this area includes:

In 2020, Ibitoye et al. [17] proposed a privacy protection scheme for smart homes
based on GANs, specifically addressing the privacy issues of audio devices such as smart
speakers. In the face of audio-based inference attacks, this method effectively defends
against inference attacks while preserving the semantics of audio samples.

In the same year, Ranieri et al. [18] focused on defense methods against traffic attacks
on smart devices, particularly targeting smart speakers. The authors built a testbed for
the smart home environment to evaluate the effectiveness of deep adversarial learning
techniques. The experiments validated the effectiveness of using Additive White Gaussian
Noise (AWGN) for traffic shaping, but the limitation is the lack of further optimization
regarding the method’s overhead.

Packet padding and traffic shaping aim to blur the characteristics of real traffic by
adjusting its features, thus preventing attackers from extracting users’ private information
from the traffic. On the other hand, the purpose of fake traffic injection is to mimic the
traffic generated by real devices by injecting fake traffic, thereby concealing the users’ actual
activities, and preventing attackers from analyzing their network behavior. These methods
have a relatively low deployment difficulty since they do not require modifications at the
protocol or device level.

Fake traffic injection can be divided into two types: random injection and adaptive
injection. Random injection involves injecting randomly generated fake traffic into the real
traffic, making it difficult for attackers to distinguish between genuine and fake traffic. This
method can effectively increase the cost of attacks and reduce the success rate but may also
increase the false positive rate and potentially impact the normal operation of some smart
home devices.

In 2017, Apthorpe et al. [19] explored the feasibility and implementation methods of
privacy protection through injecting dummy traffic. The authors suggested that injecting
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virtual traffic could be done on the device itself or on the smart home gateway. The
challenge lies in determining the timing of injection, ensuring that the distribution of the
generated fake events is similar to that of real events without creating logical conflicts.

In 2019, Hafeez et al. [20] proposed a method of constructing virtual traffic. To
conceal background traffic, they suggested sending a constant stream of traffic on the
upstream link regardless of the actual activity of smart home devices. When the devices are
inactive, virtual traffic representing device activity is sent on the upstream link, preventing
adversaries from identifying the real activities of the smart home devices. The limitation of
this method also lies in the increased network overhead.

In 2021, Zhu et al. [21] proposed different traffic injection strategies for devices with
different bandwidths. The authors divided smart home devices into two categories: high-
bandwidth devices and low-bandwidth devices, allowing for better cost planning. Addi-
tionally, the proposed method does not modify the original traffic, which has the advantage
of not introducing latency to device traffic and not affecting normal device communication.

In 2022, Xu et al. [22] addressed the attack of traffic classification based on device
behavior fingerprints, as proposed by Trimananda et al. [5]. They proposed a low-cost
defense method by adding noise to these device behavior fingerprints using mechanisms
such as random noise. For example, for a smart outlet, the sequence pattern of its on/off
events may have only slight differences, so incorporating them into the same pattern
would not incur significant overhead. If the on/off events have the same device behavior
fingerprint, attackers would not be able to distinguish between the events occurring on
the device.

Virtual users are an optimization method proposed in recent years, based on the
concept of fake traffic injection, and utilizing adaptive injection techniques. The limitation
of traditional fake traffic injection methods is that attackers can use causal relationship
analysis or context integrity detection to infer the occurrence of fake events. This is
especially true for random injection methods, which can lead to logical conflicts between
the behavior of virtual devices and real devices. Therefore, virtual users are more inclined
to construct a logically coherent and realistic user behavior pattern that is projected into
the household traffic, rather than a combination of individual or a few device behaviors.
This ensures that the injected fake traffic is more deceptive and prevents attackers from
prying into the real users’ privacy information.

In 2021, Liu et al. [23] proposed a defense mechanism against privacy leakage in smart
home wireless networks by constructing virtual users. They improved the deception of
virtual users based on real users’ behavioral patterns, achieving a good obfuscation effect.
However, the limitation of their study is that they only obfuscated the unidirectional traffic
from the gateway to the devices, which somewhat weakened the defense effectiveness.

In the same year, Yu et al. [24] presented a low-cost and open-source user defense
system targeting user activity attack models based on machine learning and deep learning.
The authors employed device behavior fingerprint learning using random forests, user
behavior modeling based on LSTM, and device behavior fingerprint injection to obfuscate
users’ home privacy. The defense system showed promising results but lacked a balance
between defense effectiveness and bandwidth consumption.

Based on the above analysis, this study believes that the smart home traffic obfuscation
method based on the concept of virtual users has great potential for development. However,
further optimization is needed in terms of method design and bandwidth consumption.

3. Motivation

In this section, we first present the threat model, which includes the smart home
environment and attackers that we consider. Next, we describe the goals and design
challenges.
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3.1. Threat Model

Our threat model assumes that the attacker knows which IoT devices are in a home,
the identity (e.g., MAC addresses) of the IoT device, and the size and time of the packets
each device is sending. We assume all packet payloads are encrypted. The goal of the
adversaries is to extract the fingerprint of device events and infer privacy from user events.
This goal is intentionally broad to encompass different types of devices. For example, a
user event for a sleep monitor might be someone falling asleep or waking up.

Although most packets of smart home devices are encrypted, traffic metadata (e.g.,
timestamps, lengths, and directions) is still available to attackers. Attackers also have access
to unencrypted packet headers, which are used to extract valuable information such as
Network and MAC addresses. Via side-channel analysis, attackers can use these data to
infer privacy-sensitive information about the target home, such as IoT device types, device
states, and user behaviors. For the small number of IoT devices that send unencrypted
packets, attackers can see the meaningful information about an IoT device from the payload
directly and thus need not use any side-channel analysis method [25]. Countermeasures
against information leakage from unencrypted packets are out of the scope of this work.

IoT generates traffic different from traffic generated by other individual devices, such
as smartphones, routers, or tablets. Besides, traffic of the IoT network follows a stable
pattern and the generated network traffic being very predictable which is different from
the traffic in ISPs. Among the many threats to privacy introduced by IoT devices, network
traffic classification based on side-channel information, such as packet length, interval
between packets, flow direction, and transmission rate, represents a major concern as it can
lead to leaks of user data and behavior.

