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Abstract: Research has shown that neural machine translation performs poorly on low‑resource and
specific domain parallel corpora. In this paper, we focus on the problem of neural machine transla‑
tion in the field of electrical engineering. To address the mistranslation caused by the Transformer
model’s limited ability to extract feature information from certain sentences, we propose two new
models that integrate a convolutional neural network as a feature extraction layer into the Trans‑
former model. The feature information extracted by the CNN is fused separately in the source‑side
and target‑side models, which enhances the Transformer model’s ability to extract feature informa‑
tion, optimizes model performance, and improves translation quality. On the dataset of the field
of electrical engineering, the proposed source‑side and target‑side models improved BLEU scores
by 1.63 and 1.12 percentage points, respectively, compared to the baseline model. In addition, the
two models proposed in this paper can learn rich semantic knowledge without relying on auxil‑
iary knowledge such as part‑of‑speech tagging and named entity recognition, which saves a certain
amount of human resources and time costs.

Keywords: neuralmachine translation; feature information; convolutional neural network; electrical
engineering; low resource

1. Introduction
Neural machine translation (NMT) aims to use computers to translate one language

into another, and it plays a critical role in various scientific fields. Since 2014, NMT has de‑
veloped rapidly, from recursive neural networks [1], to convolutional neural networks [2],
and then to the Transformer neural network based on self‑attention [3], which has achieved
good results. Among several NMT models, Transformer performs the best, both in terms
of efficiency and translation quality.

As various scientific fields continue to develop, the demand forNMT is also increasing
rapidly. Different professional fields have different professional corpora, and some fields
have very limited parallel corpora resources. Traditional NMT cannot meet the translation
needs of some professional fields. The English–Chinese corpus in the field of electrical en‑
gineering is a typical low‑resource corpus. The traditional Transformer does not perform
well in the English–Chinese corpus in the field of electrical engineering, often causing mis‑
translation or misinterpretation of certain feature information in sentences, which makes
it difficult for personnel in the electrical industry to use professional equipment and read
professional English literature. The field of electrical engineering plays a crucial role in the
development of many scientific fields. Therefore, it is essential to study how to design an
efficient and stable model on a small‑scale parallel corpus to improve the current situation
of NMT in the field of electrical engineering.
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Low‑resource neural machine translation has long been an area of interest in natu‑
ral language processing, and many researchers have made significant efforts to address
this problem. Common improvement methods include data augmentation, introducing
prior knowledge, and structural improvements. Tonja used monolingual source‑side data
to improve low‑resource neural machine translation and achieved significant results on
the Wolaytta–English corpus, further fine‑tuning the best‑performing self‑learning model
which resulted in +1.2 and +0.6 BLEU score improvements for Wolaytta–English and
English–Wolaytta translations, respectively [4]. Mahsuli,MMproposed amethod tomodel
the length of a target (translated) sentence given the source sentence using a deep re‑
current neural structure—and apply it to the decoder side of neural machine translation
systems to generate translation sentences with appropriate lengths which have a better
quality [5]. Pham, NL; Nguyen, V; and Pham, TV used back‑translation to enhance the
parallel database of English–Vietnamese machine translation, significantly improving the
translation quality of the model [6]. Laskar, SR improved English–Assamese machine
translation through pre‑training models, and the best MNMT model, Transformer
(transliteration‑based phrase‑augmentation), attained scores of +0.58, +1.86 (BLEU) [7].
Park, YH enhanced low‑resource neuralmachine translation data through EvalNet and the
NMT systems for English–Korean and English–Myanmar, built with the guidance of Eval‑
Net, and achieved 0.1~0.9 gains in BLEU scores [8]. While these methods have achieved
good results, they often require significant time and cost in the data preprocessing stage
and have certain drawbacks. Dhar, P introduced bilingual dictionaries to improve Sinhala–
English, Tamil–English, and Sinhala–Tamil translation and introduced a weighted mecha‑
nism based on small‑scale bilingual dictionaries to improve the measurement of semantic
similarity between sentences and documents [9]. Gong, LC achieved good results on sev‑
eral low‑resource datasets by guiding self‑attention with syntactic graphs [10]. Hlaing,
ZZ added an additional encoder to the transformer model to introduce part‑of‑speech tag‑
ging, improving Thai‑to‑Myanmar, Myanmar‑to‑English, and Thai‑to‑English translation,
outperforming such models developed through the existing Thai POS tagger in terms of
BLEU scores (+0.13) and chrF scores (+0.47) for Thai‑to‑Myanmar, and BLEU scores (+0.75)
and chrF scores (+0.72) for Myanmar‑to‑Thai translation pairs [11]. Considering that con‑
volutional neural networks can extract feature information from sentences, this paper in‑
tegrates a convolutional neural network as a feature extraction layer into the Transformer
model. This method can introduce feature information into the Transformer model with‑
out additional processing of the corpus, improving the translation quality of the Trans‑
former model while also saving research time and costs. The main contributions of this
article are as follows:

