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Abstract: With the development of intelligent technology, multi-agent systems have been widely
applied in military and civilian fields. Compared to a single platform, multi-agent systems can
complete more dangerous, difficult, and heavy tasks. However, due to the limited autonomy of
unmanned platforms and the regulatory needs of personnel, multi-agent systems cooperating with
manned platforms to perform tasks have been more widely promoted at this stage of development.
This paper addresses a differential game method for cooperative decision-making of a multi-agent
system cooperating with the manned platform for the target-pursuit problem. The manned platform
pursues the target according to a certain trajectory, and its state can be obtained by the multi-agent
system. Firstly, for the case that the target moves with a fixed trajectory, the target-pursuit problem in
a manned–unmanned environment is viewed in the form of game based on a communication graph
among agents. Secondly, strategies of all agents are proposed while maintaining their group cohesion.
A set of coupled differential equations is solved to implement strategy calculation. Compared to
purely unmanned systems, the strategies combine the advantages of the manned platform and add
a reference item, which can achieve team cohesion relatively quickly. Furthermore, a brief analysis
is made on the scenarios where the target is in another case or adopts other strategies. Finally,
comparative simulations have verified the effectiveness and synergy of the strategy.

Keywords: manned–unmanned; target pursuit; cooperative decision; differential game

1. Introduction

The multi-agent system is widely concerned with the development of the unmanned
system and intelligent technology [1,2]. Due to its advantages such as autonomy, loose
coupling, high fault tolerance, and scalability, multi-agent systems are widely used in
fields such as formation control [3], intelligent logistics [4], and collaborative search [5],
among others. The cooperative decision-making of multi-agent systems focuses on the
interactive behaviors among agents as well as the information exchanging between agents
and the environment. Agents ultimately cooperate or compete with each other to accom-
plish tasks. In recent years, game theory has become a hot topic of research because of its
ability to establish models for strategic interactions among agents, which can involve both
cooperation and competition [6–8].

Due to the limitations in autonomy and intelligence of current unmanned systems,
in many complex real-world scenarios, tasks are often executed through the collaboration
of manned platforms and multiple unmanned platforms [9,10]. This collaborative approach
allows for the full utilization of the strengths of both manned and unmanned platforms,
addressing challenges that unmanned systems alone may struggle to tackle. Moreover,
the participation of manned platforms can enhance task execution efficiency, success rate,
and safety, thereby reducing people’s concerns about responsibility, decision-making,
safety, and other regulatory aspects in multi-agent systems to some extent [11]. Therefore,
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as an emerging area of study, manned–unmanned collaboration is rapidly developing and
being applied.

As a typical topic of the collaborative field, target-pursuit problems have received
significant attention in recent decades due to their widespread application, such as drone
planning [12], territorial defense [13], and search and rescue [14]. In [15], the pursuit
problem was proposed first, where the agents move in a grid to capture randomly moving
targets. A cooperative algorithm for the multi-agent system to pursue static targets was
proposed in [16]. In [17], a real-time approach for the target-pursuit problem of the multi-
agent system was studied, wherein two coordination strategies, blocking escape directions
(BES), and using alternative proposals (UAL) were adopted. For the moving targets,
an opportunistic framework was proposed for multi-robot pursuit of targets in a dynamic
environment with partial observability [18]. The consensus pursuit problem was discussed
in [19] for multi-agent systems; the authors designed a distributed multi-flocking approach
based on the local information. Agents could choose the target adaptively by combining
information with the circle formation control law proposed. Inspired by the division of
roles in wolf hunting, new strategies for multi-robot collaborative tracking of targets was
proposed in [20], which improved the convergence performance of the algorithm and
shortened the hunting time significantly.

Furthermore, dynamic game theory is often used for target-pursuit problems because
of its advantage in dynamic interaction and decision-making, and because the decision-
making process of the game players is the process of cooperation or competition within
the team [21]. The game theory approach in [22] attempted to address the target-tracking
problem by using cost functions in an obstacle-free environment, and a PD-like fuzzy
controller was used to tune the cost function weights. In [23], the pursuit of invisible
targets was discussed within the framework of a game, and some results on how the
minor closed properties are related to pathwidth are concluded. In the case of multiple
pursuers, three kinds of pursuit strategies, cooperative, non-cooperative, and greedy, are
proposed in [24], and the sufficient conditions for achieving uniform exponential stability
are given. Furthermore, the multiple pursuers strategy in the presence of the parameter of
uncertainty was given in [25], and the acquisition probability was determined using the
Monte Carlo method. The distributed strategy designed by combining differential game
theory with collaborative control theory can handle target-pursuit situations in system
communication topology switching [26]. In [27], evolutionary game theory was introduced
to solve the pursuit problem of multiple targets, an innovative three-level decomposition
method was used to decompose the previously complex multiplayer game into multiple
small-scale games, and a multi-agent Q-learning method based on evolutionary game
models was proposed.

