
Citation: Palkowski, M.; Gruzewski,

M. Time and Energy Benefits of Using

Automatic Optimization Compilers

for NPDP Tasks. Electronics 2023, 12,

3579. https://doi.org/10.3390/

electronics12173579

Academic Editor: Ahmed F. Zobaa

Received: 11 August 2023

Revised: 22 August 2023

Accepted: 23 August 2023

Published: 24 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Time and Energy Benefits of Using Automatic Optimization
Compilers for NPDP Tasks
Marek Palkowski *,† and Mateusz Gruzewski †

Faculty of Computer Science and Information Systems, West Pomeranian University of Technology, Zolnierska 49,
72210 Szczecin, Poland; gruzewski.mt@gmail.com
* Correspondence: mpalkowski@zut.edu.pl
† These authors contributed equally to this work.

Abstract: In this article, we analyze the program codes generated automatically using three advanced
optimizers: Pluto, Traco, and Dapt, which are specifically tailored for the NPDP benchmark set. This
benchmark set comprises ten program loops, predominantly from the field of bioinformatics. The
codes exemplify dynamic programming, a challenging task for well-known tools used in program
loop optimization. Given the intricacy involved, we opted for three automatic compilers based on the
polyhedral model and various loop-tiling strategies. During our evaluation of the code’s performance,
we meticulously considered locality and concurrency to accurately estimate time and energy efficiency.
Notably, we dedicated significant attention to the latest Dapt compiler, which applies space–time
loop tiling to generate highly efficient code for the NPDP benchmark suite loops. By employing
the aforementioned optimizers and conducting an in-depth analysis, we aim to demonstrate the
effectiveness and potential of automatic transformation techniques in enhancing the performance
and energy efficiency of dynamic programming codes.

Keywords: bioinformatics; automatic optimizers; loop tiling; polyhedral model; green computing;
RNA folding; non-serial polyadic dynamic programming; energy efficiency; locality; scalability

1. Introduction

Non-serial polyadic dynamic programming (NPDP) kernels are used to assess the
performance of tiled code generated by means of state-of-the-art optimizing compilers [1–4].
The NPDP dependence pattern represents the most complex category of Dynamic Program-
ming (DP) due to its non-uniform dependences, which are characterized by irregularities
and are represented using affine expressions. The idea of DP is to start from the simplest
instance of a problem, find an optimal solution for it, and extend the optimal solution to
bigger instances. This solution is used in classical bioinformatics approaches, such as the
Needleman and Wunsch algorithm [5]. These base algorithms encompass intricate NPDP
dependence patterns that pose limitations to achieving high-performance and energy-
efficient code through automatic optimizers. These tools not only facilitate multi-threading
of the code but also enhance its locality by employing techniques like loop tiling.

Loop tiling, also known as loop blocking or partitioning, is a compiler optimiza-
tion technique that boosts cache utilization and enhances loop-based computation perfor-
mance [6]. It achieves this by dividing loops into smaller, cache-fitting sub-loops, leveraging
spatial locality for accessing closely located data elements in memory. This approach re-
duces cache misses and optimizes memory access patterns. While parallelization for NPDP
codes often involves classical techniques like loop skewing, achieving effective tiling poses
a greater challenge for compilers [7].

In this paper, we employ three automatic compilers, namely Pluto [8], Traco [9], and
Dapt [10], to generate optimized codes for the NPDP benchmark [11]. This benchmark
collection consists of eight bioinformatics kernels and two classical computer science

Electronics 2023, 12, 3579. https://doi.org/10.3390/electronics12173579 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12173579
https://doi.org/10.3390/electronics12173579
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5932-4523
https://orcid.org/0000-0002-9419-2749
https://doi.org/10.3390/electronics12173579
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12173579?type=check_update&version=1


Electronics 2023, 12, 3579 2 of 14

algorithms. All three compilers are based on the polyhedral model but employ different
approaches to loop tiling. Pluto utilizes the affine transformation framework (ATF), TRACO
implements the transitive closure of the dependence relation graph, and Dapt applies
space–time tiling with the dependence uniformization approach. To evaluate the results,
we selected three AMD machines (two EPYC models and one Ryzen Threadripper), which
have gained popularity in the realm of cluster computing, and analyzed the performance
of generated codes in terms of execution time and energy efficiency using AMD RAPL [12].

The remaining sections of this paper are structured as follows: Section 2 provides a
detailed description of the mentioned compilers, benchmarks, and relevant prior work.
Section 3 compares the tiled codes generated by these compilers. Section 4 presents the
experimental methodology and results. Finally, the paper concludes in the last section,
which highlights future directions for research.

2. NPDP Code Optimization

Efficient comparison of biological sequences requires considering gaps and mis-
matches. Dynamic programming is a commonly used approach to tackle this task. In the
NPDP kernels, a significant portion of the computation involves constructing matrices that
represent the similarity between two sequences using appropriate scoring functions. Unfor-
tunately, even simple NPDP loop kernels involve a lot of non-uniform loop dependences.