Attackers may sniff the export traffic and extracted the device event fingerprints based
on the length packet length with machine learning algorithms. The fingerprints will be
used for matching device events and furthermore, inferring user privacy information. For
example, the use of the packet size alone in machine learning techniques enables inferring
if an individual has sleep disorders or health conditions and/or engages in sexual or
extra-marital activities. Along these lines, blackmail and extortion become clear threats
that stand to violate and detrimentally affect an individual’s autonomy, which is one of the
most important aspects of privacy [26]. Therefore, it is essential to provide mechanisms
that prevent personal information from IoT devices from being compromised or leaked
and potentially used to maliciously make inferences about the private life of individuals.

Based on the analysis mentioned above, the main steps and objectives of the smart
home traffic privacy attacker in this study are depicted in Figure 2:

(1) The attacker captures the outgoing traffic from the gateway of the target smart
home by sniffing, and uses relevant classification features and algorithms to identify the
types of devices present in the household, such as smartphones, computers, and smart
home devices such as smart lights, smart cameras, and smart speakers.

(2) After identifying the various devices in the target home, the attacker extracts packet-
level features for each behavior of the devices based on relevant classification algorithms.
They construct corresponding device behavior fingerprints and infer the behaviors of
smart home devices, such as turning on/off smart lights and taking photos or videos with
cameras. This allows them to obtain the behaviors of different types of devices and their
corresponding timestamps within a certain period.

(3) The attacker performs logical analysis of device behaviors and, using machine
learning or deep learning algorithms, establishes mapping relationships between device
behaviors and user behaviors. This enables them to infer the underlying user behaviors
behind the device behaviors. By continuously observing the target household over a period
(e.g., a week or a month), the attacker can also deduce more in-depth privacy information
about the user, such as the time when the user leaves the house or the periods when the
camera is turned off.
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3.2. Feature Selection

For traffic fingerprint training, there are various features can be extracted at the packet
level, flow level, and behavior level. Packet-level features are those features which are
extracted from each packet. These packet-level features including source and destination
port, packet length, and packet payload length. A network flow is defined by its 5-tuples,
which are source IP address, destination IP addresses, source port number, destination port
number, and transport layer protocol [27]. A network flow usually represents one complete
message exchange between a client and a server. Flow level features including flow length,
flow ratio, flow payload length, flow duration. There are few features in each IoT device,
which is independent of packet-level or flow-level features but depends on the application
behavior of devices and are called behavioral level features. The behavior level features
including NTP interval, DNS interval, transmission rate, DNS queries, cipher suites and
sleep time.

For the features above, packet length, flow length, flow ratio, and transmission rate
are often used for extracting device event fingerprint and infer privacy. Therefore, padding
mechanism based on packet length should be an effective solution.

3.3. Goals and Challenges

Due to the relatively small scale of smart home device traffic data compared to network
traffic and the high accuracy and real-time nature of packet-level features [28], most of
the related research utilizes classification algorithms based on packet-level features for
traffic classification by attackers. Therefore, this study designs attack models that infer user
privacy information based on packet-level traffic fingerprints of smart home devices to
demonstrate the feasibility and potential harm of smart home traffic classification attacks.
These attack models are used to evaluate the effectiveness of the proposed SHTObfuscator
defense method. It should be noted that SHTObfuscator also alters features such as
transmission speed and data flow size, thereby providing a certain level of defense against
attack models that rely on data flow-level features as well.

Our goals are as follows:
(1) Injecting traffic fingerprints of different device behaviors into the smart home traffic

environment as obfuscation traffic, constructing a flow behavior trajectory for a virtual user,
which can effectively reduce the effectiveness of user privacy inference models.

(2) The behavior logic of the virtual user is self-consistent and does not conflict with
real user behavior, making it difficult for attackers to uncover the virtual user through
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logical inference. Additionally, the injection of obfuscation traffic does not interfere with
the normal operation of smart home devices and the daily lives of real users.

(3) The privacy protection level can be adjusted to control the number of obfuscated
packets injected, achieving a balance between privacy protection and bandwidth overhead.

4. Design
4.1. Overall Design

The main idea of the proposed smart home traffic obfuscation method, SHTObfuscator
is as follows:

As mentioned earlier, attackers can use traffic fingerprinting techniques to launch
traffic classification attacks on smart home. Similarly, injecting obfuscation traffic based on
device traffic fingerprints into real smart home traffic can reduce the classification effec-
tiveness of traffic classification models. This makes it difficult for attackers to distinguish
which traffic is generated by the devices, thus hindering their ability to infer the real user’s
behavior privacy, and ensuring user privacy to a large extent.

Meantime, previous research has shown that if the injected obfuscation traffic only
involves a single device, or if the virtual device behavior lacks logical consistency or
conflicts with the real user’s behavior, attackers can use causal analysis or logic integrity
checks to discern the virtual device behavior corresponding to the obfuscation traffic.
Once attackers identify the obfuscation traffic, the defense mechanism of traffic obfuscation
becomes ineffective. Therefore, to achieve better defense, simply simulating device behavior
and injecting fake traffic from the device level is insufficient. Since a smart home user’s
behavior may involve interactions among multiple devices, simulating behavior at the user
level is more effective in defense and deception.

Based on the above analysis, before generating obfuscation traffic, SHTObfuscator
follows a series of steps to construct a logically consistent sequence of virtual user behav-
iors. It generates corresponding virtual device behavior sequences based on the mapping
relationship between the target user’s behavior and device behavior. Finally, using the
fingerprint data saved in the smart home device traffic fingerprint library, obfuscation
traffic is generated using a traffic generation tool and injected into the gateway traffic of the
target smart home. This creates a seemingly realistic user behavior trajectory within the
smart home traffic data, making it difficult for attackers to distinguish between inferred
behaviors of real users and virtual users, thus ensuring user privacy.

As the number of virtual devices and behaviors increases, attention must be given
to the increase in bandwidth overhead. To address this concern, this paper proposes a
“tunable” privacy protection level for the traffic obfuscation scheme, allowing users to dy-
namically balance privacy protection and cost overhead based on their home’s bandwidth
conditions and requirements.