The studies mentioned above only consider the situations of target-pursuit problems
by unmanned platforms or multi-agent systems. However, in practice, it is almost impossi-
ble that unmanned platforms perform complex tasks independently until now. The multi-
agent system often needs to cooperate with manned platforms or accept commands from
manned platforms. There are some results considering manned–unmanned cooperation,
mostly qualitative decision-making on manned platforms and quantitative decision-making
on unmanned platforms [28,29]. Cooperative operations of Manned/Unmanned Aerial
Vehicle hybrid formation in antisubmarine warfare were analyzed in [30]. In order to
compensate for the lack of intelligence in unmanned systems, the composition and key
challenges of the MAV-UAV collaborative combat system were explored in [31]. These stud-
ies mostly focused on top-level planning from a global perspective, without considering
coordination issues from the perspective of unmanned platforms. And note that none of
the above literature focuses on target-pursuit problems.

In response to the above discussion, this paper proposes a cooperative decision-making
method for the multi-agent system cooperating with a manned platform using differential
game theory. The key idea of this method is to model the target-pursuit problem in the
form of a game, where each agent is seen as a player, and each player can interact with their
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neighbors for state and strategies. The agents make decisions in the process of the dynamic
game continuously, then cooperate with a manned platform to complete the target-pursuit
task. More specifically, the contributions of this paper include the following:

• A novel formulation of the differential game as a target-pursuit strategy in a manned–
unmanned environment that can be applied in various manned–unmanned coopera-
tive systems.

• We propose a hierarchical decision-making approach for target-pursuit scenarios.
The proposed method can enable the multi-agent system to cooperate with the
manned platforms in a reasonable manner, ultimately achieving team cohesion while
capturing the target. Furthermore, we discuss scenarios where the target is in different
forms of motion. The method proposed in this paper can be applied to the static target,
the target moving along fixed trajectories, and it can be extended to situations where
the target adopts escape strategies.

• Simulations prove that the proposed method can pursue the target in a manned–
unmanned environment successfully. And the effects of each parameter are analyzed
through comparative simulations.

The rest of this paper is organized as follows: Section 2 presents the required prelimi-
naries and the formulation of the target-pursuit problem. In Section 3, the strategies for
agents are designed using linear quadratic differential game theory, and simulations are
presented to verify the effectiveness of the proposed approach. The discussion and outlook
on the results are presented in Section 4. Section 5 concludes the paper.

Notation 1. The notation used in the paper is fairly standard except where otherwise stated. R
denotes the field of real numbers, Rn denotes the set of n-dimensional real-valued column vectors
and Rn×m denotes the set of all n×m real matrices. I denotes the identity matrix of the compatible
dimension and 0m×n denotes the n-by-m dimensional zero matrix. AT represents the transpose of
the matrix A; A−1 represents the inverse of the matrix A. For a matrix Q ∈ Rn , the notation
Q � 0 means that Q is positive definite and Q < 0 means positive semidefinite. In symmetric
block matrices, ? is used to denote a term induced by symmetry. The notation blkdiag{A1, . . . , An}
represents a block diagonal matrix whose main diagonal consists of square matrices A1, . . . , An.
The norm ‖x‖ denotes the Euclidean norm of vector x, ‖x‖ = (xTx)1/2, x ∈ Rn. A⊗ B is the
Kronecker product of matrix A and matrix B.

2. Problem Formulation

We consider the target-pursuit problem of the multi-agent system in this paper.
The multi-agent system cooperates with an manned platform to pursue a target while
maintaining its cohesive state. We describe the target-pursuit problem in the form of a
game, which terminates when the target is successfully captured. Without loss of generality,
agents are represented as nodes in the network, and the communication relationships
among agents are represented by the edges of the network. Then, we introduce some basic
knowledge of graph theory to describe the multi-agent system and the internal relationships.

2.1. Communication Graph

The internal relationships of the multi-agent system and communication among agents
can be represented by a directed graph G = (V , E), where V = {1, 2, ..., l} is the finite
nonempty vertices set and E ⊆ V × V is the set of edges. The set of vertices corresponds
to the agents and the edges represent the interconnection between two agents. The edge
of the graph (i, j) denotes that agent i can obtain information from agent j with weight
ωij ≥ 0. The set of all neighbors of agent i in the graph G is represented by N(i). If there is
a path from vertex i to vertex j in graph G, then i and j are said to be connected. If every
pair of vertices is connected, then the graph G is said to be connected.

For the directed graph G, the incidence matrix D describes the relationship between
vertices and edges. D is the 0,±1 matrix, where its uvth element is equal to 1 if node u is
the head of the edge v, −1 if node u is the tail of the edge v, and 0 if u is not the vertex of
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v. For the weighted graph, each edge has its own weight coefficient. The weight matrix is
represented by W = diag(ωij), which is a diagonal matrix. For agent i, its weight matrix Wi
is related to its neighbors. The Laplacian matrix L of the directed graph G can be defined as
L = DWDT , which contains important properties of the graph.

Assumption 1. The graph G does not have self-loops and only contains ordered pairs of distinct
vertices. Graph G is a connected graph.

Assumption 2. The manned platform can observe the state information of the target. All nodes of
the multi-agent system can observe the state information of the manned platform, and some nodes
can observe the state information of the target.

2.2. Game Model of Target-Pursuit Problem

Consider a scenario where a manned platform and a group of l agents cooperate to
pursue a target. The manned platform pursues the target along a certain trajectory, and the
multi-agent system makes decisions based on observing the states of the manned platform.
The cooperative decision of the multi-agent system can be modeled as a class of a linear
quadratic differential game with l players.