Let us consider the Knuth algorithm represented by the following program loop [4]:

for(i=n-1; i>=1; i--)
for(j=i+1; j<=n; j++)
for(k=i+1; k<j; k++)
c[i][j] = MIN(c[i][j], w[i][j]+c[i][k]+c[k][j]);

The dependence analyzer Petit [13] extracts the following dependences:

anti c(i,j) -> c(i,j) (0,0,+) non-uniform, only positive
flow c(i,j) -> c(i,j) (0,0,1) uniform
flow c(i,j) -> c(i,k) (0,+,1) non-uniform, only positive
flow c(i,j) -> c(k,j) (+,*,*) non-uniform
flow c(i,j) -> c(i,j) (0,0,+) non-uniform, only positive
flow c(i,j) -> c(i,k) (0,+,*) non-uniform
flow c(i,j) -> c(k,j) (+,0,*) non-uniform
output c(i,j) -> c(i,j) (0,0,+) non-uniform, only positive

The first column indicates the type of dependence (anti: read–write, flow: write–
read, output: write–write), while the next two columns represent the memory references
denoting the source and destination of the dependence, respectively. The fourth column
displays the dependence vectors. A value of 0 indicates no loop-carried dependence, a “+”
symbol signifies that the destination is later than the source, and a “*” symbol indicates that
the destination could be either later or earlier than the source at a specific element vector.

Vectors represent the distance between the source and destination in an iteration loop
space and for uniform dependences contain only constants. Anti and output dependences,
uniform dependences, and non-uniform ones with only zeros and + in the vector are
generally easier to handle when applying loop transformations to generate rectangular
tiles [14]. On the other hand, flow dependences with non-uniform vectors such as (+, *, *)
pose significant challenges for automatic optimizers. It is important to note that the domain
of dependences is parameterized with unknown values during compile-time. These types
of irregular dependence patterns are commonly encountered in the NPDP benchmark
suite [11].

The NPDP benchmark contains 10 kernels. Eight of them are classical and well-known
bioinformatics tasks.

• The Nussinov algorithm [15] (RNA folding)
• The Zuker algorithm [16] (RNA folding)



Electronics 2023, 12, 3579 3 of 14

• The Smith–Waterman algorithm [17] (aligning sequences)
• The Needleman–Wunsch algorithm [5] (aligning sequences)
• The Smith–Waterman algorithm for three sequences [17] (aligning sequences)
• The counting algorithm [18] (RNA folding)
• The McCaskill’s kernel [19] (RNA folding)
• MEA [20] (RNA folding)

The suite contains additionally two classical computer science NPDP kernels: the
Knuth algorithm (optimal binary search tree) [21] and the optimal (polygon) triangulation
problem [22]. The NPDP benchmark suite was presented in [11] in detail.

There are many related benchmarks suites like PolyBench [23], Livermoore [24], NASA
Parallel Benchmark [25], SPEC [26], LORE [27], and others [28,29] dedicated for optimizers.
However, they are not focused mainly on the challenging NPDP problems.

Although the NPDP loops contain complex dependence patterns, they can be pre-
sented within the polyhedral model. It means that array references, loop bounds, and
constraints are represented by affine expressions, and loops do not contain break or con-
tinue statements. The polyhedral model is applied in modern optimizers and represents
dependence patterns in mathematical forms like matrices or unions of relations. This
powerful theoretical framework allows us to implement many loop transformations, such
as tiling, and handle complex parameterized non-uniform and arbitrary nested program
loops.

Numerous manual and semi-automatic strategies are available in papers [2,3,30–34]
to improve the locality of the NPDP tasks. However, they are limited to the serial code,
limited to only one considered NPDP problem, or no-implemented and maintained. Hence,
we focused on the well-documented automatic, source-to-source optimizers that realize
multi-threading using OpenMP [35].

Polyhedral optimizers employ parallelization and loop-tiling techniques to enhance
the performance of serial code. Loop tiling, a widely recognized transformation, is utilized
for optimizing both sequential and parallel programs. This technique enables the generation
of parallel high-performance code by increasing the code granularity and improving data
locality. These optimizations are especially beneficial for executing programs on modern
multi-core architectures, as they enable efficient utilization of parallel processing capabilities
and enhance overall program performance.

The state-of-the-art source-to-source PLuTo compiler [8] enables automatic tiling and
parallelization of program loop nests. It utilizes the affine transformation framework
(ATF) to generate parallel tiled code for the target platform. This approach involves a
series of execution-reordering loop transformations that facilitate multi-threading and
improve locality.

The compiler employs a powerful and versatile cost function embedded in an Inte-
ger Linear Programming (ILP) formulation to create effective tiling hyperplanes. These
hyperplanes help extract coarse-grained parallelism while minimizing communication and
enhancing code locality. In the processor space, PLuTo reduces inter-tile communication
volume and optimizes reuse distances for local execution on each node. It supports both
one-dimensional and multi-dimensional time schedules for loop nest statement instances,
treating schedules using the same algorithm. The Pluto algorithms are implemented in
some academic tools like Apollo [36] and PTile [37].

PLuTo offers synchronization-free parallelism, pipelining, and fully permutable loops
at various levels. However, the tile dimensionality provided by PLuTo is constrained by
the number of linearly independent solutions to the space/time partition constraints [10].

To form valid target tiles, TRACO [9] utilizes the transitive closure of dependence
relation graphs, which capture all the dependencies present in the loop nest. The process
begins by partitioning the iteration space of the loop nest into smaller rectangular subspaces,
known as original tiles.

The tile correction strategy involves removing the dependence destinations whose
sources belong to the tiles in the subspace that includes tiles with identifiers greater than



Electronics 2023, 12, 3579 4 of 14

the given tile. To accomplish this, the transitive closure of the dependence graph is applied
to the iteration subspace. It finds statements that are dependence destinations directly or
transitively connected with the sources. This ensures the removal of invalid dependence
destinations from the set representing the statement instances of the given tile.

Finally, each invalid dependence target that has been removed from a tile is added to
exactly one tile with a lexicographically greater identifier than the tile it was originally a
part of. To parallelize NPDP tiled codes, loop skewing is used. The TRACO compiler does
not implement any of the ATF techniques or affine function calculating.