In order to address the issue of feature informationmisinterpretation and omission in
the corpus of electrical engineering with Transformer, a method is proposed to integrate a
convolutional neural network as a feature extraction layer into Transformer, which effec‑
tively improves the translation accuracy of the model.

Two newmodel structures are proposed based on Transformer, and the specific struc‑
tures of the two models are introduced in Sections 3 and 4, respectively.

Comparative experiments and ablation experiments are designed to verify the perfor‑
mance of the two models proposed in this paper on the dataset of electrical engineering,
and their performance is comparedwith the baseline model, demonstrating that the Trans‑
former model integrated with a convolutional neural network has a better performance.

2. Model
This paper adopts the Transformer model proposed by Google’s machine translation

team in 2017 as the baselinemodel, whichmainly consists of four parts: input layer, output
layer, encoder, and decoder (the structure of the baseline model [3] is shown in Figure 1).
Since its introduction, Transformer has shown an outstanding performance in many nat‑
ural language‑processing tasks. The models proposed in this paper are all based on the
baseline model but have improved upon it. Considering the weak ability of Transformer
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to extract local feature information, a convolutional neural network can be used to extract
feature information, which can compensate for the shortcomings of Transformer. In this
paper, we improve the traditional Transformer structure by integrating a convolutional
neural network composed of pooling and convolutional layers as a feature information ex‑
traction layer into Transformer. We fuse the feature information separately at the source
language side and target language side and obtain two new models: Source‑Side‑CNN‑
Transformer (SSCT) and Target‑Side‑CNN‑Transformer (TSCT).Electronics 2023, 12, x FOR PEER REVIEW 4 of 17 

 

 

 

Figure 1. Baseline model. Figure 1. Baseline model.

The structure of SSCT is shown in Figure 2. Compared to the baseline model, SSCT
adds a feature information extraction layer on the left side of the encoder, which consists
of convolutional and pooling layers. Its purpose is to perform local feature extraction on
the source language vectors after passing through the embedding layer. In order to inte‑
grate the convolutional neural network as the feature extraction layer into the Transformer
model, SSCT connects the convolutional layer with the embedding layer of the baseline
model, facilitating the convolutional layer to extract features from the source language
vectors. In addition, a multi‑head attentionmechanism is added to the entire model frame‑
work, allowing the pooling layer of the feature extraction layer to be associated with the
encoder part of the baseline model, thereby fully integrating the feature extraction layer
into the Transformer model. The role of the multi‑head attention mechanism between the
convolutional neural network and the source language encoder is to fuse the locally ex‑
tracted feature vectors from the feature extraction layer with the output vectors from the
encoder. The fused vector is then used as the input to the decoder’s context multi‑head
attention mechanism, which is associated with the contextual information in the decoder.
This enables the decoder to effectively learn the relationship between global information
and feature information.
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Figure 2. Source‑Side‑CNN‑Transformer.