The cooperative decision-making process between the manned platform and multi-
agent system can be seen as the form of hierarchical game. For a target, the manned
platform takes the initiative in making decisions due to its superior capabilities, the multi-
agent system observes the state of the manned platform and makes decisions accordingly
to collaborate with the manned platform in completing the task.

Each agent acts as a player in the game, and its state equation is as follows:

ẋi = Aixi + biui, i = 1, 2, ..., l, (1)

where i represents the number of the players, xi(t) ∈ R2n is the state vector, and ui(t) ∈ Rn

is the control vector for player i. Ai =

[
0n×n In
0n×n 0n×n

]
, bi =

[
0n×n

In

]
.

Consider the vector z = [xT
1 , xT

2 , ..., xT
l ]

T ∈ R2nl , according to (1), the system dynamics
is given as follows:

ż = Az +
l

∑
i=1

Biui, (2)

where A = blkdiag{A1, A2, ..., Al}, Bi = [01×(i−1), 1, 01×(l−i)]
T ⊗ bi ∈ R2nl×n.

Suppose that the target moves along a fixed trajectory, and its state equation is

ẋt = Atxt, (3)

where xt(t) ∈ R2n is the state vector of the target. Suppose that the manned platform
moves along a certain trajectory to pursue the target, and its state equation is

ẋm = Amxm, (4)

where xm(t) ∈ R2n is the state vector of the manned platform.
Consider the vector z̄ = [xT

1 , xT
2 , ..., xT

l , xT
m, xT

t ]
T ∈ R2n(l+2), the augmented system

dynamics is given as follows:

˙̄z = Āz̄ +
l

∑
i=1

B̄iui, (5)
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where Ā =

 A 02nl×2n 02nl×2n
02n×2nl Am 02n×2n
02n×2nl 02n×2n At

, B̄i =

 Bi
02n×n
02n×n

.

Then, we are intended to design individual cost functions for each agent according to
its role in the system. Define the set of agents that can obtain the target’s state information
as P, and the other agents as set F. For agent i ∈ P, the goal is to maintain a cohesive state
with their neighbors N(i) while cooperating with the manned platform to pursue the target
as efficiently as possible. Hence, the weighted distance that agent i needs to optimize is

∑
p∈N(i)

ωip‖xi − xp‖2 + ‖xi − xm‖2 + ‖xi − xt‖2, (6)

where the first term is the weighted sum of the distance between agent i and its neighbors
N(i), which is the term that denotes system cohesion; the second term is the distance
between between agent i and the manned platform; the third term is the distance between
agent i and the target.

The weighted distance (6) can be transformed into the following form:

z̄T L̄i z̄ + z̄TK̄i2z̄ + z̄TK̄i3z̄, (7)

where L̄i =

 Li ⊗ I2n 02nl×2n 02nl×2n
02n×2nl 02n×2n 02n×2n
02n×2nl 02n×2n 02n×2n

, Li = DWiDT , Wi is the weight matrix of agent

i; K̄i2 = K̃i2 ⊗ I2n, K̃i2 ∈ R(l+2)×(l+2), K̃i2(i, i) = 1, K̃i2(i, l + 1) = −1, K̃i2(l + 1, i) = −1,
K̃i2(l + 1, l + 1) = 1, and the remaining elements are 0; K̄i3 = K̃i3 ⊗ I2n, K̃i3 ∈ R(l+2)×(l+2),
K̃i3(i, i) = 1, K̃i3(i, l + 2) = −1, K̃i3(l + 2, i) = −1, K̃i3(l + 2, l + 2) = 1, and the remaining
elements are 0.

The agent minimizes their own cost function during the game process. Using u−i
represents the weighted sum of strategies of all neighbors of agent i, which attempts to
minimize the cost function of i; its form is as follows:

u−i = αi ∑
j∈N(i)

uj. (8)

Design B̄−i = αi ∑j∈N(i) B̄j, Q̄i = τ̄i1 L̄i + τ̄i2K̄i2 + τ̄i3K̄i3, where τ̄i1, τ̄i2, and τ̄i3 are
weight coefficients. τ̄i1 represents the importance that the agent i places on achieving
cohesive states, τ̄i2 indicates the importance that the agent i places on collaborating with
human platforms to accomplish the task, and τ̄i3 indicates the importance that the agent i
places on pursuing the target.

Remark 1. For agents that cannot observe the target’s information (the set F), the weighted distance
does not include the third term, hence, we set τ̄i3 = 0. The strategy of this type of agent is to maintain
the cohesive state with its neighbors and the manned platform as much as possible. In practical
scenarios, this type of agent is often a lower-level platform.

