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Highlights:
What are the main findings?
• An improvement upon the state-of-the-art YOLOv8 model, proposing a high-performance and

highly generalizable model for detecting tiny UAV targets.

What is the implication of the main finding?

• Addressing the small size characteristics of UAV targets, a high-resolution detection branch is
added to the detection head to enhance the model’s ability to detect tiny targets. Simultaneously,
prediction and the related feature extraction and fusion layers for large targets are pruned,
reducing network redundancy and lowering the model’s parameter count.

• Improving multi-scale feature extraction, using SPD-Conv instead of Conv to extract multi-
scale features, better retaining the features of tiny targets, and reducing the probability of UAV
miss detection. Additionally, the multi-scale fusion module incorporates the GAM attention
mechanism to enhance the fusion of target features and reduce the probability of false detections.
The combined use of SPD-Conv and GAM strengthens the model’s ability to detect tiny targets.

Abstract: With the widespread use of UAVs in commercial and industrial applications, UAV de-
tection is receiving increasing attention in areas such as public safety. As a result, object detection
techniques for UAVs are also developing rapidly. However, the small size of drones, complex airspace
backgrounds, and changing light conditions still pose significant challenges for research in this
area. Based on the above problems, this paper proposes a tiny UAV detection method based on
the optimized YOLOv8. First, in the detection head component, a high-resolution detection head is
added to improve the device’s detection capability for small targets, while the large target detection
head and redundant network layers are cut off to effectively reduce the number of network parame-
ters and improve the detection speed of UAV; second, in the feature extraction stage, SPD-Conv is
used to extract multi-scale features instead of Conv to reduce the loss of fine-grained information
and enhance the model’s feature extraction capability for small targets. Finally, the GAM attention
mechanism is introduced in the neck to enhance the model’s fusion of target features and improve
the model’s overall performance in detecting UAVs. Relative to the baseline model, our method
improves performance by 11.9%, 15.2%, and 9% in terms of P (precision), R (recall), and mAP (mean
average precision), respectively. Meanwhile, it reduces the number of parameters and model size by
59.9% and 57.9%, respectively. In addition, our method demonstrates clear advantages in comparison
experiments and self-built dataset experiments and is more suitable for engineering deployment and
the practical applications of UAV object detection systems.
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1. Introduction

With the advancement of drone technology, drones are widely employed in various
sectors, such as aerial photography, emergency response, and agricultural planning. How-
ever, the development of drones has also brought to the fore a series of management issues.
These include illegal “rogue flights”, the exploitation of drones for criminal and terrorist
activities, and their potential to be transformed into dangerous weapons by carrying ex-
plosive materials [1–3]. Drones have become a new tool for terrorism, posing significant
threats to public safety. In response to the increasingly severe UAV threat, it is urgent to
establish an anti-drone system around restricted areas; thus, illegal UAV detection, as a
critical component of the anti-drone system [4], has become a subject of widespread atten-
tion among researchers. Improving the accuracy and processing speed of detecting enemy
UAV targets, conducting effective early warning detection, and then taking measures to
intercept them is the key to mastering air control and maintaining national security and
social stability. Most of the current early warning detection equipment has the defects of
fixed deployment location, large size, and apparent target exposure, meaning that they
cannot be flexibly distributed in hidden forward positions; therefore, lightweight and
easy-to-deploy large-scale early warning equipment is needed to fill the gap. The following
problems exist in solving the detection of UAV targets: (1) UAVs are characterized by their
small size, the use of “stealth” materials, low-altitude reconnaissance targets, and flexible
take-off platforms; (2) complex airspace environments are often affected by clouds, light,
and object occlusion, so that the use of electromagnetic and other signals to detect UAV
groups are prone to false detection and missed detection [5,6]. With the rapid development
of computer vision technology and neural networks, methods based on video and image
frames have been widely used to extract features such as target contours, colors, and shapes,
enabling the real-time detection of target positions and motion behaviors. This approach
has extensive applications in public security monitoring, intelligent transportation systems,
national defense and security, human-computer interaction systems, and safety produc-
tion. Applying computer vision technology to drone detection opens up a new avenue for
airspace early warnings, offering vast prospects for practical applications [7].

The rest of the paper is structured as follows: Section 2 summarizes the works related
to UAV detection. Section 3 first introduces the YOLOv8 network structure and the details
of its critical modules, followed by an improved tiny UAV target detection model, and
details the structure and roles of each improved module of the model. Section 4 first
introduces the dataset and the experimental environment and then conducts ablation
experiments, comparison experiments on the publicly available dataset TIB-Net, and,
finally, self-built dataset experiments to validate the proposed method’s feasibility fully.
Section 5 summarizes the research results in the full paper and provides an outlook on
future research directions.