TSCT and SSCT share the same structure for the feature information extraction layer
but differ in their integration methods. As shown in Figure 3, TSCT also connects the con‑
volutional layer to the embedding layer. However, in the second sub‑layer of the decoder,
an additional multi‑head attention mechanism is introduced (on the left side of the global
attention mechanism). This allows the pooling layer of the feature extraction layer to be
connected to the global attention of the decoder, enabling it to receive feature information.
The attention calculation is performed between the feature information and the internal
information of the decoder, allowing the decoder to learn the relationship between feature
information and global information comprehensively. This integration reduces translation
errors, mistranslations, and other phenomena that occur in the Transformer model.
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3. Source‑Side‑CNN‑Transformer
3.1. Embedding and Positional Encoding

The Transformer model cannot directly process text sequences; thus, it needs to map
raw data with high dimensions to low‑dimensional data through embedding layers, con‑
verting text into vector form so that the data can be processed by neural networks [12,13].
For any language, the position and arrangement of words in a sentence are very important.
They are not only a part of the grammatical structure of the sentence but also important
concepts for expressing semantics. If the position and sequence of a word in a sentence are
different, the meaning of the entire sentence will deviate. The Transformer model itself
does not have the ability to learn sequential information like an RNN, so it needs a po‑
sitional encoding layer to combine the sequential information with the word vectors and
input them to the transformer, enabling the model to learn sequential information.

The twomodels proposed in this article have not made any changes to the embedding
layer or positional encoding layer and still use the baseline model’s embedding layer and
positional encoding layer [3]. Defining the source language sequence after
word segmentation as X = [x1, x2, x3, . . . , xn], the target language sequence is defined
as T = [t1, t2, t3, . . . , tn], and the numerical identifier is defined as I = [i1, i2, i3, . . . , in].
Taking the embedding process of the source language as an example (the embedding pro‑
cess of the source language and the target language are the same), after linear transforma‑
tion (Equation (1)), it is represented as Ex, and then the position information of each word
(Equation (2)) is added to the embedding layer to obtain a result with positional informa‑
tion (Equation (3)):

Ex = W(I) (1)

Pi(pos, 2i) = sin(pos/100002i/dim)
Pi(pos, 2i + 1) = cos(pos/100002i/dim)

(2)

E′
x = Pi + Ex (3)

where I is the numerical identifier, W() represents the linear transformation, Ex is the
result after linear transformation, dim is the word vector dimension, Pi is the positional
information, and E′

x is the word vector with positional information.

3.2. Encoder
In this section, no changes have beenmade to the encoder of the baselinemodel, which

is composed of N = 6 independent layers stacked together. Each encoder contains two sub‑
layers: multi‑head self‑attention mechanism and a feedforward neural network. Each sub‑
layer is followed by a residual network and a normalization layer. The encoder takes the
source language vectors processed by the embedding layer as the input for the multi‑head
self‑attentionmechanism and performs attention calculation and normalization processing
on it (Equation (4)). Finally, the output of the encoder is obtained through the feedforward
neural network (Equation (5)).

Ssel f−attention = Multihead(Si−1, Si−1, Si−1) (4)

Sout = Addnorm(FNN(Ssel f−attention)) (5)

Si−1 represents the output of the i‑th layer of the encoder. The output of each layer is
used as the input for the next layer. The input for the first layer of the encoder is the embed‑
ded source language vector. Multihead() represents multi‑head self‑attention mechanism,
FNN() represents the feedforward neural network, and Addnorm() represents the resid‑
ual connection and layer normalization.

3.3. Feature Extraction Layer
Convolutional neural networks are generally used for image classification and object

detection in the field of computer vision. However, since the proposal of Text CNN in



Electronics 2023, 12, 3604 6 of 15

2014 [14], there have been more and more works applying convolutional neural networks
to natural language processing tasks. Considering the strong ability of convolutional neu‑
ral networks to extract local features, which can compensate for the weak ability of Trans‑
former to extract local information, this article selects a convolutional neural network com‑
posed of a convolutional layerwith a height of 3 and awidth of 512 and amax‑pooling layer
with a height of 2 and a width of 1 as the feature extraction layer of the model (Figure 4).
The parameters of the convolution kernel is shown in Table 1. The role of the convolutional
layer is to extract feature information from the sentence, while the role of the max‑pooling
layer is to select the extracted feature information from the convolutional layer.
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Table 1. The parameters of the convolution kernel.