The cost function for agent i to be minimized can be expressed as follows:

J̄i =
∫ t f

0
(z̄TQ̄i z̄ + uT

i R̄iui + uT
−iR̄−iu−i) dt + z̄T(t f )Q̄i f z̄(t f ), i = 1, 2, ..., l, (9)

where t f is is the terminal moment, Q̄i = Q̄T
i , Q̄i f = Q̄T

i f , Ri � 0 and R−i � 0. The purpose
of this article is to solve strategy u∗i so that it satisfies the following condition:

J̄i(u∗i , u∗−i) 4 J̄i(ui, u∗−i), (10)

where i ∈ V = {1, 2, ..., l}.
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3. Results
3.1. Solution to the Target-Pursuit Problem

In this subsection, we give strategies for the multi-agent system which cooperate
with a manned platform to execute the target-pursuit task when the target moves along
a fixed trajectory. We address a linear quadratic differential game method for the target-
pursuit problem. According to the game model of Equations (5) and (9), the following
theorem provides the pursuit strategies of agents while maintaining a cohesive state with
the manned platform and neighbors.

Theorem 1. Consider the system (5), the state Equations (1) of agents, and (9) of cost functions,
then, the strategy of agent i

u∗i = −R−1
i BT

i P̄i11z− R−1
i BT

i bi − R−1
i BT

i ci, (11)

satisfies the inequality (10).
In Equation (11), P̄i11 = P̄T

i11 � 0 and bci, ci are solutions of the following coupled differential
equation in [0, t f ]:

− ˙̄Pi11 = Qi + P̄i11

(
A−

l

∑
p=1,p 6=i

Sp P̄p11

)
+

(
A−

l

∑
p=1,p 6=i

Sp P̄p11

)T

P̄i11

− P̄i11Si P̄i11 − P̄i11S−i P̄i, (12)

P̄i11(t f ) = Qi f , (13)

ḃi =

(
− AT + P̄i11Si + P̄i11S−i +

l

∑
p=1,p 6=i

P̄p11Sp

)
bi − Q̄i12xm + P̄i11

l

∑
p=1,p 6=i

Spbp, (14)

bi(t f ) = Q̄i12 f xm(t f ), (15)

ċi =

(
− AT + P̄i11Si + P̄i11S−i +

l

∑
p=1,p 6=i

P̄p11Sp

)
ci − Q̄i13xt + P̄i11

l

∑
p=1,p 6=i

Spcp, (16)

ci(t f ) = Q̄i13 f xt(t f ), (17)

where Si = BiR−1
i BT

i , S−i = B−iR−1
−i BT

−i.

Proof of Theorem 1. Define the function Vi(t, z̄) = J̄∗i ; according to [32], we can obtain

−∂Vi(t, z̄)
∂t

= min
uiu−i

{(
∂Vi(t, z̄)

∂z̄

)T

( ˙̄z+ B̄−iu−i)+z̄TQ̄i z̄+uT
i R̄iui−uT

−iR̄−iu−i

}
, (18)

Vi(t f , z̄) = z̄T(t f )Q̄i f z̄(t f ). (19)

Minimizing Equation (18), we have(
∂Vi(t, z̄)

∂z̄

)T

B̄i + 2R̄iu∗i = 0, (20)

(
∂Vi(t, z̄)

∂z̄

)T

B̄−i + 2R̄−iu∗−i = 0, (21)

then, the following equations hold

u∗i = −1
2

R̄−1
i B̄T

i
∂Vi(t, z̄)

∂z̄
; (22)
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u∗−i = −
1
2

R̄−1
−i B̄T

−i
∂Vi(t, z̄)

∂z̄
. (23)

Define S̄i = B̄iR̄−1
i B̄T

i , S̄−i = B̄−iR̄−1
−i B̄T

−i, by applying Equations (22) and (23) to (18),
so we easily obtain

−∂Vi(t, z̄)
∂t

=

(
∂Vi(t, z̄)

∂z̄

)T
[
Āz̄− 1

2
S̄i

∂Vi(t, z̄)
∂z̄

− 1
2

S̄−i
∂Vi(t, z̄)

∂z̄
+

l

∑
p=1,p 6=i

B̄pup

]

+ z̄TQ̄i z̄+
1
4

(
∂Vi(t, z̄)

∂z̄

)T

S̄i
∂Vi(t, z̄)

∂z̄
+

1
4

(
∂Vi(t, z̄)

∂z̄

)T

S̄−i
∂Vi(t, z̄)

∂z̄
. (24)

In order to solve the above partial differential equation, define Vi(t, z̄) = z̄TP̄i z̄, then
we have

∂Vi(t, z̄)
∂z̄

= 2P̄i z̄, (25)

∂Vi(t, z̄)
∂t

= z̄T ˙̄Pi z̄. (26)

By applying Equation (25) to (20), we obtain u∗i = −R̄−1
i B̄T

i P̄i z̄. Similarly, it can be ob-
tained that u∗−i = −R−1

−i B̄T
−i P̄i z̄. u∗i , u∗−i and Equations (24)–(26) lead to the conclusion that

−z̄T ˙̄Pi z̄ = 2z̄TP̄i

(
Āz̄− S̄i P̄i z̄− S̄−i P̄i z̄−

l

∑
p=1,p 6=i

S̄p P̄p z̄

)
+ z̄TQ̄di z̄

+z̄TP̄iS̄i P̄i z̄ + z̄TP̄iS̄−i P̄i z̄. (27)

Then, it is straightforward to see that

0 = z̄T

[
˙̄Pi + Q̄i − P̄iS̄i P̄i − P̄iS̄−i P̄i + P̄i

(
Ā−

l

∑
p=1,p 6=i

S̄p P̄p

)