When dealing with non-uniform dependencies, the associated time-tiling constraints
are inherently nonlinear and are prone to escalate the size and computational complex-
ity once they transition into a linear model. To circumnavigate this issue, DAPT [10]
has introduced an approach to approximate these non-uniform dependencies to uniform
counterparts, an innovation proven to be simpler than the methods used by Pluto.

Indeed, DAPT has succeeded in normalizing non-uniform dependencies to uniform
ones. Unlike Pluto, which only generates code that supports two-dimensional tiling, DAPT
and Traco are capable of generating codes that cater to three-dimensional tiling as well
nussinov, nw, sw benchmarks. This illustrates the importance and advantage of DAPT’s
uniformization process.

In order to generate regular code and enhance the tile dimension, the DAPT com-
piler [10,38] incorporates space–time tiling that utilizes the intersection operation on sets
representing sub-spaces and time slices to generate target tiles. This approach divides the
computation into time partitions, where each partition consists of independent iterations
that can be executed in parallel. It is important to note that the time partitions need to be
enumerated in lexicographical order.

Each space tile is then divided into multiple time slices. The number of time partitions
within each time slice is determined using the ISL scheduler [14], with the flexibility for the
user to define the desired number of time partitions. Consequently, the tile dimension is
increased by one.

Smaller tiles are enumerated within each space tile in the resulting target code. This
approach improves code locality by increasing the likelihood of efficiently utilizing the
cache and capturing all the data associated with each smaller tile. The proper selection
of the number of time partitions forming the time slice is crucial for optimizing cache
utilization and achieving improved code locality. Space–time tiling has been demonstrated
as having promising potential in the development of new polyhedral-optimizing compilers
in paper [4].

However, the crux of the matter is the emphasis on the usage of the uniformization
method within the DAPT space–time tiling, serving as a crucial reminder of the importance
of uniformization. Despite this, it is worth noting that the field of uniformization has seen
a dearth of research in recent times. Consequently, this scarcity of research has given rise to
solutions that lack optimal uniformization techniques, highlighting the need for a renewed
focus and further investigation into this field [39].

3. Results

To evaluate the performance of the tiled codes generated by the aforementioned
compilers, we assessed the time reduction and energy efficiency of the code execution.
As the target machines, we chose three AMD Zen 2 computers released in late 2019 and
characterized in Table 1:

Table 1. Technical data for the tested AMD machines.

Processor Base Clock
(GHz)

Turbo Clock
(GHz) Number of Cores Number of

Threads Cache (MB) RAM (GB)

EPYC 7542 2.9 3.4 32 64 128 256
EPYC 7H12 2.6 3.3 64 128 256 64

Ryzen
Threadripper

3970X
3.7 4.5 32 64 144 128



Electronics 2023, 12, 3579 5 of 14

All machines work under Ubuntu Linux 22.04 “jammy” equipped with the compiler
g++ 9.3.0. Generated codes were compiled with the flags “-O3 -lgomp -fopenmp”. Source
codes of the benchmarks, including optimized codes by compilers, are available at the
repository https://github.com/markpal/NPDP_Bench (accessed on 1 August 2023).

To measure energy consumption on the AMD machine, we employed the “amd_energy”
approach, which was developed by Naveen Krishna Chatradhi [40]. The kernel driver
amd_energy supports AMD 17th family and 19th family processors. Specifically, it is
supported by the Zen 3 architecture, which includes processors such as the AMD Ryzen
5000-series and AMD EPYC 7003-series server processors. The energy driver provides
access to the energy counters reported through the model-specific registers (MSRs) of
the running average power limit (RAPL) model. These energy counters can be accessed
through the hardware monitor (HWMON) sysfs interface. These registers are updated
every 1 ms.

Energy information, measured in joules, is derived from a multiplier represented by
1/2ESU , where ESU is an unsigned integer obtained from the MSR_RAPL_POWER_UNIT
register. The default value for ESU is 10,000 b, indicating that the energy status unit is
incremented by 15.3 micro-joules.

The reported energy values are scaled using the following formula:

scaledvalue = ((1/2ESU) ∗ (Rawvalue) ∗ 1,000,000UL)

in micro-joules. To calculate power for a specific domain, users can determine the change
in energy (dEnergy) over a given time period (dTime) and divide the result by that time:
Power = dEnergy/dTime. By calculating the derivative of energy with respect to time,
users can estimate the power consumption for a particular domain.

Unfortunately, we were not able to measure energy for the EPYC 7H12 because the
host was only available to us under a VMWare environment, which does not support
RAPL events.

Table 2 showcases a comprehensive comparison of benchmarks, study sizes, and exe-
cution times for both the original and generated codes, measured in seconds for 64 threads
of the AMD EPYC 7542. The speed-up is depicted in Figure 1. Table 3 provides a detailed
analysis of the energy advantages, measured in joules, when contrasting the original code
with the generated counterparts. Notably, the codes generated using the DAPT compiler
exhibit the shortest length and consume the least amount of energy. For similar codes in the
nw and sw benchmarks, the tiled code with the tile correction strategy (Traco) delivers the
best performance. Conversely, employing the technique based on affine transformations
(Pluto) resulted in inferior performance or yielded results comparable to other benchmarks
(mea, sw3d, zuker). This issue can be attributed to the challenge of tiling all loop nests
effectively or the absence of parallelism in the mcc benchmark.

Table 2. Execution times for the original and optimized codes in seconds for the AMD EPYC 7542.