Parameters

CNN_height 3
CNN_width 512
Input_channel 1
Output_channel 1

Pooling Max_pooling
Pooling_height 2
Pooling_width 1
Act_function ReLU
Num_fliter 51,200

3.3.1. Convolutional Layer
The input of the convolutional layer is the sentence of L which is represented as the

L ∗ dim vector matrix M. The convolution is composed of L ∗ dim filters, each of which
extracts features from the corresponding vector matrix, producing feature Bm

d (where the
maximum sentence length L is 100 and dim is 512):

Bm
d = ReLU( fm ∗ Md:2∗dim) (6)

where M represents the vector matrix, ReLU is the activation function, fm represents the
filters and L represents the maximum sentence length. Each filter extracts features from
windows of each input matrix, producing feature vectors Bm =

{
Bm

1 , Bm
2 , Bm

3 , . . . , Bm
dim) ,

and then L ∗ dim filters are used to process m sequentially, producing feature map C:

C = {C1, C2, C3, . . . C2∗dim} (7)

where Bm represents the feature vectors and C represents the feature map.

3.3.2. Pooling Layer
The pooling layer first selects themaximumvalue in the adjacent featuremaps pm, and

then normalizes the selected feature maps P using the tanh function to obtain the feature
information Cout:

pm = Max{C2∗dim−1, C2∗dim} (8)

P = {P1, P2, P3, . . . , Pdim} (9)

Cout = {C1, C2, C3, . . . C2∗dim} (10)
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The reason for selecting the max‑pooling layer is because we believe that its mecha‑
nism can extract more precise feature information and reduce the impact of useless infor‑
mation. If wewere to use the average pooling layer, the extracted informationmay contain
more useless information, leading to the poor performance of the model. To validate our
idea, we conducted a comparative experiment between models with a max‑pooling layer
and an average pooling layer. The experimental results (Table 2) demonstrated that the
model with the max‑pooling layer had a better performance. The relevant parameter set‑
tings and themodels used for the comparative experiments on pooling layers are described
in Sections 5.1 and 5.2 of the manuscript.

Table 2. Comparative experiment of pooling layer.

Model BLEU/% σ

SSCT‑Max‑Pooling 35.88 –
SSCT‑Avg‑Pooling 35.35 −0.53
TSCT‑Max‑pooling 35.37 –
TSCT‑Avg‑Pooling 34.86 −0.51

3.4. Attention Fusion Layer
In this article, the context multi‑head attention mechanism is used to fuse all of the

outputs of the encoder and the output of the feature extraction layer, which allows for
sufficient correlation between the local feature information extracted by the convolutional
neural network and the vectors output by the encoder. The calculation process of the fusion
is shown in Equation (11).

Fcontext−attention = Addnorm(MultiHead(Sout, Cout, Cout)) (11)

Fout, Sout, and Cout represent the output of the attention fusion layer, encoder, and fea‑
ture extraction layer, respectively. Influenced by previous works [15–17],
Sout and Fcontext−attention are concatenated along the last dimension of Sout to calculate the
balancing factor:

y = Sigmoid([Sout : Fcontext−attention],dim = −1) (12)

where y is the balancing factor, Sigmoid is the activation function, and the value of y is
(0~1). Finally, a simple weight‑based sum operation is adopted for the calculation of the
attention fusion layer output:

Fout = y ∗ Sout + (1 − y) ∗ Fcontext−attention (13)

3.5. Decoder
The decoder is similar to the encoder, consisting of N = 6 independent layers. How‑

ever, each layer of the decoder has an additional sub‑layer, which is composed of a multi‑
head attentionmechanism, residual connections, and normalization. This sub‑layer is used
to receive outputs from the encoder. The calculation process of multi‑head attention in the
first sub‑layer of the decoder is shown in Equation (14):

Tsel f−decoder = Addnorm(Multihead(Ti−1, Ti−1, Ti−1)) (14)

Ti−1 represents the output of the i‑th layer of the decoder. Each layer of the decoder
uses the output of the previous decoder layer as its input. The input of the first decoder
layer is the target language after embedding. In the second sub‑layer, Tsel f−decoder and Fout
are used as inputs for the context multi‑head attention calculation (Equation (15)). After
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that, the output is passed through a feedforward neural network to obtain the final output
of the decoder (Equation (16)).

Tcontext−attention = Addnorm(Multihead(Tsel f−decoder, Fout, Fout)) (15)

Tout = Addnorm(FNN(Tcontext−attention)) (16)

4. Target‑Side‑CNN‑Transformer
Due to the fact that the embedding layer and feature extraction layer of TSCT are the

same as those of SSCT, this chapter will not introduce these two parts in detail. Readers
can refer to Sections 3.1 and 3.3 of this paper for specific details.