+

(
Ā−

l

∑
p=1,p 6=i

S̄p P̄p

)T

P̄i

]
z̄, (28)

hence, the following equation holds

− ˙̄Pi = Q̄i + P̄i

(
Ā−

l

∑
p=1,p 6=i

S̄p P̄p

)
+

(
Ā−

l

∑
p=1,p 6=i

S̄p P̄p

)T

P̄i

− P̄iS̄i P̄i − P̄iS̄−i P̄i, (29)

P̄i(t f ) = Q̄i f . (30)

The time derivative of Vi(t, z̄) is given by

V̇i = −z̄TQ̄i z̄− uT
i R̄iui+(ui − u∗i )

TR̄i(ui − u∗i )− uT
−iR̄−iu−i

+ (u−i − u∗−i)
TR̄−i(u−i−u∗−i). (31)

We integrate both sides of Equation (31) in [0, t f ] and then have

J̄i =
∫ t f

0
((ui − u∗i )

TR̄i(ui − u∗i ) +

(u−i − u∗−i)
TR̄−i(u−i − u∗−i))dt + Vi(z̄(0)). (32)

The above equation shows that the control strategy u∗i can minimize the cost function
of the agent i.
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Partitioning the matrix P̄i ∈ R2n(l+2)×2n(l+2) yields

P̄i =

 P̄i11 P̄i12 P̄i13
? P̄i22 P̄i23
? ? P̄i33

, (33)

where P̄i11 ∈ R2nl×2n), P̄i12 ∈ R2nl×2n, P̄i22 ∈ R2nl×2n.
Similarly, matrices Q̄i, S̄i , S̄−i, and Ā can also be partitioned according to this rule.

Let Qi = τi1 L̂i + τi2K̂i2 + τi3K̂i3, where τi1, τi2, and τi3 are weight coefficients, L̂i = Li ⊗ I2n,
K̂i2 = Ki2 ⊗ I2n and K̂i3 = Ki3 ⊗ I2n, Ki2 and Ki3 are l× l matrices, Ki2(i, i) = 1, Ki3(i, i) = 1,
and the remaining elements are 0. Therefore,

Q̄i11 = Qi, Ā11 = A, Ā22 = Am, Ā33 = At,

S̄i11 = Si = BiR−1
i BT

i , S̄−i11 = S−i = BiR−1
−i BT

i

Q̄i12 = {01×(i−1),−1, 01×(l−i)}T ⊗ I2n, Q̄i13 = {01×(i−1),−1, 01×(l−i)}T ⊗ I2n.

According to the above definition of block matrices, Riccati differential Equations (29)
and (30) can be decomposed; specifically, we obtain

− ˙̄Pi11 = Qi + P̄i11

(
A−

l

∑
p=1,p 6=i

Sp P̄p11

)
+

(
A−

l

∑
p=1,p 6=i

Sp P̄p11

)T

P̄i11

− P̄i11Si P̄i11 − P̄i11S−i P̄i, (34)

P̄i11(t f ) = Qi f , (35)

− ˙̄Pi12 = P̄i12 Am − P̄i11

l

∑
p=1,p 6=i

Sp P̄p12 −
(

l

∑
p=1,p 6=i

Sp P̄p11

)T

P̄i12

+ ATP̄i12 − P̄i11S−i P̄i12 − P̄i11Si P̄i12 + Q̄i12, (36)

P̄i12(t f ) = Q̄i12 f , (37)

− ˙̄Pi13 = P̄i13 At − P̄i11

l

∑
p=1,p 6=i

Sp P̄p13 −
(

l

∑
p=1,p 6=i

Sp P̄p11

)T

P̄i13

+ ATP̄i13 − P̄i11S−i P̄i13 − P̄i11Si P̄i13 + Q̄i13, (38)

P̄i13(t f ) = Q̄i13 f . (39)

Obviously, Equation (34) and (35) are coupled differential Equations (12) and (13) of
Theorem 1.

Due to z̄ = [zT, xT
m, xT

t ]
T, control strategy u∗i = −R̄−1

i B̄T
i P̄i z̄ can be expressed as

u∗i = −R−1
i BT

i P̄i11z− R−1
i BT

i P̄i12xm − R−1
i BT

i P̄i13xt, (40)

where the first term −R−1
i BT

i P̄i11z on the right-hand side is dependent on the state of
neighboring agents, the second term −R−1

i BT
i P̄i12xm is related to the state of the manned

platform, and the third term −R−1
i BT

i P̄i13xt is related to the state of the target.
Let bi = P̄i12xm, i = 1, 2, ...m, taking the derivative of bi, we have
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ḃi =
˙̄Pi12xm + P̄i12 ẋm

= P̄i12 Amxm − (Q̄i12 − P̄i11Si P̄i12 − P̄i11S−i P̄i12 + P̄i12 Am + ATP̄i12)xm

+

(
l

∑
p=1,p 6=i

Sp P̄p11

)T

P̄i12xm + P̄i11

(
l

∑
p=1,p 6=i

Sp P̄p12

)
xm

=

(
− AT + P̄i11Si + P̄i11S−i +

l

∑
p=1,p 6=i

P̄p11Sp

)
bi − Q̄i12xm + P̄i11

l

∑
p=1,p 6=i

Spbp, (41)

and bi(t f ) = P̄i12(t f )xm(t f ) = Q̄i12 f xm(t f ), namely, coupled differential
Equations (14) and (15) are valid.