The traffic obfuscation process of SHTObfuscator consists of three functional stages:
traffic fingerprint extraction, virtual user generation, and obfuscation traffic injection. The
processes and detailed steps of each functional stage are depicted in Figure 3.

4.2. Event Fingerprint Extraction

Obviously, an adversary could easily use traffic rate changes to infer user activities.
There are many works trying to classify different smart home devices based on their traffic
characteristics. Features in different resolutions, including packet level, flow level and
behavior level are extracted as fingerprints and then fed into machine learning models to
identify the type of the device which generates the traffic [29].

For example, Trimananda et al. [5] proposed a smart home device activity classification
method. By extracting the size and direction characteristics of smart home traffic data
packets, a unique fingerprint was established for each activity of each device, and the
activities (such as light bulb on/off) were classified by detecting the fingerprint. They
identified the traffic flows that occurred immediately after each event and observed that
certain pairs of packets with specific lengths and directions followed each ON/OFF event:
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the same pairs consistently showed up for all events of the same type (e.g., ON), but were
slightly different across event types (ON vs. OFF). The pairs were comprised of a request
packet in one direction, and a reply packet in the opposite direction. Intuitively, this makes
sense: if the smart home device changes state, this information needs to be sent to (request),
and acknowledged by (reply), the cloud server to enable devices that are not connected to
the home network to query the smart home device’s current state.
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With the approach of [5], we extracted the stream on/off fingerprints of Xiaomi smart
camera, as shown in Figure 4, we observed an exchange of 2 TLS Application Data packets
between the plug and an Internet host where the packet lengths were 115, 299, 364 and
1061 when the stream was toggled ON, but 445 and 442 for OFF. This preliminary analysis
indicates that each type of event is uniquely identified by the exchange of pairs (or longer
sequences) of packets of specific lengths.

Once the candidate fingerprints are selected, their usability as device behavior finger-
prints is verified using a detection algorithm. If the maximum number of device behaviors
detected using the device behavior fingerprint is the same (or similar) as the actual number
of device behaviors, and the timestamps of the detected device behaviors match the times-
tamps of the events recorded during the training period, the device behavior fingerprint
is finally determined to be a valid device behavior fingerprint and stored in the device
behavior fingerprint file.

Device behavior fingerprints can be generated for multiple devices and their different
behaviors, forming a dynamically maintained device behavior fingerprint library. The de-
vice behavior fingerprint library includes the device types and traffic fingerprints of various
behaviors. Since device behavior fingerprints may change with changes in manufacturer
software or protocol versions, regular updates and maintenance are required.
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4.3. Virtual User Generation
4.3.1. User Behavior Analysis

The design objective of the virtual user is to make the attacker perceive them as a
real person living in the home based on the traffic characteristics. Therefore, the behavior
associations or habits of the virtual user should closely resemble those of the target home’s
real user. At the same time, the behavior of the virtual user should be sufficiently different
from that of the real user to prevent the attacker from distinguishing between the two. The
behavior of the virtual user should be logically consistent and not conflict with the behavior
of the real user.

The effectiveness of the virtual user concept lies in how to construct a reasonable
sequence of home behaviors for the virtual user. Before doing so, it is important to clarify
which smart home devices and their corresponding behavior activities are associated with
each user behavior pattern. This may vary significantly for different users due to their
individual behavioral habits. Therefore, it is necessary to establish a mapping relationship
between user behaviors and device behaviors in the target home, ensuring that each user
behavior includes a sequence of behaviors from one or more devices. This device behavior
sequence not only includes different types of devices but also captures the sequential
relationships between behaviors of different devices. Therefore, the behavior Ba of a real
user a in a smart home can be represented by the Formula (1).

Ba = {< D1, Event1, Time1 >, . . . , < Di, Eventi, Timei >} (1)

The Di represents the smart home devices present in the household, Eventi represents
the associated device behavior, and Timei represents the occurrence time of the device
behavior. These three parameters can be used to describe the behavior of a smart home user.
In order to model the behavior of smart home users and virtual users in future research, it
is important to have a clear understanding of their actions and patterns.

Since the captured traffic data are continuous, it is necessary to segment the device
behavior streams in the traffic files to ensure that each segmented device behavior stream
accurately represents a user behavior and establish the mapping relationship. Then, based
on these segments, the device-level features of user behavior are extracted, allowing for the
selection of activities to be built for the virtual user and the generation of obfuscated traffic
based on identifiers. Therefore, the first step is to reasonably segment the device behavior
streams in the traffic data.
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(1) Device Behavior Segmentation

Due to the variety and granularity of current smart home devices, directly identifying
and classifying device behaviors from raw device traffic data can be complex. Therefore, it
is possible to first divide the scenarios of smart home users’ daily life patterns. For example,
the user’s daily pattern can be divided into scenarios such as waking up, cooking, leaving
home, coming back home, and sleeping based on time relationships. The main types of
devices involved in each pattern can be predefined. For instance, the “coming back home”
pattern often involves changes in the status of devices such as smart locks, smart lights,
and smart cameras. Then, based on the captured traffic transmission time, the current user
scenario Xi can be preliminarily determined, and the approximate range of devices can be
defined. The corresponding device traffic fingerprints can be extracted from the fingerprint
database, and device behaviors can be identified and classified by matching the traffic
fingerprints. This approach can greatly improve the efficiency of segmentation.

Specifically, device traffic can be divided into Ba = {b1, . . . , bi}, where bi represents a
user behavior, denoted as bi =

{
e1, . . . , ej

}
, and ej is one device behavior within it. The

segmentation is based on three factors: time intervals between traffic fingerprints, proximity
between traffic fingerprints, and the frequency of occurrence of traffic fingerprints [30], as
described below:

(i) Time intervals between traffic fingerprints: By observing the time intervals between
traffic fingerprints, device behaviors can be divided into different time periods or stages.
For example, device behaviors with short time intervals can be grouped together, indicating
that the user performed multiple consecutive device operations within a short period.
Device behaviors with long time intervals can be grouped separately, indicating that the
user performed the next device operation after a longer time.

(ii) Proximity between traffic fingerprints: This factor measures the correlation and
continuity between device behaviors. If there is a strong proximity between the user’s
device behaviors, they can be grouped together. For example, if the user sequentially turns
on the TV, sound system, and lights, indicating a high proximity between these devices,
they can be grouped together.