2. Related Work

In recent years, improving hardware device performance has enhanced computer
data-processing capabilities, enabling rapid advancements in visual technologies that rely
on deep learning with big data. Object detection based on computer vision technology has
garnered significant attention from researchers. It has evolved from traditional manual
feature extraction [8–10] using convolutional calculations for object detection to leveraging
deep learning to improve recognition accuracy in visual object detection. Compared to
traditional electromagnetic signal detection methods such as radar, laser, infrared, audio,
and radio frequency, object detection using visual sensors, specifically cameras capturing
group videos and image data, offers more intuitive detection and the recognition of groups’
information. It offers advantages such as the real-time and dynamic recording of sequential
images of targets, low cost, fast detection speed, and immunity to interference from low-
altitude clutter [11].

Object detection is an important research area in computer vision and is the foundation
for numerous complex visual tasks. It has been widely applied in industries, agriculture,
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and other fields [12,13]. Since 2014, there has been a remarkable advancement in deep
learning-based object detection techniques. The industry has introduced various algo-
rithms, including Faster R-CNN [14], SSD [15], and the YOLO series [16], to improve object
detection further. With the rapid development of target detection technology, several useful
methods have explicitly emerged for UAV target detection tasks [17–21]. For example, the
authors of [17] argue that convolutional neural networks struggle to balance detection
accuracy and model size. To address this issue, they introduced a recurrent pathway and
spatial attention module into the original extremely tiny face detector (EXTD), enhancing
its ability to extract features from small UAV targets. The model size is only 690.7 kb.
However, this model exhibits a slow inference time and is unsuitable for deployment in
practical engineering scenarios. Ref. [18] proposed a UAV target detection network based
on multiscale feature fusion, which first extracts the target multisensory field features using
res2net, then improves the network performance in terms of both fine-grained multiscale
feature extraction and hierarchical multiscale feature fusion, and finally achieves better
results on a self-built UAV detection dataset. Ref. [19] created a new UAV detection method
that overcomes the limitations of the UAV detection process in terms of parameters and
computational environment to perform realistic detection using web applications. In the
current paper, we first screen an SSD pre-trained model that is suitable for deployment in
this web application to improve detection accuracy and recall. The experimental results
prove that the web application method outperforms the on-board processing method and
achieves better results. Ref. [20] proposes a lightweight feature-enhanced convolutional
neural network that is capable of the real-time and high-precision detection of low-flying
objects. It effectively alerts against unauthorized drones in the airspace and provides
guidance information. Ref. [21] introduces a novel deep learning method called the convo-
lutional transformation network (CT-Net). The backbone of this network first incorporates
an attention-enhanced transformation block, which establishes a feature-enhanced multi-
head self-attention mechanism to improve the model’s feature extraction capability. Then,
a lightweight bottleneck module is employed to control computational load and reduce
parameters. Finally, a direction feature fusion structure is proposed to enhance detection ac-
curacy when dealing with multi-scale objects, especially small-sized objects. The approach
achieves a mAP of 0.966 on a self-built low-altitude small-object dataset, demonstrating
good detection accuracy. However, the FPS is only 37, indicating that there is room for
improvement in detection speed.

Although significant progress has been made in UAV detection technology, existing
detection methods still face challenges in balancing detection accuracy, model size, and
detection speed. The YOLO series detection network has solved these problems effectively.
The YOLO series models have undergone eight official iterations and several branch ver-
sions, showcasing remarkable detection accuracy and speed performance. These models
have extensive applications in various fields, including medicine, transportation, remote
sensing, and industry [22]. Scholars have extensively researched using the YOLO series
models for UAV target detection, as evidenced by numerous studies [23–27]. For example,
in reference [23], by incorporating an attention mechanism module into the PP-YOLO
detection algorithm, enhancements were made to improve its performance. Furthermore,
introducing the Mish activation function addressed the issue of gradient-vanishing dur-
ing the backpropagation process, resulting in a significant boost in detection accuracy.
In Ref. [24], a UAV detection algorithm for complex urban backgrounds was proposed,
based on YOLOv3. It employed an FPN for multi-scale prediction, enhancing the system’s
detection performance for small targets. A lightweight Ghost network was also utilized to
accelerate the model, achieving network lightweight status. Experimental results demon-
strated that the algorithm effectively detected small UAV targets in complex scenes and
exhibited strong robustness. In Ref. [25], a lightweight convolutional neural network, Mo-
bileNetv2, replaced the original CSPDarknet53 backbone of the high-performance YOLOv4
model. This substitution aimed to reduce the model’s scale and simplify the computational
operations. Experimental results demonstrated that Mob-YOLO could achieve accurate
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real-time monitoring of UAV targets with smaller model sizes, making it deployable with
onboard embedded processors. In Ref. [26], a YOLOv5-based distributed anti-drone sys-
tem was proposed. This system integrates airport defense capabilities to address UAV
jamming scenarios by incorporating features such as automatic targeting and jamming
signal broadcasting, enabling the interception of illegal UAVs. To cater to the wide no-fly
zone of the airport, the system is deployed around the airport using distributed clustering,
effectively resolving the issues of blind detection and target loss. Experimental results
have demonstrated the high accuracy of automatic targeting based on the YOLOv5 al-
gorithm, with the inference speed and model size meeting real-time hardware detection
requirements. Although the system needs to be more innovative to improve YOLOv5,
the successful application of UAV target detection technology to practical engineering
scenarios is also informative. Ref. [27] proposed the YOLOX-drone, an improved target
detection algorithm for UAS based on YOLOX-S. Based on the YOLOX-S target detection
network, this paper first introduces a coordinated attention mechanism to improve the
image highlighting of UAV targets, enhance useful features, and suppress useless features.
Secondly, for this paper, a feature aggregation structure has been designed to improve the
representation of useful features, suppress interference, and improve detection accuracy.
The improved algorithm performs well on both the publicly available DUT-Anti-AV dataset
and the self-generated dataset, demonstrating its strong obstacle-detection capability.