Let ci = P̄i13xt, i = 1, 2, ...m, taking the derivative of ci, we have

ċi =
˙̄Pi13xt + P̄i13 ẋt

= P̄i13 Atxt − (Q̄i13 − P̄i11Si P̄i13 − P̄i11S−i P̄i13 + P̄i13 Am + ATP̄i13)xm

+

(
l

∑
p=1,p 6=i

Sp P̄p11

)T

P̄i13xt + P̄i11

(
l

∑
p=1,p 6=i

Sp P̄p13

)
xm

=

(
− AT + P̄i11Si + P̄i11S−i +

l

∑
p=1,p 6=i

P̄p11Sp

)
ci − Q̄i13xt + P̄i11

l

∑
p=1,p 6=i

Spcp, (42)

and ci(t f ) = P̄i13(t f )xt(t f ) = Q̄i13 f xt(t f ), therefore, coupled differential
Equations (16) and (17) hold.

Remark 2. Once given the initial state of each agent, communication topology, and weight coef-
ficients, we can calculate P̄i11, bi, ci at different times by performing backward iterations on the
terminal values of the coupled differential equations. The strategy u∗i can be obtained by applying
the equations’ solutions to (11). Furthermore, we can solve the trajectory of each agent through the
state Equation (1).

Remark 3. The theorem in this paper can also be extended to the case where the target is stationary.
Without loss of generality, supposed that the target xt is at the origin, namely, xt = [0, ..., 0]T ∈ R2n,
then, the last term −R−1

i BT
i P̄i13xt in the control input (11) is equal to 0. Therefore, strategy u∗i

only includes the the first two items. On the other hand, xt is a constant value if the target xt is not
at the origin, so we can solve strategically similarly.

Remark 4. It can be seen from Theorem 1 that solving the strategy of each agent does not need the
specific form of state equation of the manned platform and the target. We provided Am and At in the
previous section only for the convenience of the system’s expression. In fact, models of the manned
platform and the target often cannot be obtained in practical scenarios, we can only observe its states
through sensors. Therefore, the strategic solving method only relies on the states xm and xt in this
paper. This assumption also corresponds to the situation where the multi-agent system cooperates
with the manned platform to perform tasks in the actual manned–unmanned environment.

3.2. Simulation
3.2.1. Simulations under Different Target Trajectories

This subsection shows the results of the simulation examples. Assume there is a team
of three agents (l = 3) and the dimension of the state vectors for all agents is 2 (e.g., n = 2).
Each agent adopts a double integral dynamic model. In order to facilitate computation, Ri,
R−i in cost functions are both taken as identity matrices corresponding to their respective
dimensions. Consider the target xt and the manned platform xm, assume that agent 1
and agent 2 can obtain the target’s information while agent 3 cannot observe the target.
The communication graph among agents is shown in Figure 1. The corresponding incidence
matrix is
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D =

 −1 1 0 1
1 −1 −1 0
0 0 1 −1

.

Figure 1. The communication graph.

(1) A Target Moving along a Fixed Trajectory

Firstly, assume that the target moves in a straight line, and the state of the target is
xt = [0.5t, 5, 1, 0]T . Assume that the manned platform pursues the target with the certain
strategy by itself. The agents make decisions based on the state of the target and the
manned platform. Let the capture radius to be 0.2 m , sample time to be 0.05 s, and the
terminal time t f = 10 s. The weight coefficients are

αi = 1,

τ̄11 = 1, τ̄12 = 10, τ̄13 = 5, τ̄11 f = 1, τ̄12 f = 10, τ̄13 f = 5,

τ̄21 = 2, τ̄22 = 9, τ̄23 = 6, τ̄21 f = 2, τ̄22 f = 9, τ̄23 f = 6,

τ̄31 = 3, τ̄32 = 12, τ̄33 = 0, τ̄31 f = 3, τ̄32 f = 12, τ̄33 f = 0.

Notice that agent 3 cannot observe the target, therefore τ̄33 = 0 and τ̄33 f = 0. Set the ini-
tial state of each agent x1(0) = [2, 0.2, 0, 0]T , x2(0) = [4.7,−1, 0, 0]T , x3(0) = [0.2, 5.5, 0, 0]T .
According to the strategies u∗i in Theorem 1, the motion trajectories of each agent can be
obtained (as shown in the Figure 2a). It can be seen that the manned platform and agents
have captured the target successfully. Figure 2b shows the relative distance between the
target and each agent. At the terminal time t f , the distances between each agent and the
target are 0.0995 m, 0.1077 m, and 0.1012 m, which are all smaller than the capture radius.

Secondly, assume that the target moves along a sine trajectory, and the state of the
target is xt = [t, sin(0.8t), 1, 0.8cos(0.8t)]T . Assume that the manned platform pursues the
target with the certain strategy. The weight coefficients are

αi = 1,

τ̄11 = 1, τ̄12 = 10, τ̄13 = 5, τ̄11 f = 1, τ̄12 f = 10, τ̄13 f = 5,

τ̄21 = 0.1, τ̄22 = 9, τ̄23 = 6, τ̄21 f = 1, τ̄22 f = 9, τ̄23 f = 6,

τ̄31 = 3, τ̄32 = 12, τ̄33 = 0, τ̄31 f = 3, τ̄32 f = 12, τ̄33 f = 0.