Benchmark Size Original Pluto Traco Dapt

counting 10,000 1282.01 57.1 49.9 40.01
knuth 10,000 855.42 34.29 40.3 33.84
mcc 10,000 2632.3 1021.43 149.02 105.85
mea 2500 6397.83 352.42 481.98 318.77

nussinov 10,000 3880.43 205.33 78.74 51.03
nw 10,000 4567.33 182.56 131.33 177.32
sw 10,000 4483.13 183.96 132.46 178.33

sw3d 500 309.87 25.01 29.07 24.02
triang 10,000 3574.98 177.32 223.32 153.76
zuker 2000 415.55 29.98 60.02 23.3

https://github.com/markpal/NPDP_Bench


Electronics 2023, 12, 3579 6 of 14

Table 3. Energy consumption for the original and optimized codes in joules for the AMD EPYC 7542.

Benchmark Size Original Pluto Traco Dapt

counting 10,000 63,781 6212 5942 4946
knuth 10,000 41,317 4238 4873 4153
mcc 10,000 127,733 49,207 19,089 13,265
mea 2500 343,617 42,311 57,750 38,564

nussinov 10,000 184,569 24,189 8854 5519
nw 10,000 220,543 20,236 16,023 19,995
sw 10,000 215,963 20,541 16,960 20,349

sw3d 500 15,253 2478 2577 2450
triang 10,000 175,934 20,889 27,236 18,321
zuker 2000 20,124 3244 5394 2796

counting knuth mcc mea nussinov nw sw sw3d triang zuker

0

20

40

60

80

Kernel

Sp
ee

d-
up

Pluto Traco Dapt

Figure 1. Speed-up of the original and optimized codes for the AMD EPYC 7542.

Table 4 presents the time execution of optimized codes in seconds for the AMD EPYC
7H12 and 128 hardware threads. We observed that the Dapt compiler is able to generate
the fastest code for six benchmarks. In the other cases, the tile correction strategy gives us
the best times. Times for the Pluto code executions are much worse for five kernels (mcc,
mea, nussinov, nw, triang). Speed-ups are depicted in Figure 2.

Table 4. Execution times for the original and optimized codes in seconds for the AMD EPYC 7H12.

Benchmark Size Original Pluto Traco Dapt

counting 10,000 1531.82 23.62 27.26 19.01
knuth 10,000 1939.06 25.3 25.42 17.11
mcc 10,000 3274.18 1033.98 194.6 51.84
mea 2500 4578.58 156.56 102.52 117.02

nussinov 10,000 5583.45 217.04 106.7 36.94
nw 10,000 5643.59 209.38 59.13 116.58
sw 10,000 5726.92 103.55 61.3 92.54

sw3d 500 363.64 41.05 37.18 54.92
triang 10,000 4207.33 212.6 148.7 121.37
zuker 2000 628.89 32.93 55.59 12.59



Electronics 2023, 12, 3579 7 of 14

Counting Knuth MCC MEA Nussinov NW SW SW3D Triang Zuker

0

50

100

150

Kernel

Sp
ee

d-
up

Pluto Traco Dapt

Figure 2. Speed-up of the original and optimized codes for the AMD EPYC 7H12.

We analyzed the AMD EPYC 7H12 scalability due to the number of threads for the
four chosen benchmarks (depicted in Figure 3). The DAPT codes are scalable; however,
for the sw kernel, better results are achieved with the Traco compiler. A growing number
of threads does not reduce the time for the TRACO codes of the Nussinov and Zuker
benchmarks. This is caused by the irregular shapes of tiles. The times for the Pluto code
executions are inferior to the rest of the results, particularly for 2d-tiled nussinov [41].

1286432168421
0

50

100

150

Threads

Ti
m

e

nussinov

Pluto Traco Dapt

1286432168421
0

20

40

60

80

100

120

Threads

Ti
m

e

knuth

Pluto Traco Dapt

Figure 3. Cont.



Electronics 2023, 12, 3579 8 of 14

1286432168421
0

20

40

60

80

100

Threads

Ti
m

e

sw

Pluto Traco Dapt

1286432168421
0

10

20

30

40

50

Threads

Ti
m

e

zuker

Pluto Traco Dapt

Figure 3. Execution times in seconds of the kernels for various numbers of threads on the AMD
7H12 machine.

For the AMD Ryzen Threadripper 3970, we evaluated both time and energy perfor-
mance. The numbers of instructions and cache misses were also considered to examine the
locality of the optimized codes, as shown in Table 5. These metrics were also gauged using
RAPL events.

Remarkable DAPT results are evident for the Nussinov kernel, which reduces the RAM
memory calls to 7.22% compared to the Traco compiler’s 19.98% and the Pluto optimizer’s
54.43%. It also increases the number of instructions per cycle to 0.57 in contrast to Traco’s
0.19 and Pluto’s 0.05. In a manner similar to the AMD 7542, the Traco compiler enables
us to achieve the best execution times for the benchmark suite, with the exception of the
nw and sw kernels. These kernels are well-optimized through the tile correction strategy.
Figure 4 illustrates energy reduction in percentages, represented as the ratio of energy
consumed by the optimized code to the energy used by the original code.

co
untin

g

knuth m
cc

m
ea

nussi
nov nw sw

sw
3d

tri
an

g
zu

ker
0

10

20

30

Kernel

En
er

gy
re

du
ct

io
n

(%
)

Pluto Traco Dapt

Figure 4. Reduction in the energy consumption on the AMD Threadripper machine.



Electronics 2023, 12, 3579 9 of 14

Table 5. Experimental study of time, energy, and locality for NPDP kernels on Threadripper 3970X.