(iii) Frequency of occurrence of traffic fingerprints: By observing the frequency of
occurrence of traffic fingerprints, device behaviors can be categorized. For example, if a user
frequently turns on a particular device, those frequently occurring device behaviors can be
grouped together, while infrequently occurring device behaviors can be grouped separately.

By considering these three factors, device behavior streams can be effectively seg-
mented and classified.

(2) User Behavior Feature Extraction

Based on segmenting and classifying device behavior streams, we can deduce which
device behaviors belong to the same user behavior and establish an initial mapping rela-
tionship. However, to make the mapping relationship more comprehensive and complete,
further exploration of user behavior features is needed.

Firstly, through observation and analysis, it is evident that smart home user behavior
data exhibit symmetry. This symmetry refers to the regularity and consistency in user
device operations. Specifically, the symmetry behavior features of smart home users can be
manifested in the following aspects:

(i) Symmetry in turning on and off: The symmetry behavior feature of smart home
users can be reflected in the activation and deactivation of devices. For example, if a user
turns on the lights in the living room at a certain time, according to the symmetry feature,
the user is likely to turn off the lights at some future time to maintain the symmetry of
device behavior.

(ii) Symmetry in temporal patterns: The symmetry behavior feature of smart home
users can also be observed in the temporal patterns of device operations. User behaviors
may exhibit symmetry within specific time periods during the day. For instance, if a user
turns on the bedroom air conditioner at a specific time in the evening, according to the
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symmetry feature, the user may also turn off the air conditioner during the subsequent
same time period.

(iii) Symmetry in device combinations: The symmetry behavior feature of smart home
users can be reflected in device combinations. User behaviors may exhibit symmetry when
simultaneously using multiple devices. For example, if a user turns on the television, they
may also turn on the stereo system simultaneously, and then turn them off after a certain
period to maintain the symmetry of device behavior.

Therefore, the behavior symmetry parameter M can be introduced to describe this
user behavior feature.

Furthermore, based on relevant research [31], due to the significant randomness in
smart home user behavior, the device behaviors within the same user behavior class can
be divided into deterministic behaviors and non-deterministic behaviors. For example,
consider a smart motion-sensing light installed at the entrance of a kitchen in a household.
The user’s cooking behavior would involve both deterministic and non-deterministic
behaviors. When the motion sensor detects the user passing by, the light turns on. This
device behavior is deterministic, occurring every time the user engages in cooking. Apart
from deterministic behaviors, there are other behaviors as well. For instance, during the
cooking process, the use of a microwave, refrigerator, or kettle is not always certain. These
uncertain behaviors represent variation and randomness, while deterministic behaviors
constitute inherent characteristics of user behavior. In such cases, the device behaviors
associated with a specific user behavior can be represented as db ∪ nb, where db represents
deterministic behaviors and nb represents non-deterministic behaviors.

In summary, the mapping relationship BD between user behavior and device behavior
can be described using the formula:

BD = ((db + Mdb) ∪ (nb + Mnb)) (2)

(3) User Behavior Connections Exploration

In real smart home environments, user behaviors often follow certain patterns known
as behavioral habits. To effectively protect the privacy of target households’ user behaviors,
this study creates deceptive virtual users whose behaviors differ from real users. To
achieve this, it is necessary to uncover the regularities and patterns of real users’ behavioral
habits. This study considers two main types of associations in the target household’s
behaviors: the association between user behaviors and time, and the association between
user behaviors themselves.

The association between behavior and time represents the relationship between a
behavior and the time it occurs, such as the user’s habit of performing a specific action
at a certain time of the day. Based on relevant studies [32], the probability of a behavior
occurring at a specific time can be calculated by analyzing the behavioral records from the
previous three days or a week, using a time unit of two hours. This probability, denoted
as P1, serves as a parameter for capturing the temporal relationships when constructing
virtual user behaviors.

The association between user behaviors represents the occurrence of other behaviors
when a particular behavior takes place, capturing the temporal order of behaviors based
on real users’ habits. The probability of two behaviors occurring together can be obtained
through statistical analysis of the associations between user behaviors. This probability,
denoted as P2, serves as a parameter for capturing the behavioral relationships when
constructing virtual user behaviors.

Based on the above probability parameters, a preliminary model can be developed to
represent the behavioral habits of real users in smart home environments. This enables the
generation of virtual user behaviors that are more aligned with real users, thus enhancing
the deceptive nature of the generated behaviors. However, it should be noted that this
model is still based on probabilistic parameters derived from statistical analysis and cannot
accurately predict the specific behaviors of each user. Therefore, it is important to con-
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sider other practical factors to improve the accuracy and realism of the generated virtual
user behaviors.

4.3.2. Behavior Sequence Generation

(1) Construction of Virtual User Behaviors

Based on the previous three steps and after obtaining the required information from
the target smart home, the construction of virtual user behaviors begins. This study adopts
a top-down approach to build virtual users. Firstly, the behavior sequences of virtual
users are constructed. Then, for each user behavior, the corresponding sequences of device
behaviors are generated. Finally, traffic fingerprints are extracted from the fingerprint
library corresponding to each device behavior, and obfuscated traffic is injected into the
target home.

According to Equation (1), based on the behavior patterns Ba of real user a, the daily
behavior of virtual user a, denoted as Va, can be described as:

Va = {< Ve0, Time0 >, . . . , < Vei, Timei >} (3)

Vei represents a virtual user behavior, and Timei = < Tbegin, Tend > represents its time
information, including the start time Tbegin and end time Tend. For example, the behavior
pattern “having breakfast from 7 a.m. to 8 a.m. and cooking from 11 a.m. to 12 p.m.”
is part of the user behavior pattern. To avoid suspicion from attackers, it is necessary to
generate dynamic behaviors for virtual users each day. Based on the real users’ behavioral
habits learned in the target household, a function F is used to determine the virtual user’s
behavior Vei and its occurrence time Timei:

< Vei, Timei >= F(Xi, P1, P2, Pasti, Mi) (4)

Xi is the user’s current context at time ti, P1 and P2 are the probabilities of a certain
user behavior occurring, obtained from the analysis of real user behavior habits in terms
of time and behavioral associations, respectively. These probabilities can be derived from
statistical analysis of the learned real user behavior patterns in the target home. Pasti
represents the behaviors that the virtual user has already performed at a specific time, and
Mi is the result of the symmetry analysis of the real user’s already occurred behaviors. By
considering multiple factors, it is possible to simulate the real user’s behavior and ensure
the logical integrity of the virtual user’s own behavior.