4.1. Encoder
The encoder used in the TSCT model is consistent with the encoders used in the base‑

line model and SSCT. Therefore, its structure will not be described in detail in this section
(please refer to Section 3.2 for specific details on the calculation process of the TSCT en‑
coder). The calculation process of the TSCT encoder is as follows.

Ssel f−attention = Multihead(Si−1, Si−1, Si−1) (17)

Sout = Addnorm(FNN(Ssel f−attention)) (18)

Si−1 represents the output of the i‑th layer of the encoder. The output of each layer
is used as the input for the next layer. The input for the first layer of the encoder is
the embedded source language vector, and Sout represents the total output of the source
language encoder.

4.2. Decoder
Since the feature information is the input to the decoder in the TSCT model, a CNN‑

Decoder attention mechanism needs to be added to the decoder unit of the baseline model
to receive the output from the feature information extraction layer, facilitating further fu‑
sion of the feature information and global information. The improved decoder unit has
three sub‑layers: a self‑attention sub‑layer, a multi‑head attention sub‑layer composed
of Encoder–Decoder and CNN‑Decoder, and a fully connected feedforward network sub‑
layer.

The specific structure of the decoder is shown in Figure 5. The attention mechanisms
in the TSCT model are Self‑Decoder, Encoder–Decoder, and CNN‑Decoder. The internal
structures and calculation methods of these three attention mechanisms are the same, and
their main difference lies in the query vector Q and key–value pairs K and V:Electronics 2023, 12, x FOR PEER REVIEW 11 of 17 
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The role of Self‑Decoder is to learn the target information fully; thus, its query vector
Q, key K, and value V are all source sentence vectors after embedding. The calculation
process is shown in Equation (19).

Tsel f−decoder = Addnorm(Multihead(Ti−1, Ti−1, Ti−1)) (19)

Encoder–Decoder is mainly used to transmit encoder information to the decoder, so
that better weight allocation can be achieved based on the target information for the source
language representation vector obtained by the encoder during the decodingprocess. There‑
fore, the query vector Q of Encoder–Decoder is the output of Self‑Decoder, and the key–
value pairs K and V still come from the output vectors of the encoder and have the same
numerical values. The calculation process is shown in the Equation (20).

Tencoder−decoder = Addnorm(Multihead(Tsel f−decoder, Sout, Sout)) (20)

The main role of CNN‑Decoder is to transmit feature information to the decoder, so
that the target information in the decoder can be fully associated with the feature informa‑
tion. Therefore, the query vector Q of CNN‑Decoder is the output of Self‑Decoder, and the
K and V are the outputs of the feature information extraction layer.

Tcnn−decoder = Addnorm(Multihead(Tsel f−decoder, Cout, Cout)) (21)

By using a balancing mechanism to control the information flow [15–17], more valu‑
able information can be obtained. In this paper, Tencoder−decoder and Tcnn−decoer are concate‑
nated on the last dimension of Tencoder−decoder to calculate the balancing coefficient y.

y = Sigmoid([Tencoder−decoder : Tcnn−decoer],dim = −1) (22)

A simple summation operation is performed to obtain Tout:

Tout = y ∗ Tencoder−decoder + (1 − y) ∗ Tcnn−decoer (23)

5. Experiment
In this part, we conducted experiments and research about the two models proposed

in this paper on the Chinese–English parallel corpus in the field of electrical engineering.
We compared the models proposed in this paper with the baseline model and conducted
ablation experiments on the two models proposed in this paper.

5.1. Dataset
All the datasets used in this paper are Chinese–English parallel corpora in the field

of electrical engineering, mainly collected from certain Chinese and English materials in
the field of electrical engineering, including several professional books [18–21], equipment
manuals, literature, and some technical forums and official websites related to electrical
engineering. The training set used in the experiment has about 190,000 bilingual parallel
corpora, and the validation set and test set each have 2000 bilingual parallel sentence pairs.