Benchmark Compiler Serial Time (s) Time (s) Speed-Up Energy (kJ) Instr. per Cycle Cache Misses (%)

Pluto 30.68 32.71 6.31 0.76 35.94
counting Traco 1003.51 34.93 28.73 8.22 0.72 22.51

Dapt 28.77 34.88 7.30 0.77 22.37

Pluto 25.94 25.26 5.54 0.29 25.68
knuth Traco 655.36 25.07 26.14 5.35 0.26 21.81

Dapt 25.48 25.72 5.68 0.29 25.15

Pluto 755.70 2.66 50.93 1.86 49.68
mcc Traco 2007.32 110.66 18.14 24.08 0.27 47.63

Dapt 76.89 26.11 19.49 0.35 34.12

Pluto 151.87 22.56 36.83 3.17 17.86
mea Traco 3426.01 148.96 23.00 65.66 3.11 15.23

Dapt 130.53 26.25 52.99 2.98 14.02

Pluto 215.39 20.05 47.58 0.05 54.43
nussinov Traco 4319.22 81.38 53.07 15.61 0.19 19.98

Dapt 41.51 104.05 7.94 0.57 7.22

Pluto 142.39 24.22 28.03 0.44 33.94
nw Traco 3448.38 99.77 34.56 22.47 0.39 30.85

Dapt 144.45 23.87 28.91 0.37 33.64

Pluto 152.33 22.72 29.55 0.37 31.73
sw Traco 3461.01 100.52 34.43 22.90 0.39 31.54

Dapt 146.33 23.65 29.34 0.37 34.57

Pluto 17.66 13.93 3.09 1.91 4.54
sw3d Traco 245.98 22.22 11.07 3.43 1.57 5.42

Dapt 17.51 14.05 3.29 1.71 4.41

Pluto 132.28 20.40 27.37 0.96 22.58
triang Traco 2698.32 140.29 19.23 30.35 0.68 38.45

Dapt 122.93 21.95 26.64 0.91 22.55

Pluto 22.69 20.07 4.56 1.91 8.47
zuker Traco 455.37 49.08 9.28 7.66 1.71 7.17

Dapt 15.91 28.62 4.01 1.71 8.21

4. Discussion

We selected the AMD EPYC platform for our experimental study due to several reasons.
Firstly, the latest release of the Top 500 list underscores AMD’s remarkable achievements
in super-computing [42]. The exascale-class Frontier system, powered by AMD, remains
the fastest globally—an exceptional feat. AMD’s dominance is clear, as they now occupy
four of the top ten positions and a commendable 12 out of the top 20 spots on the list.
Secondly, to assess energy efficiency, we utilized the recently introduced AMD RAPL kernel
module [40]. The amd_energy module greatly aided our research.

In terms of peak performance, AMD offers two multi-threaded models: the Ryzen
Threadripper (and its Pro variant) and the EPYC processor. The EPYC platform excels
in scalability/core count, RAM density/channels, energy efficiency, and EEC support.
(Error-correcting code (EEC) memory can detect and correct data corruption. It is vital
in applications where data integrity is paramount, such as scientific computing or server
operations.) The Ryzen Threadripper, marketed as a workstation platform, boasts a higher
boost (turbo) frequency—contributing to a significant leap in single-threaded performance—
and demonstrates better availability and compatibility.

Table 6 details the characteristics of both the AMD EPYC and Ryzen Threadripper
platforms. When comparing time results for kernels on each machine, the Ryzen Threadrip-



Electronics 2023, 12, 3579 10 of 14

per 3970X is observed to surpass the EPYC 7542 using the same number of threads (64).
The most significant time reduction for kernels is achieved using the EPYC 7H12 with
128 threads, indicating the scalability of the generated codes, as shown in Figure 5. In a
comparison of energy consumption for NPDP kernel execution, the Threadripper demands
more watts during parallel code execution, as seen in Figure 6. This increased consumption
can be attributed to the Threadripper’s superior base and turbo clock speeds.

Table 6. AMD features of EPYC and Ryzen Threadripper.

Features/Machine EPYC Ryzen Threadripper

Target: Server/datacenter platform Efficient workstation platform
Characteristics: Dual CPU configuration supports

- up to 2 TB RAM in 8 channels
- doubling number of cores (up to 128)
and threads (up to 256)

Single socket supports
- up to 256 GB RAM in 4 channels
- 64 total processing cores
(and 128 threads)

Frequency: Boost/Turbo around 3.2 GHz, Boost speed of 4.3–4.5 GH
Software: Machine learning;

scientific simulations like CFD
VFX, video, and rendering; CAD;
media and entertainment

Strong points: Higher core count, scalability,
better efficiency/performance per watt,
easier cooling

Availability,
more compatible motherboards,
Windows 11 support with drivers, lower price

EEC support: Yes Only PRO version

co
untin

g

knuth m
cc

m
ea

nussi
nov nw sw

sw
3d

tri
an

g
zu

ker

0

50

100

150

200

250

300

Kernel

Ti
m

e
(s

)

EPYC 7542 Ryzen Ryzen Threadripper 3970X EPYC 7H12

Figure 5. The best execution time results on the AMD machines for the NPDP kernels.



Electronics 2023, 12, 3579 11 of 14

co
untin

g

knuth m
cc

m
ea

nussi
nov nw sw

sw
3d

tri
an

g
zu

ker

0

10

20

30

40

Kernel

En
er

gy
(k

J)

EPYC 7542 Ryzen Threadripper 3970X

Figure 6. Energy efficiency on the AMD machines for the NPDP kernels.

The NPDP benchmark suite kernels offer a useful approach for comparing various
types of parallel machines. In this paper, we aim to present a technical report comparing
compilers, pinpointing which one most effectively improves performance for the NPDP
benchmark suite. Our analysis encompasses metrics such as execution times, speed-ups,
energy efficiency, locality (represented by cache misses), and scalability; all are evaluated
using the RAPL methodology. Exceptional results were recorded for the Nussinov kernel,
where superlinear speed-up was observed due to the time–space tiling strategy. The
Dapt compiler also showcased excellent performance for the counting, mcc, and triang
benchmarks.