Set the initial state of each agent x1(0) = [1,−2, 0, 0]T , x2(0) = [−1, 2, 0, 0]T ,
x3(0) = [0.2, 5.5, 0, 0]T . The simulation results are shown in Figure 3a,b. The distances
between each agent and the target are 0.1174 m, 0.1058 m, and 0.1556 m, and the target was
captured successfully.
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(a) (b)

Figure 2. The simulation of the target moving in a straight line and being pursued by a manned
platform with the certain strategy. (a) Trajectories of agents and the manned platform. (b) Distances
between the target and each agent.

(a) (b)

Figure 3. Simulation of the target moving along a sine trajectory and being pursued by a manned
platform with the certain strategy. (a) Trajectories of agents and the manned platform. (b) Distances
between the target and each agent.

Thirdly, assume that the target moves along a straight line, and the state of the target
is xt = [0.5t, 5, 0, 0]T . Assume that the manned platform pursues the target at a faster speed
on the same straight line. The weight coefficients are

α1 = 0.99, α2 = 1.11, α3 = 0.005

τ̄11 = 1, τ̄12 = 0.99, τ̄13 = 21, τ̄11 f = 1, τ̄12 f = 0.99, τ̄13 f = 21,

τ̄21 = 0.5, τ̄22 = 0, τ̄23 = 22, τ̄21 f = 0.5, τ̄22 f = 0, τ̄23 f = 22,

τ̄31 = 10, τ̄32 = 7.35, τ̄33 = 0, τ̄31 f = 10, τ̄32 f = 7.35, τ̄33 f = 0.

Set the initial state of each agent x1(0) = [−1.5, 6.5, 0, 0]T , x2(0) = [−0.5, 2, 0, 0]T ,
x3(0) = [1.2,−1, 0, 0]T . The simulation results are shown in Figure 4a,b. The distances
between each agent and the target are 0.1993 m, 0.0251 m, and 0.0965 m, and the target was
captured successfully.
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(a) (b)

Figure 4. Simulation of the target moving along a straight line and being pursued by a manned
platform at a faster speed on the same straight line. (a) Trajectories of agents and the manned platform.
(b) Distances between the target and each agent.

(2) Stationary Target

Assume that the target is stationary (xt = [0, 0, 0, 0]T). The manned platform pursues
the target with the certain strategy. The weight coefficients are

αi = 1,

τ̄11 = 1, τ̄12 = 10, τ̄13 = 5, τ̄11 f = 1, τ̄12 f = 10, τ̄13 f = 5,

τ̄21 = 0.1, τ̄22 = 9, τ̄23 = 6, τ̄21 f = 1, τ̄22 f = 9, τ̄23 f = 6,

τ̄31 = 3, τ̄32 = 12, τ̄33 = 0, τ̄31 f = 3, τ̄32 f = 12, τ̄33 f = 0.

Set the initial state of each agent x1(0) = [2, 3.2, 0, 0]T , x2(0) = [4.7,−2, 0, 0]T ,
x3(0) = [−3, 5.5, 0, 0]T . The simulation results are shown in Figure 5a,b. The distances be-
tween each agent and the target are 0.0682× 10−3 m, 0.1479× 10−3 m, and 0.2865× 10−3 m,
and the target was captured successfully.

(a) (b)

Figure 5. Simulation of the target is stationary and being pursued by a manned platform with the
certain strategy. (a) Trajectories of agents and the manned platform. (b) Distances between the target
and each agent.

3.2.2. The Influence of Different Weight Coefficients on Strategies

Furthermore, consider the case of 5 agents (l = 5), where the corresponding incidence
matrix is as follows, assuming that agent 3 and agent 5 cannot observe the target (τ̄33 = 0,
τ̄53 = 0). In the initial state, set the weights τ̄i1 = 1, τ̄i2 = 1, τ̄i3 = 1(i 6= 3, 5). We adjust
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the weight coefficients τ̄i1, τ̄i2, τ̄i13 separately to study the impact of different weights
on simulation results, then obtain the trajectory (Figure 6a–f) of each agent and distance
(Figure 7a–f) between each agent and the target.

D =


−1 −1 0 0 1 0 0 0 0 1
1 0 −1 −1 0 0 0 0 0 0
0 1 1 0 −1 −1 −1 1 0 0
0 0 0 1 0 1 0 −1 −1 0
0 0 0 0 0 0 1 0 1 −1

.

(a) Initial value (b) τ̄i1 = 0.01

(c) τ̄i1 = 2 (d) τ̄i2 = 4

(e) τ̄i2 = 16 (f) τ̄i3 = 3.5 (i 6= 3, 5)

Figure 6. The trajectories of agents under different weight coefficients.