5.2. Parameter Settings
We used the open‑source system OpenNMT [22] to implement the baseline model

Transformer. In terms of data processing, the sentence length in the corpus was limited to
within 100, that is, sentences longer than 100were filtered out, and the vocabulary size was
set to 44,000. Chinese segmentation was conducted using Jieba, and English segmentation
was conducted using NLTK. During the training process, the dimension of word vectors
and the hidden layer dimension of the encoder and decoder were both set to 512. The
batch size was set to 64, and the Adam optimization algorithmwas used. The dropout rate
was set to 0.1. A total of 25,000 steps were trained in this experiment, and the model was
validated every 1000 steps. The beam search method was used in decoding, with a beam
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size of 5 and other parameters using OpenNMT’s default parameters. All parameters in
the experiment were kept consistent (Table 3), and the translation results were evaluated
using BLEU [23]. All experiments were conducted on the same GPU device, specifically
the RTX‑3090 model.

Table 3. Experimental parameters.

Parameters

Baseline Transformer
Word_max_length 100

Hidden_size 512
Word_vec_size 512

dropout 0.1
Optimizer Adam

Learning_rate 2
Label_smoothing 0.1

Beam_size 5
Enc_layer 6
Dec_layer 6

Transformer_ff 2048
Src_vocab_size 44,000
Tgt_vocab_size 44,000
Batch_size 64
Train_steps 25,000
Vaild_steps 1000
Report_every 100

seed 1234
adam_beta2 0.998

5.3. Experiment and Analysis
5.3.1. Source‑Side Model Experiment

In this section, we conducted comparative experiments between the Source‑Side‑CNN‑
Transformer and the baseline model. The Source‑Side‑CNN‑Transformer integrates the
output of the feature extraction layer with the output of the encoder through a multi‑head
attentionmechanism, and then gates the fused vector with the residual‑connected encoder
output. The obtained vector is used as the input of the decoder’s multi‑head attention
mechanism and associated with the target information. The experimental results of this
method are shown in Table 4, and the improved model has a 1.63% higher BLEU score
than the baseline model.

Table 4. Source‑side experiment.

Model BLEU/% σ

Baseline 34.25 –
SSCT 35.88 +1.63

This experiment shows that after the fusion of vectors with local feature information
is completed at the source language end, it can effectively improve the translation perfor‑
mance of Transformer and mitigate its weakness in extracting local feature information.

5.3.2. Target‑Side Model Experiment
In this section, we conducted comparative experiments between TSCT and the base‑

line model. This model integrates the output of the feature extraction layer into the target
end of Transformer, enabling it to learn the feature information (Table 5).
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Table 5. Target‑side experiment.

Model BLEU/% σ

Baseline 34.25 –
TSCT 35.37 +1.12

The experimental results show that fusing local information with global information
in the target end can improve the performance of Transformer.

5.3.3. Ablation Experiment
To prove that the Transformer integrated with convolutional neural network has a

better performance, this section conducted comparative experiments between the origi‑
nal models proposed in Sections 3 and 4 and the models with the convolutional neural
network removed (SST and TST represent the models after removing the feature extrac‑
tion layer from SSCT and TSCT, respectively). The experimental results are as shown in
Tables 6 and 7.

Table 6. SSCT‑ablation experiment.

Model BLEU/% σ

SSCT 35.88 –
SST 34.79 −1.09

Table 7. TSCT‑ablation experiment.

Model BLEU/% σ

TSCT 35.37 –
TST 34.50 −0.87

5.3.4. Comparison Experiment
In order to further demonstrate the effectiveness of our approach, comparative exper‑

iments were conducted on an electrical engineering dataset with our model and baseline
models such as Sentence‑level [24], Key Information Fusion [25], Pos Fusion [11], and Prior
Knowledge [26]. The experimental conditions were kept consistent, and the results are
shown in Table 8.

Table 8. The BLEU values of comparison experiments.

Model BLEU/% Time/min σ

Baseline 34.25 141 –
Sentence‑level 34.93 203 +0.68

Key Information Fusion 34.97 479 +0.72
Pos Fusion 35.27 471 +1.02

SSCT 35.88 179 +1.63
Prior Knowledge 34.82 486 +0.57

Sentence‑level: Proposed in 2019 by Kehai Chen et al., this method uses a convolu‑
tional neural network to extract sentence‑level contextual information and integrates it
into the Transformer model to improve translation performance.