Overall, the most favorable results stemmed from the Dapt compiler, which registered
the shortest execution times in 6 out of 10 benchmarks for the 7H12, 8 out of 10 for the 7542,
and 7 out of 10 for the ThreadRipper 3970X. Dapt-compiled codes are scalable, energy-
efficient, and cache-friendly and achieve superlinear speed-ups; this is particularly evident
in the nussinov benchmark.

The TRACO compiler’s limitation lies in its handling of the transitive closure rela-
tion within the dependency relations graph. This can impact the irregular tiling shapes.
However, tile correction proves advantageous when the majority of tiles retain their rect-
angular form. For instance, our research observed optimal time results for the nw and sw
benchmarks across all three tested machines.

Conversely, codes compiled using the Pluto compiler occasionally underperform,
especially when the generated codes are either non-parallel (mcc) or when most of the
nested loops remain untiled (nussinov, nw, sw). Yet the ATF strategy is adept at handling
benchmarks with intricate structures featuring quadruple-nested loop nests (mea, sw3d,
zuker), primarily because it aims to uphold load-balanced and uniform tile shapes.

In summation, the polyhedral model remains the sole identified method for automatic
optimization aimed at bolstering performance for the discussed NPDP tasks. The findings
from Dapt emphasize that innovative strategies can still surpass established state-of-the-art
approaches for NPDP kernels. Future research should extend to diverse parallel machines,
with design motivations ranging from scalability and core count to boost clock rates and
sustainable computing.



Electronics 2023, 12, 3579 12 of 14

5. Conclusions

The discussed research in this paper contributes to advancing the field, particularly in
bioinformatics tasks like RNA folding, where optimized code execution plays a pivotal role
in achieving efficient computational solutions. The Dapt compiler integrates the time–space
strategy with the dependence uniformization method, producing notably efficient code
for NPDP tasks. Our evaluations highlighted superior efficiency concerning execution
time, cache utilization, and energy consumption. Moreover, these codes exhibit scalability
in relation to both problem dimensions and thread count. A distinctive merit of this
technique is its independence from the need to solve affine functions or to compute the
transitive closure of the dependence graph. The research findings are based on assessments
conducted on three distinct AMD machines and consider a range of parallel code quality
metrics.

Looking ahead, our intent is to scrutinize compilers for problems outside the NPDP
scope, with a focus on traditional benchmark implementations, giving special emphasis to
the time–space paradigm. We are also keen on verifying our experimental outcomes using
upcoming generations of both AMD Zen and Intel processors. Furthermore, our curiosity
extends to understanding the efficacy of these codes in a cluster computing environment,
specifically within distributed memory architectures and the message-passing model.

Author Contributions: Conceptualization and methodology, M.P. and M.G.; software, M.G.; vali-
dation, M.P.; investigation, M.P. and M.G.; resources, M.P.; data curation, M.G.; writing—original
draft preparation, M.P. and M.G.; writing—review and editing, M.P. and M.G.; visualization, M.P.;
supervision, M.P. and M.G.; project administration, M.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Source codes to reproduce all the results described in this paper can be
found at the following: https://github.com/markpal/NPDP_Bench (accessed on 1 August 2023).

Acknowledgments: We would like to thank Jarosław Fastowicz, Przemysław Mazurek, and Krzysztof
Okarma from the Faculty of Electrical Engineering at the West Pomeranian University of Technology
in Szczecin for providing the AMD ThreadRipper 3970X machine for the research of this article, as
well as for their expertise in HPC processors.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

NPDP Non-serial polyadic dynamic programming
SW Smith–Waterman
NW Needleman–Wunsch
ATF Affine Transformation Framework
MEA Prediction of maximum expected accuracy
RNA Ribonucleic acid
DAPT Dependence Approximation Program Transformation
ECC Error correction code

References
1. Mullapudi, R.T.; Bondhugula, U. Tiling for Dynamic Scheduling. In Proceedings of the 4th International Workshop on Polyhedral

Compilation Techniques, Vienna, Austria, 20–22 January 2014.
2. Wonnacott, D.; Jin, T.; Lake, A. Automatic tiling of “mostly-tileable” loop nests. In Proceedings of the 5th International Workshop

on Polyhedral Compilation Techniques, Amsterdam, The Netherlands, 19–21 January 2015.
3. Chowdhury, R.; Ganapathi, P.; Tschudi, S.; Tithi, J.J.; Bachmeier, C.; Leiserson, C.E.; Solar-Lezama, A.; Kuszmaul, B.C.; Tang,

Y. Autogen: Automatic Discovery of Efficient Recursive Divide-8-Conquer Algorithms for Solving Dynamic Programming
Problems. ACM Trans. Parallel Comput. 2017, 4, 4. [CrossRef]

https://github.com/markpal/NPDP_Bench
http://doi.org/10.1145/3125632


Electronics 2023, 12, 3579 13 of 14

4. Bielecki, W.; Blaszynski, P.; Poliwoda, M. 3D parallel tiled code implementing a modified Knuth’s optimal binary search tree
algorithm. J. Comput. Sci. 2021, 48, 101246. [CrossRef]

5. Needleman, S.B.; Wunsch, C.D. A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two
Proteins. In Molecular Biology; Elsevier: Amsterdam, The Netherlands, 1989; pp. 453–463. [CrossRef]

6. Xue, J. Loop Tiling for Parallelism; Kluwer Academic Publishers: Norwell, MA, USA, 2000.
7. Palkowski, M.; Bielecki, W. Parallel tiled Nussinov RNA folding loop nest generated using both dependence graph transitive

closure and loop skewing. BMC Bioinform. 2017, 18, 290. [CrossRef] [PubMed]
8. Bondhugula, U.; Hartono, A.; Ramanujam, J.; Sadayappan, P. A practical automatic polyhedral parallelizer and locality optimizer.