From the Figures 6a–c and 7a–c, it can be seen that the larger the weight coefficient τ̄i1,
the higher the degree of cohesiveness of agents, and agents tend to shorten their distance
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from their neighbors. From the Figures 6a,d,e and 7a,d,e, it can be seen that increasing the
weight coefficient τ̄i2 means that each agent places more emphasis on cooperating with
the manned platform, leading to a tendency for agents to narrow their distance from the
manned platform in the decision-making process. The entire manned–unmanned system
reaches the cohesive state in a shorter time. From the Figures 6a,f and 7a,f , it can be seen
that increasing the weight coefficient τ̄i3 makes each agent more inclined to pursue the
target and reduces the degree of cohesiveness of the team. Due to the inability of agents 3
and 5 to observe the target, their trajectories’ changes are relatively small, while agents 1, 2,
and 4 clearly maintained a close distance from the target at an earlier time.

(a) Initial value (b) τ̄i1 = 0.01

(c) τ̄i1 = 2 (d) τ̄i2 = 4

(e) τ̄i2 = 16 (f) τ̄i3 = 3.5 (i 6= 3, 5)

Figure 7. The distances between the target and each agent under different weight coefficients.
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3.2.3. Comparison with the Target-Pursuit Problem in the Multi-Agent System

In the known studies on target-pursuit problems, most of them only consider the
case of multi-agent systems, without considering the coordination of the manned platform.
Therefore, we compare such a simulation with this paper; the simulation results of the
multi-agent system pursuing the target are shown in the Figure 8. By comparing with
the Figures 6 and 7, it can be seen that each agent tends to maintain team cohesion while
pursuing the target without the trajectory of a manned platform. In manned–unmanned
scenarios, the trajectory of the manned platform is equivalent to the reference trajectory
of various agents. Agents that cannot observe the target also have motion references, so
the manned–unmanned team tends to converge faster. Relatively speaking, in scenarios
without a manned platform, it takes longer for the team to reach the cohesive state. Similarly,
agents also need to spend more time reaching the target’s capture distance.

(a) (b)

Figure 8. Simulation of the multi-agent system pursuing the target. (a) Trajectories of agents.
(b) Distances between the target and each agent.

4. Discussion

In practical scenarios, the manned platform makes driving decisions using drivers.
The strategies of drivers are complex and variable, and the numerical examples in this
paper adopt different simulated trajectories. However, the multi-agent system makes
decisions by observing the state of the manned platform xt, so the simulation is effective in
verifying Theorem 1.

The theorem in this paper can also be extended to the case where the target adopts
an escape strategy. The actual scenario corresponding to this case is that the target can
also observe our action states, as the strategy such as ut = −R−1

ti BT
t P̄tz is taken away from

our platform. Therefore, the problem transforms into a standard pursuit–evasion game.
The strategies are u∗i = −R−1

i BT
i P̃i11z̃− R−1

i BT
i b̃i according to [24] (z̃ = [xT

1 , xT
2 , ..., xT

l , xT
t ]

T).
At this point, iterative calculation of P̃i11 requires information from At. If we cannot obtain
the target’s model, we can use the reinforcement learning method to approximate the
solution [33]. For these situations where adversarial strategies are adopted towards the
target, it is more feasible to use reinforcement learning or other approximate approaches
since it is difficult to obtain the target’s model. This is one of our future research directions.
For future work, we will consider the following in more detail:

• The environment in this paper is relatively ideal; we will consider the target-pursuit
problem when obstacles exist. At the same time, we will consider the situation of
multiple targets, so that the strategy can adapt to more practical scenarios.

• For the situation where the target adopts an escape strategy, we will conduct further
analysis, introduce reinforcement learning methods in cases where the model is
difficult to obtain, and balance the relationship between computational cost and
algorithm performance.



Electronics 2023, 12, 3630 16 of 17

• The cooperation between multi-agent systems and the manned platform is passive
in this paper. In the future, we will introduce trajectory prediction methods for the
manned platform, so that agents can make active decisions based on a certain degree
of predictive information, thereby improving the efficiency of team task execution.

5. Conclusions

In this paper, we consider a manned–unmanned cooperative decision-making problem
in a target-pursuit case. For the target, the manned platform and the multi-agent adopt
a hierarchical decision-making approach. The manned platform makes decisions first,
followed by agents observing the state of the manned platform and making decisions with
interacting information with neighbors. The target-pursuit problem is formulated as a linear
quadratic differential game through the directed communication graph. The strategies
that be given by solving a system of coupled differential equations iteratively. To make
decisions in different pursuit scenarios, we have explored the feasibility of strategies that
can adapt to multiple types of targets. We have demonstrated the feasibility of the proposed
method through simulation experiments. From the simulation results, the following can
be seen: (1) The strategies can enable agents to cooperate with the manned platform to
capture a target successfully. (2) The strategies can achieve the pursuit of both the static
target and the dynamic target. (3) Different weight coefficients have impacts on algorithm
convergence speed, team cohesiveness degree, and target-pursuit time. (4) Compared to the
pure unmanned system performing target-pursuit tasks, the manned platform trajectory
provides a certain reference for agents, enabling the manned–unmanned collaborative
system to complete tasks more efficiently.

However, this approach is proposed in a relatively ideal environment. Additionally,
the simulations did not consider more complex platform kinematics models and dynamics
models. Therefore, the proposed approach needs to be further experimentally validated
in different manned–unmanned collaborative systems, while gradually increasing the
complexity of the scenario to ensure the robustness of these strategies.
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