If there is a high similarity between real and virtual users, attackers may still be able
to infer the real user’s behavior [33]. Therefore, the behavior patterns of virtual users
should be different from those of real users. Planning the occurrence time of virtual user
behaviors ensures that real and virtual users are engaged in different activities. Based on
the behavioral associations and temporal relationships described earlier, the next behavior
of the virtual user is determined based on the previous behavior and its duration. Thus,
the assigned behaviors to virtual users are logically reasonable.

Furthermore, to strike a balance between smart home privacy protection and band-
width consumption, a privacy protection level f can be introduced. Different privacy
protection levels correspond to different quantities of generated virtual user behaviors. As
the privacy protection level f decreases, the number of generated virtual user behaviors
decreases accordingly. This is because under high privacy protection levels, the generated
virtual user behaviors should closely resemble those of real users to ensure effective ob-
fuscation of real user traffic. However, in situations where network resources are scarce,
an excessive number of virtual user behaviors can have a negative impact on network
performance. Therefore, it is necessary to control the quantity of virtual user behaviors.
Based on the analysis above, the daily behavior Va of a virtual user can be generated using
the following Equation (5):

Va = D (F, f , < Ve0, Time0 >) (5)
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In the above statement, F is the function used to generate virtual user behaviors and
their corresponding time. f is the adjustable privacy protection level, and Ve0 represents the
first behavior of the day, typically waking up. For a virtual user, the time of their waking
up behavior, Time0 can be randomly generated within a certain range. The algorithm for
function D is shown in Algorithm 1. Throughout the day, based on the generated initial
behaviors of the virtual user and referring to the probabilities of real user behavior habits
and the already occurred user behaviors, the virtual user’s behaviors are constructed step
by step in chronological order.

Algorithm 1. Virtual User Behavior Generation

INPUT: Initial behavior of virtual user <Ve0, Time0>
Real user behavior probabilities P1, P2
Current context mode Xi, symmetry test parameter Mi
Confusion level parameter f
OUTPUT: Virtual user’s daily behavior pattern

Va = <Ve0, Time0>, . . ., <Ven, Timen>
DATA: SQLite Fingerprint Database DB

1. Initialize C(f ) as the threshold for the number of virtual user behaviors under the
predetermined f level

2. count = 1
3. Va = <Ve0, Time0>
4. for Houri ∈ [0,23] do
5. if C(f )/24 >= count then
6. Pasti =<Ve0, Time0>, . . ., <Vei, Timei−1>
7. <Vei, Timei>= F(Xi, P1, P2, Pasti, Mi)
8. add <Vei, Timei> to Va
9. count = count + 1
10. end
11. end

(2) Device Event Sequence Generation

After constructing the virtual user’s behavior sequence for a day, the next step is to
generate the corresponding device behavior sequence based on the established mapping
relationship. One key challenge is to ensure the contextual consistency and logical integrity
of the device behavior sequence. Device behaviors are not only influenced by the current
behavior but also by previous behaviors. For example, if the virtual user has previously
turned on the lights in the living room, they should turn off the lights when leaving the
room to maintain the coherence and consistency of device behaviors. Therefore, a symmetry
test is also required for device behaviors.

The symmetry test for device behaviors can effectively reduce the occurrence of two
unfavorable situations for privacy protection:

(i) Continuous virtual device behaviors that may unintentionally leak user privacy. For
example, the sequence of three device behaviors: (real user) turn on the lights→ (virtual
user) turn off the lights→ (virtual user) turn on the lights. In this case, an attacker can still
determine the real state of the lights. To address this, when generating virtual user device
behaviors, we can check if the previous behavior was a real “turn on” behavior and ensure
that subsequent behaviors logically match it.

(ii) Logical conflicts between consecutive virtual device behaviors that render the
confusion ineffective. For example, the sequence of three device behaviors: (virtual user)
turn off the lights→ (virtual user) turn off the lights→ (virtual user) turn off the lights.
When the same behavior occurs consecutively, an attacker may realize the presence of
a virtual user, which could compromise the privacy protection. To mitigate this, when
the virtual user attempts to turn off a device that is already off, a symmetry test can be
performed to validate and correct the logical behavior.
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Additionally, continuous monitoring of the target smart home is necessary. This
includes monitoring the real home environment to ensure the virtual user’s behavior
aligns with the real user’s behavior and promptly detecting any anomalous behaviors. In
the same smart home environment, device behaviors should not create logical conflicts
between home users (real and virtual), so the virtual user’s behavior model needs to be
updated accordingly.

The algorithm for generating the virtual user’s device behavior sequence is presented
in Algorithm 2. It involves symmetry behavior testing and deterministic behavior analysis
based on the obtained user behavior sequence. The occurrence times of device behaviors
are then sorted according to Equation (4), resulting in the final corresponding virtual device
behavior sequence.

Algorithm 2. Device Behavior Sequence Generation

INPUT: Virtual user behavior sequence Va
Symmetry test parameter Mi
Association between user behavior and device behavior BD
Confusion level parameter f
OUTPUT: Device behavior sequence Ea = {de1, de2, . . ., den}

1. Decompose Va into user behavior and time sequence
2. <Ve0, Time0>, . . ., <Vem, Timem>.
3. count = 1
4. while count ≤ m do
5. i = count
6. dei = F (d0, t0, BD)
7. if Mi
8. add dei to Ea
9. else
10. continue
11. count = count + 1
12. end

4.4. Obfuscated Traffic Injection

After generating the behavior of virtual users and the corresponding device behavior
sequences, the corresponding device behavior traffic fingerprints will be extracted from the
fingerprint library and injected into the smart home outbound traffic through the gateway.