SIGPLAN Not. 2008, 43, 101–113. [CrossRef]
9. Bielecki, W.; Palkowski, M. A Parallelizing and Optimizing Compiler-TRACO. 2013. Available online: http://traco.sourceforge.

net (accessed on 1 August 2023).
10. Bielecki, W.; Poliwoda, M. Automatic Parallel Tiled Code Generation Based on Dependence Approximation. In Parallel Computing

Technologies, Proceedings of the 16th International Conference, PaCT 2021, Kaliningrad, Russia, 13–18 September 2021; Malyshkin, V., Ed.;
Springer International Publishing: Cham, Switzerland, 2021; pp. 260–275.

11. Palkowski, M.; Bielecki, W. NPDP benchmark suite for the evaluation of the effectiveness of automatic optimizing compilers.
Parallel Comput. 2023, 116, 103016. [CrossRef]

12. Schone, R.; Ilsche, T.; Bielert, M.; Velten, M.; Schmidl, M.; Hackenberg, D. Energy Efficiency Aspects of the AMD Zen 2
Architecture. In Proceedings of the 2021 IEEE International Conference on Cluster Computing (CLUSTER), Portland, OR, USA,
7–10 September 2021. [CrossRef]

13. Kelly, W.; Maslov, V.; Pugh, W.; Rosser, E.; Shpeisman, T.; Wonnacott, D. New User Interface for Petit and Other Extensions. User
Guide 1996, 1, 996.

14. Verdoolaege, S. Integer Set Library—Manual. Technical Report. 2011. Available online: https://compsys-tools.ens-lyon.fr/iscc/
isl.pdf (accessed on 1 August 2023).

15. Nussinov, R.; Pieczenik, G.; Griggs, J.R.; Kleitman, D.J. Algorithms for loop matchings. Siam J. Appl. Math. 1978, 35, 68–82.
[CrossRef]

16. Zuker, M.; Stiegler, P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information.
Nucleic Acids Res. 1981, 9, 133–148. [CrossRef] [PubMed]

17. Palkowski, M.; Bielecki, W. Parallel Tiled Codes Implementing the Smith-Waterman Alignment Algorithm for Two and Three
Sequences. J. Comput. Biol. 2018, 25, 1106–1119. [CrossRef] [PubMed]

18. Freiburg Bioinformatics Group. Freiburg RNA Tools, Teaching RNA Algorithms. 2022. Available online: https://rna.informatik.
uni-freiburg.de/teaching (accessed on 1 August 2023).

19. McCaskill, J.S. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers
1990, 29, 1105–1119. [CrossRef] [PubMed]

20. Lu, Z.J.; Gloor, J.W.; Mathews, D.H. Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA
2009, 15, 1805–1813. [CrossRef] [PubMed]

21. Knuth, D.E. Optimum binary search trees. Acta Inform. 1971, 1, 14–25. [CrossRef]
22. Palkowski, M.; Bielecki, W. Accelerating Minimum Cost Polygon Triangulation Code with the TRACO Compiler. In Proceedings

of the Communication Papers of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018,
Poznań, Poland, 9–12 September 2018; pp. 111–114. [CrossRef]

23. The Polyhedral Benchmark Suite. 2022. Available online: http://www.cse.ohio-state.edu/pouchet/software/polybench/
(accessed on 1 August 2023).

24. McMahon, F.H. The Livermore Fortran Kernels: A Computer Test of the Numerical Performance Range; Technical Report UCRL-53745;
Lawrence Livermore National Laboratory: Livermore, CA, USA, 1986.

25. NAS Benchmarks Suite. 2013. Available online: http://www.nas.nasa.gov (accessed on 1 August 2023).
26. Standard Performance Evaluation Corporation (SPEC). SPEChpc 2021 Benchmark Suites. 2021. Available online: https:

//www.spec.org/hpc2021/ (accessed on 1 August 2023).
27. Chen, Z.; Gong, Z.; Szaday, J.J.; Wong, D.C.; Padua, D.; Nicolau, A.; Veidenbaum, A.V.; Watkinson, N.; Sura, Z.; Maleki, S.; et al.

Lore: A loop repository for the evaluation of compilers. In Proceedings of the 2017 IEEE International Symposium on Workload
Characterization (IISWC), Seattle, WA, USA, 1–3 October 2017; pp. 219–228.

28. UTDSP Benchmark Suite. 2012. Available online: http://www.eecg.toronto.edu/corinna/DSP/infrastructure/UTDSP.html
(accessed on 1 August 2023).

29. Pozo, R.; Miller, B. SciMark 4.0. National Institute of Standards and Technology (NIST). 2018. Available online: https:
//math.nist.gov/scimark2/ (accessed on 1 August 2023).