Key Information Fusion: Proposed in 2023 by Shije Hu et al., this method utilizes a
dual‑encoder structure to incorporate key information from the text into the Transformer
model, aiming to enhance its performance.

Pos Fusion: Proposed in 2022 by Z et al., this method first performs part‑of‑speech
tagging on the corpus, and then integrates the part‑of‑speech tagging information into the
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Transformer model using a dual‑encoder structure. A stacked decoder structure is used
to associate the part‑of‑speech tagging information with the target information.

Prior Knowledge: Proposed in 2022 by Rui Wang et al., this method extracts prior
knowledgewhich is then fusedwith the source language information in the form ofmatrix‑
vector. This enriches the semantic knowledge learned by the Transformer model. From
the comparative experiment results, it can be observed that our approach achieves a better
translation performance compared to other models on the electrical engineering dataset.

Compared to the baseline model, our approach shows noticeable improvements in
BLEU. Additionally, our approach outperforms the other comparative models in all the
metrics, indicating that it effectively utilizes contextual information and key information
to enhance translation quality.

The baseline, sentence‑level, and SSCT models do not integrate prior knowledge into
the Transformer model, and the processing time or extraction time consumed is zero. The
Key Information Fusion, Prior Knowledge, and Pos Fusion models all need to extract and
process prior knowledge. The tools used and the time spent in each stage are shown in
Table 9.

Time = timeexecution + timeextraction + timeproces sin g (24)

where Time represents the total time, timeexecution represents the execution time, and
timeproces sin g and timeextraction represent the processing time that the model needs to pro‑
cess or extract prior knowledge.

Table 9. Time cost.

Method tool Extraction
Time/min

Processing
Time/min

Execution
Time/min

Key Information YAKE 133 143 203

Pos Fusion Stanford Tagger 121 157 193

Prior
Knowledge

Stanford
CoreNLP 139 158 189

5.3.5. Extended Experiment
To further investigate the universality of the proposed method, the models presented

in this paper were tested on publicly available general corpora, and the experimental re‑
sults are shown in Table 10.

Table 10. The result of the extended experiment.

Dataset Model BLEU/% σ

WMT2017(CN‑EN)
Baseline 22.82 –
SSCT 24.09 +1.27
TSCT 23.57 +0.75

The experimental results indicate that even on general Chinese‑to‑English corpora,
the two models proposed in this paper still exhibit a certain effectiveness. This also con‑
firms the validity of the improvements made to the Transformer structure in this study.
Integrating convolutional neural networks as the feature extraction layer into the Trans‑
former’s structure indeed enhances the translation capability of the model. With the im‑
provedmodel obtaining crucial local information, it continuously learns richer semantic re‑
lationships and correct logical connections during training, leading to more accurate trans‑
lation outcomes.

5.3.6. Analysis
Based on the results of the experiments in Section 5.3, we draw the following

conclusions:
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The results of Sections 5.3.1 and 5.3.2show that the two new structures proposed in
this paper based on Transformer significantly improve the performance compared to the
baseline model, and fusing feature information with Transformer at either the source or
target end can improve translation quality. As can be seen from the translation examples in
Tables 11 and 12 (These red fonts in the table are technical terms), compared to the baseline
model, SSCT and TSCT translate key information in the sentence more accurately, and the
translated sentences are also closer to the reference translation.

Table 11. Translation samples (a).

Source text A Configuration Scheme of Two Automatic Bus Transfer Equipment for 10 kV Sections in a
Substation with Three Main Transformers

Reference 在一个有两台主变压器的变电站中，针对10千伏区段的两个自动母线转换设备的配置方案。

Translation of baseline model

两台主变压器转换电站10 kV段2台自动母线传输设备配置方案/Configuration scheme of two main transformers converting power station with two
automatic bus transmission equipment in the 10 kV section

Translation of Source‑Side‑CNN‑model

为一个具有两台主变压器的变电站，设计10千伏范围的两个自动母线转换设备的装置方案。/Designing a device scheme for two automatic busbar
transfer devices within the 10 kV range for a substation equipped with two main transformers.