The construction process of obfuscating data packets is as follows: based on the
captured original network traffic, the packet size and direction are determined according
to the traffic fingerprint. By using MAC addresses that are similar or identical to real
devices, attackers can be misled in the first step of identifying all device types within
a home, thus affecting the subsequent stages of behavior identification. Additionally,
virtual devices can be constructed using MAC addresses that are identical to real devices,
effectively obfuscating the device behavior of a specific device and making it difficult for
attackers to distinguish whether the identified device behavior comes from a real device.
The obfuscated data packets use the same destination/source IP, port numbers, etc., as the
real device traffic. The payload can be filled using relevant packet construction tools and
dynamically adjusted.

Many smart home devices have bidirectional traffic interactions, such as smart voice
assistants, which frequently exchange data with device cloud services during operation.
The behavior traffic fingerprints of such devices are mostly bidirectional. To simulate this
bidirectional interaction at the gateway exit, traffic obfuscation units can be deployed on
both the local gateway and remote servers. When the gateway transmits traffic outward,
the remote server masquerades as a role in the smart home device cloud service, responding
to the “traffic demands” of the local virtual devices by sending obfuscated traffic to the
gateway server. Within the limits of cost, the number of remote servers can be increased,
establishing a many-to-one mapping relationship with the smart home gateway. This way,
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if one remote server is unable to work due to an attack or other reasons, other servers can
still provide obfuscation support, ensuring the reliability and stability of privacy protection
methods. By injecting bidirectional traffic between the gateway and cloud services, the
obfuscated traffic becomes more covert, making it difficult for attackers to differentiate
between real and virtual device traffic and thus making it challenging for attackers to target
smart homes.

Based on the above, traffic obfuscation methods often incur certain network bandwidth
overhead, which may increase the latency of smart home devices and affect user experience.
For sensitive devices such as smart speakers that require high network performance,
excessive network latency can also impact the normal functionality of the device. Therefore,
to strike a better balance between privacy protection in smart homes and bandwidth
overhead, SHTObfuscator provides three different levels of obfuscation intensity: Level I,
Level II, and Level III. Under different obfuscation levels, the density of virtual user
behaviors will correspondingly increase or decrease, resulting in flexible changes in the
bandwidth overhead caused by obfuscated traffic. Smart home users can dynamically
adjust the obfuscation intensity based on the current network conditions at home to achieve
the best outcome.

According to related research [34], real smart home users generate an average of
30 behaviors per day. Therefore, for Level I obfuscation, approximately 15 user behaviors
can be generated for each virtual user per day. For Level II obfuscation, approximately
30 user behaviors can be generated per virtual user per day. For Level III obfuscation,
approximately 45 user behaviors can be generated per virtual user per day. By changing
the obfuscation intensity to modify the number of user behaviors, the required size of
obfuscated traffic can be adjusted, achieving a balance between privacy protection and
bandwidth consumption optimization.

Based on observations of laboratory smart home devices, it has been found that
the effectiveness of the attack model varies between day and night, with less privacy
information exposed during the night. This is because fewer smart home devices are
active during the night when users are asleep. Therefore, it is possible to reduce the
obfuscation intensity during nighttime to save costs. Since there is a significant difference
in the number of user behaviors between daytime and nighttime for real users, and the
purpose of designing virtual users is to make attackers perceive them as real individuals,
it is unnecessary to obfuscate the traffic patterns of daytime and nighttime into the same
pattern. This functionality can be implemented in the subsequent system implementation
to be automatically handled by the system itself without requiring manual switching by
users. Of course, this should be done under the premise of confirming that the user is not
staying up late or has already fallen asleep.

Meanwhile, in the subsequent system implementation, an adaptive obfuscation
method can be designed to allow the system to determine the current time and auto-
matically adjust the obfuscation intensity based on different time periods, thereby ensuring
the balance between the security of privacy information and cost-effectiveness. For example,
during nighttime periods, the system can choose to appropriately reduce the obfuscation
intensity to reduce resource consumption, while during daytime periods, the system can
use stronger obfuscation intensity to ensure the security of privacy information.

This adaptive obfuscation method can be implemented in the system through program-
ming languages. The current time can be obtained using modules such as “datetime” in
Python, and then the obfuscation intensity can be adjusted based on conditional statements
according to the time period. At the same time, the actual usage patterns of users, such as
their sleep time and habits, should be considered during the implementation process to
avoid excessive or insufficient obfuscation when users need to use smart home devices.

In conclusion, the adaptive obfuscation method can balance the security of privacy in-
formation while saving network bandwidth resources and improving the cost-effectiveness
of the system. During implementation, the user’s usage habits and time factors should be
considered to make the system more intelligent and flexible.
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5. Experimental Evaluation
5.1. Experimental Setup

The padding process is application independent and can be performed at the transport,
network, and link layers. The padding mechanism can be implemented in software, acting
as a middlebox on devices, such as a home router and gateway.

The experimental environment topology, as shown in Figure 5, consists of seven types of
smart home devices such as smart cameras and smart speakers, as well as non-smart home
devices such as smartphones and computers. These devices are connected to the smart home
gateway via WiFi and interact with a cloud server, forming a smart home living scenario. The
smart home gateway is deployed with the SHTProtector traffic privacy protection system,
and the remote server supports bidirectional injection of obfuscated traffic.
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The hardware and software information of the smart home gateway based on OpenWrt
is provided in Table 1.

Table 1. Hardware and Software Information.

Component Specifications

CPU i5-8400
RAM 8 GB

OpenWrt 19.07
DNSmasq 2.8.5
Hostapd v2.10-devel

The real environment of the experiments is shown in Figure 6, including the smart home
gateway and smart home devices (including cameras, smart speakers, and smart sensors).

The dataset used to generate traffic fingerprints consists of device traffic captured in
the real laboratory environment. The laboratory environment dataset includes behavioral
traffic and idle traffic from 10 devices. The device types include 7 smart home devices
and 3 non-smart home devices, as shown in Table 2. The collection time for idle traffic
is 10 min, while the collection of behavioral traffic is manually triggered based on the
functional behaviors of each device. During the collection process, only the target smart
home devices and non-smart home devices are in an active state. Each device behavior
is triggered 30 times, with each trigger lasting 10 s, and the time of each behavior trigger
is recorded.
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Table 2. Laboratory Device Information.