30. Bondhugula, U. Compiling affine loop nests for distributed-memory parallel architectures. In Proceedings of the SC13: Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, 17–22 November
2013; ACM: New York, NY, USA, 2013; SC ’13, pp. 33:1–33:12. [CrossRef]

31. Zhao, C.; Sahni, S. Cache and energy efficient algorithms for Nussinov’s RNA Folding. BMC Bioinform. 2017, 18, 518. [CrossRef]
32. Li, J.; Ranka, S.; Sahni, S. Multicore and GPU algorithms for Nussinov RNA folding. BMC Bioinform. 2014, 15, S1. [CrossRef]

http://dx.doi.org/10.1016/j.jocs.2020.101246
http://dx.doi.org/10.1016/b978-0-12-131200-8.50031-9
http://dx.doi.org/10.1186/s12859-017-1707-8
http://www.ncbi.nlm.nih.gov/pubmed/28578661
http://dx.doi.org/10.1145/1379022.1375595
http://traco.sourceforge.net
http://traco.sourceforge.net
http://dx.doi.org/10.1016/j.parco.2023.103016
http://dx.doi.org/10.1109/cluster48925.2021.00087
https://compsys-tools.ens-lyon.fr/iscc/isl.pdf
https://compsys-tools.ens-lyon.fr/iscc/isl.pdf
http://dx.doi.org/10.1137/0135006
http://dx.doi.org/10.1093/nar/9.1.133
http://www.ncbi.nlm.nih.gov/pubmed/6163133
http://dx.doi.org/10.1089/cmb.2018.0006
http://www.ncbi.nlm.nih.gov/pubmed/29993269
https://rna.informatik.uni-freiburg.de/teaching
https://rna.informatik.uni-freiburg.de/teaching
http://dx.doi.org/10.1002/bip.360290621
http://www.ncbi.nlm.nih.gov/pubmed/1695107
http://dx.doi.org/10.1261/rna.1643609
http://www.ncbi.nlm.nih.gov/pubmed/19703939
http://dx.doi.org/10.1007/BF00264289
http://dx.doi.org/10.15439/2018F8
http://www.cse.ohio-state.edu/pouchet/software/polybench/
http://www.nas.nasa.gov
https://www.spec.org/hpc2021/
https://www.spec.org/hpc2021/
http://www.eecg.toronto.edu/corinna/DSP/infrastructure/UTDSP.html
https://math.nist.gov/scimark2/
https://math.nist.gov/scimark2/
http://dx.doi.org/10.1145/2503210.2503289
http://dx.doi.org/10.1186/s12859-017-1917-0
http://dx.doi.org/10.1186/1471-2105-15-S8-S1


Electronics 2023, 12, 3579 14 of 14

33. Frid, Y.; Gusfield, D. An improved Four-Russians method and sparsified Four-Russians algorithm for RNA folding. Algorithms
Mol. Biol. 2016, 11, 22. [CrossRef] [PubMed]

34. Tchendji, V.K.; Youmbi, F.I.K.; Djamegni, C.T.; Zeutouo, J.L. A Parallel Tiled and Sparsified Four-Russians Algorithm for
Nussinov’s RNA Folding. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 20, 1795–1806. [CrossRef] [PubMed]

35. OpenMP Architecture Review Board. OpenMP Application Program Interface, Version 4.0. 2012. Available online: https:
//www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf (accessed on 1 August 2023).

36. Caamaño, J.M.M.; Selva, M.; Clauss, P.; Baloian, A.; Wolff, W. Full runtime polyhedral optimizing loop transformations with the
generation, instantiation, and scheduling of code-bones. Concurr. Comput. Pract. Exp. 2017, 29, e4192. [CrossRef]

37. Baskaran, M.M.; Hartono, A.; Tavarageri, S.; Henretty, T.; Ramanujam, J.; Sadayappan, P. Parameterized tiling revisited. In
Proceedings of the 8th annual IEEE/ACM International Symposium on Code Generation and Optimization, Toronto, ON, Canada,
24–28 April 2010; ACM: New York, NY, USA, 2010; CGO ’10, pp. 200–209.

38. Bielecki, W.; Palkowski, M.; Poliwoda, M. Automatic code optimization for computing the McCaskill partition functions. In
Proceedings of the Annals of Computer Science and Information Systems, Sofia, Bulgaria, 4–7 September 2022. [CrossRef]

39. Mahjoub, S.; Golsorkhtabaramiri, M.; Amiri, S.S.S.; Hosseinzadeh, M.; Mosavi, A. A New Combination Method for Improving
Parallelism in Two and Three Level Perfect Nested Loops. IEEE Access 2022, 10, 74542–74554. [CrossRef]

40. Chatradhi, N.K. Kernel Driver Amd_Energy. 2023. Available online: https://github.com/amd/amd_energy (accessed on 1
August 2023).

41. Palkowski, M. Finding Free Schedules for RNA Secondary Structure Prediction. In Artificial Intelligence and Soft Computing,
Proceedings of the 15th International Conference, ICAISC 2016, Zakopane, Poland, 12–16 June 2016; Rutkowski, L., Korytkowski, M.,
Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany,
2016; Part II, pp. 179–188.

42. Grabein, A.; Bhaskaran, S. Latest Top500 List Highlights World’s Fastest and Most Energy Efficient Supercomputers Are Powered
by AMD. 2023. Available online: https://ir.amd.com/news-events/press-releases/detail/1131/latest-top500-list-highlights-
worlds-fastest-and-most (accessed on 11 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s13015-016-0081-9
http://www.ncbi.nlm.nih.gov/pubmed/27499801
http://dx.doi.org/10.1109/TCBB.2022.3216826
http://www.ncbi.nlm.nih.gov/pubmed/36279354
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://dx.doi.org/10.1002/cpe.4192
http://dx.doi.org/10.15439/2022f4
http://dx.doi.org/10.1109/ACCESS.2022.3190483
https://github.com/amd/amd_energy
https://ir.amd.com/news-events/press-releases/detail/1131/latest-top500-list-highlights-worlds-fastest-and-most
https://ir.amd.com/news-events/press-releases/detail/1131/latest-top500-list-highlights-worlds-fastest-and-most

	Introduction
	NPDP Code Optimization
	Results
	Discussion
	Conclusions
	References