Translation of Target‑Side‑CNN‑model

在两台主变压器的变电站中，为10千伏区段的两个自动主线转换设备的设计的配置方案。/Configuration scheme for two automatic busbar transfer
devices designed for the 10 kV section in a substation with three main transformers.

Table 12. Translation samples (b).

Source text The paper puts forward impact factor analysis of the reliability in bulk power system using
power flow tracing method on the basic of power flow tracing load‑shedding model.

Reference 本文在潮流跟踪负荷削减模型基础上，提出了大电力系统可靠性影响因素分析的潮流跟踪法。

Translation of baseline model

在潮流跟踪负荷减少模型的基础上提出了电子系统的可靠性影响因素分析的潮流跟随法。/Based on the load reduction model of power flow
tracking, a power flow following method for the analysis of reliability influencing factors ofelectronic systems is proposed.

Translation of Source‑side‑CNN‑model

这篇文章在潮流跟踪负荷削减模型的削减基础上提出了适用于大电力系统可靠性影响因素分析的潮流跟踪法。/This article proposes a load flow
tracking method for analyzing the reliability impact factors in large‑scale power systems, based on the load reduction model.

Translation of Target‑side‑CNN‑model

本文在削减模型的基础上提出了较大的电力系统可靠性影响因素分析的潮流跟踪法。/The present study introduces the load flow tracking method
for analyzing the reliability impact factors in large‑scale power systems, building upon an existing load reduction model.

SSCT performs better than TSCT, and Transformer has better results in vector fu‑
sion at the source end. The reason for this result may be that Transformer loses more
source language vectors when fusing vectors at the target end, causing the fused vector of
Tencoder−decoder and Tcnn−decoder lose some semantic information, resulting in slightly lower
performance for TSCT than SSCT.

The ablation experiment in Section 5.3.3 further proves that the method proposed in
this paper is effective. Integrating the convolutional neural network as a feature extraction
layer into Transformer can enable it to learn the feature information in the sentence and
improve its translation performance.

The results of comparative experiments show that compared with the previous mod‑
els, the model proposed in this paper has a better performance on datasets in the field
of electrical engineering and saves a lot of time and cost than other models using prior
knowledge.

The results of extended experiments prove that the method in this paper is also ap‑
plicable to the general corpus, not only in the field of electrical engineering. The method
proposed in this article has a certain versatility.
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6. Conclusions
In this paper, we improved the Transformer model by integrating the convolutional

neural network as a feature extraction layer into its overall structure and obtained two new
models, SSCT and TSCT, which respectively perform vector fusion of feature information
at the source and target sides. This allows the improved Transformer model to learn se‑
mantic knowledge containing feature information.

SSCT introduced a multi‑head attention mechanism between the feature information
extraction layer and the source language encoder, which is used to fuse the feature vector
and encoder output vector. The fused vector is used as the K and V vector in the decoder
multi‑head attention mechanism and is calculated with the internal vector of the encoder
layer. Through this method, the model can continuously learn semantic information con‑
taining feature vectors during training, thereby enhancing the performance of the trans‑
lation model. TSCT has the same feature information extraction layer as SSCT, but the
decoder unit of TSCT adds a multi‑head attention mechanism, which uses the output of
the feature information extraction layer as the Q vector and the output of the first sub‑layer
of the decoder as the K and V vectors. The result of the calculation is fused with the output
of the second sub‑layer of the decoder, allowing the Transformer model to further learn
the relationship between feature information and global information. The results of the
comparative experiments and ablation experiments designed in this paper show that the
BLEUvalues of SSCT andTSCT are 1.63 and 1.12 percentage points higher than the baseline
model, respectively, which fully demonstrates the effectiveness of our proposed method.

Indeed, while the model designed in this paper exhibits an excellent performance on
the English‑to‑Chinese dataset in the electrical engineering domain, its performance may
show some decline on large‑scale parallel corpora, indicating the limitations of this ap‑
proach. In future work, we plan to explore the integration of bidirectional gated recurrent
units (GRUs) and convolutional neural networks (CNNs) into both the source and target
sides of the Transformer model. By doing so, the improved Transformer model will be
able to learn from both memory information and local information, enhancing the over‑
all performance and generalizability of the model. This will enable the model to achieve
better results on corpora from various domains.
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