Manufacturer Name Function Device Behavior

Lenovo Camera Fingerprinting View monitoring
Xiaomi Smart Pan-Tilt Camera Fingerprinting Recording

Hikvision Ezviz Camera Fingerprinting Recording
Baidu Xiaodu Speaker Fingerprinting Conversation
Aqara Smart Light Fingerprinting On/Off
Aqara Motion Sensor Fingerprinting Motion detection
Aqara Smart Switch Fingerprinting On/Off

Huawei Mate20 Smartphone Background Video browsing
Lenovo IdeaPad 16 Laptop Background File downloading
Lenovo ThinkPad Laptop Background Standby

To evaluate the functionalities of the SHTProtector smart home privacy protection
system, the following experiments were designed to validate the effectiveness of vari-
ous modules, including the deceptive nature of virtual traffic, the effectiveness of traffic
obfuscation methods, and the efficacy of privacy balancing optimization.

5.1.1. Traffic Obfuscation Effectiveness Experiment

This experiment consists of two parts: device behavior recognition experiment and
user behavior inference experiment.

(i) Device Behavior Recognition Experiment: The objective is to verify the deceptive
nature of virtual traffic. Assume that an attacker extracts device behavior fingerprints from
the dataset and trains a random forest classification model, this model is used to detect
whether injected packets can be identified by the attacker as the expected device behavior
and whether fake packets can be distinguished from real packets.

(ii) User Behavior Inference Experiment: The purpose is to validate the effectiveness
of the obfuscation methods. Using a commonly used Hidden Markov Model (HMM) in
the smart home domain, user behavior inference is performed to evaluate the obfuscation
effect of the proposed traffic obfuscation method on the user behavior inference model.

5.1.2. Traffic Obfuscation Overhead Experiment

The goal of this experiment is to test the obfuscation effect and bandwidth overhead
under different defense levels, in order to verify the balance between privacy protection
strength and bandwidth overhead. The experiment evaluates the obfuscation effect and
household traffic size under different defense levels and includes a control group for
comparison, aiming to validate the effectiveness of privacy balancing optimization.
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5.2. Efficiency of Obfuscation

Assume that attackers extract device behavior fingerprints from a dataset, they trained
a random forest classification model. This model is used to detect whether injected packets
can be recognized by the attacker as the intended device behavior and whether fake packets
can be distinguished from real ones.

The results of the device behavior inference experiment are presented in Table 3.
The recall rate of device behavior inference represents the ratio of successfully inferred
behaviors to the total number of behaviors. The precision of device behavior inference
represents the ratio of correctly inferred events to the total number of inferred events. The
F1 score is the harmonic mean of both metrics. From the experimental results, it can be
observed that the recall rate and F1 score of virtual packets used for confusion are very
similar to those of real packets. This indicates that attackers tend to identify the behavior
of virtual users as real device behavior, thus validating the high deceptive nature of the
generated confusing traffic based on the proposed method in this paper. It effectively
confuses attackers in real-world scenarios.

Table 3. Device Behavior Recognition Results.

Device Behavior Real Virtual

Device Behavior F1 Score (%) F1 Score (%)

Xiaomi Camera Record 91.7 91.1
Aqara Switch Turn On 98.0 98.3

Xiaodu Speaker Talk 91.5 93.0
Smart Light Turn On 97.4 96.3

Motion Sensor Sensor 96.6 96.5

After inferring device behavior, attackers need to construct a new classification model
to infer user behavior. Previous research [35] has shown that Hidden Markov Models
(HMMs) perform well in inferring user behavior in smart home environments. Based on
observations and usage of smart home devices in a laboratory environment, the following
analysis is presented:

In a smart home environment, user behavior typically involves multiple smart home
devices. For example, the user’s behavior of returning home may involve actions such as
unlocking the door, turning on lights, adjusting the thermostat, and activating smart plugs.
In such cases, attackers can use HMMs to infer user behavior from the states of smart home
devices. The fundamental assumption of HMMs is that the hidden state forms a Markov
chain, meaning that the current hidden state only depends on the previous hidden state
and is independent of previous states. Therefore, when attackers observe a sequence of
states from smart home devices, they can use HMMs to predict the sequence of hidden
states (i.e., user behavior) and infer the user’s privacy information.

Since the effectiveness of classifying device behavior attacks has been experimentally
validated in the previous step, it is possible to identify the device behavior sequence within
a specific time period in the home using a classification model. Therefore, a training dataset
can be created, which includes sequences of device behavior and their corresponding user
behaviors. Attackers can use this dataset to train an HMM and utilize the HMM to infer
user behavior.

Table 4 shows the user behaviors and the underlying device behaviors involved. As
shown in Table 5, the experimental results of user behavior inference before and after traffic
obfuscation demonstrate that the proposed traffic obfuscation method has a good effect
on confusing the classification model for user behavior inference. It effectively reduces
the inference accuracy of the classification model for user behaviors such as leaving home,
returning home, sleeping, waking up, and walking. The detailed experimental results can
be found in the Appendix A.
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Table 4. User and Device Behavior.

User Behavior Relevant Device Behavior

Control Smart Light Turn on, turn off, change color, adjust brightness

Control Smart Plug Turn on, turn off

Talk to Smart Speaker Turn on and engage in conversation with smart speaker

Sleep Activate camera, turn on motion sensor, turn off smart light

Wake Up Turn off motion sensor, turn off camera, turn on speaker

Leave Home Turn off motion sensor, turn on camera, turn off light, unlock/lock door

Back Home Unlock/lock door, turn on light, turn on motion sensor, turn off camera

Table 5. User Behavior Recognition Results under Different Defense Levels.

Original Level I Level II Level III

Behavior F1 Score (%)

Leave Home 92.2 31.4 27.3 22.6
Return Home 91.4 29.1 23.1 21.4

Sleep 90.6 28.0 24.6 19.3
Wake Up 91.3 26.3 22.7 18.0

Walk 94.5 25.6 22.8 19.5

Based on the key steps of the proposed SHTObfuscator method, the traffic obfuscation
process was simulated on the dataset. The obfuscated traffic was then tested using the
HMM user behavior inference model mentioned earlier. In addition, packet padding and
traffic shaping methods were included as a comparison. The detailed experimental results,
shown in Figure A1, demonstrate that the three obfuscation levels of the SHTObfuscator
method significantly reduce the F1 scores of the attack model for all seven user behaviors,
indicating effective privacy protection.

Among the compared traffic obfuscation methods, the effectiveness of packet padding
surpasses that of obfuscation levels I and II. This is likely due to the ability of packet
padding to directly alter the fundamental feature of packet size, providing more direct
obfuscation for simple user behaviors such as controlling a single device. However, packet
padding requires high granularity and results in significant bandwidth consumption.

Under the highest obfuscation level III, SHTObfuscator outperforms packet padding in
obfuscating complex user behaviors, and the obfuscation levels I and II also yield better re-
sults compared to traffic shaping. Through these experimental comparisons, it is confirmed
that the SHTObfuscator method exhibits excellent privacy protection performance.

5.3. Overhead Evaluation

The traffic obfuscation overhead experiment primarily focuses on comparing the
network bandwidth consumption of SHTProtector at different obfuscation levels and testing
the functionality of the privacy balancing module. The experiment involves collecting and
comparing the sizes of traffic generated by smart home devices and their corresponding
obfuscation effects (measured by the F1 score of the obfuscated attack model) over the
course of one week after deploying the gateway. The average values are calculated for each
obfuscation level.

Table 6 presents the results of the privacy balancing optimization experiment. For the
three different levels of traffic obfuscation, the SHTProtector privacy protection system
incurs approximately 6.7–17.8% additional bandwidth consumption, resulting in a decrease
in the F1 score of the attack model from around 95% to 29.4–20.6%, with an average of
approximately 25%. Compared to the control group methods such as packet padding,
traffic shaping, and fake traffic injection, SHTProtector achieves a good balance between
obfuscation effectiveness and lower bandwidth consumption.
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Table 6. Overhead Evaluation of Padding Strategy.

Method Effectiveness (%) Traffic Overhead (%)

Original Traffic - 310 MB -
Obfuscation Level I 29.4 331 MB 6.7
Obfuscation Level II 25.5 346 MB 11.6
Obfuscation Level III 20.6 365 MB 17.8

Packet Padding 21.3 - 87.5
Traffic Shaping 33.2 - 29.0

Fake Traffic Injection 28.3 - 31.1

Compared to existing related research, our study has made significant improvements
to the smart home traffic obfuscation method based on the concept of virtual users. We have
adopted a bidirectional traffic injection approach, enabling the obfuscated traffic to more
realistically simulate the interactions among smart home devices. By injecting obfuscated
traffic into the network, we increase the difficulty for attackers to analyze and identify
traffic patterns, thereby enhancing the effectiveness of privacy protection.

It is worth noting that we have carefully considered the issue of logical integrity
during the process of injecting obfuscated traffic. The obfuscated traffic not only effectively
hides the users’ real behaviors but also ensures that it does not cause system anomalies or
data loss. Through a well-designed bidirectional traffic injection strategy, we maintain the
coherence and interpretability of the traffic, making the obfuscated traffic more realistic
and less detectable by potential attackers.

In addition to improving the quality of obfuscated traffic, this study also addresses
the problem of bandwidth consumption during the traffic obfuscation process. We have
achieved adaptive control of traffic obfuscation, allowing users to choose appropriate
levels of protection based on their specific needs and privacy requirements. This balanced
approach between privacy protection and cost control provides smart home users with
more personalized privacy protection solutions.

Overall, the proposed smart home traffic obfuscation method based on virtual users
not only enhances privacy protection but also considers the feasibility and practicality of
traffic obfuscation. It offers an effective and feasible solution for data security and privacy
protection in smart home environments, providing strong support for the security and
privacy of future smart home systems.

6. Conclusions and Prospect

In recent years, the smart home industry has experienced rapid growth. While smart
home devices provide users with convenient and intelligent living experiences, they also
reflect users’ household behaviors in traffic data, which poses privacy risks. To address
the issue of smart home traffic privacy protection, this paper proposes an enhanced smart
home traffic obfuscation method called SHTObfuscator, and designs and implements a
smart home traffic privacy protection system called SHTProtector. The main contributions
of this paper are as follows:

(1) Based on the concept of virtual users, an improved traffic obfuscation method,
SHTObfuscator, is proposed. This method injects traffic fingerprints of different device
behaviors into the real traffic environment of smart homes as obfuscated traffic. It effectively
prevents attackers from distinguishing the real device operation status and user behavior
privacy in the home, thereby reducing the effectiveness of traffic classification attack
models. It also provides different levels of protection to achieve a balance between privacy
protection and bandwidth overhead.

(2) A virtual user behavior construction method based on logical integrity is proposed.
This paper classifies the different behaviors of virtual users and their corresponding device
behaviors and considers the logical relationship between virtual user behaviors and real
user behaviors. The method ensures that the constructed virtual user behaviors have a
high level of deception while performing traffic obfuscation.
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(3) The design and testing of an adaptive smart home traffic privacy protection system.
Based on the SHTObfuscator traffic obfuscation method, a smart home traffic privacy
protection system, SHTProtector, is designed and implemented. It includes functions such
as device identification, traffic fingerprint extraction, obfuscated traffic injection, and pri-
vacy balance optimization. Experiments are conducted in an experimental environment
composed of smart home gateways and smart home devices to evaluate device identifica-
tion monitoring, traffic fingerprint extraction, traffic obfuscation effectiveness, and traffic
obfuscation overhead, thereby validating the effectiveness of the proposed methods.

Based on the research on smart home traffic obfuscation methods, further exploration
is needed in the following areas:

(1) It is necessary to continue investigating the bandwidth consumption introduced
by the virtual user based smart home traffic obfuscation method in real environments and
find a better balance between privacy protection strength and bandwidth consumption.

(2) This paper primarily focuses on the case of a single virtual user. Further research is
needed to explore obfuscation methods for constructing multiple virtual users.

(3) For smart home privacy protection systems, further research is needed on how to
make the system more intelligent in adjusting traffic obfuscation modes to achieve more
efficient utilization of computational resources.
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