Combining the improvement ideas proposed in the above-related literature on the
YOLO series, this paper improves on the YOLOv8s model and offers a new model suitable
for tiny UAV object detection, which achieves high detection accuracy and speed on the
challenging small UAV dataset, and dramatically reduces the size of the model and the
number of parameters. This study provides a new approach for model deployment in the
field of tiny UAV object detection.

3. Methods
3.1. YOLOv8 Network Structure

YOLOv8 builds upon the success of previous versions of YOLO and introduces new
features and improvements to enhance performance and flexibility further, achieving top
performance and exceptional speed. YOLOv8 offers five different-sized models: nano,
small, middle, large, and extra-large. The Nano model has a parameter count of only
3.2 million, providing convenience for deployment on mobile and CPU-only devices. In
order to balance detection accuracy and speed, this paper employs YOLOv8s as the model
for UAV detection, which is obtained by deepening and widening the nano network
structure. YOLOv8 is divided into the backbone, neck, and head, which are used for feature
extraction, multi-feature fusion, and prediction output. The design of the YOLOv8 network
is shown in Figure 1.

The feature extraction network mainly extracts individual scale features from images
created by the C2f and SPPF modules. The C2f module reduces the network by one convo-
lutional layer based on the original C3 module, making the model more lightweight. It also
incorporates the strengths of the ELAN structure from YOLOv7, effectively expanding the
gradient branch using bottleneck modules to obtain richer gradient flow information [28].
SPPF reduces the network layers based on SPP (spatial pyramid pooling) [29] to eliminate
redundant operations and perform feature fusion more rapidly. The multiscale fusion
module adopts a combination of an FPN (feature pyramid network) [30] and PAN (path
aggregation network) [31]. By bi-directionally fusing the low-level features and high-level
features, it enhances low-level features with smaller receptive fields and improves the
detection capability of targets at different scales. The detection layer predicts target po-
sitions, categories, confidence scores, and other information. The head part of YOLOv8
switches from an anchor-based to an anchor-free approach. It abandons the IOU matching
or single-side scale assignment and uses the task-aligned assigner for positive and nega-
tive sample matching. Ultimately, it performs multi-scale predictions using 8×, 16×, and
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32× down-sampled features to achieve accurate predictions for small, medium, and large
targets. The detailed modules in the YOLOv8 network are illustrated in Figure 2.
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3.2. Improved YOLOv8 UAV Detection Model

YOLOv8 extracts the target features by using a deep residual network. It completes
the multiscale prediction using the PAN structure, but YOLOv8 still performs three down-
sampling iterations when extracting features to obtain the maximum feature map. However,
much of the target feature information is lost, which could be useful for detecting tiny
targets. Therefore, this paper improves YOLOv8 and proposes a network model for UAV
micro-target detection, and the improved network structure is shown in Figure 3. The
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specific improvement schemes are as follows. (1) We enhanced the detection capability of
the model for tiny targets by adding a high-resolution detection branch in the detection
head part; meanwhile, the detection layer and its related feature extraction and fusion
layer for large target prediction were cut, and the model parameters were reduced. (2) The
multiscale feature extraction module was improved by using SPD-Conv [32] instead of
Conv to extract multiscale features. (3) The GAM attention mechanism [33] was introduced
into the multiscale fusion module to enhance the model’s fusion of target features.
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3.2.1. Improvement of the Detection Head

A. Adding a tiny-target detection head

In this paper, the detection object is a low-flying UAV. When using the camera to
capture the UAV image, in order to prevent the flying UAV from rushing out of the
camera’s field of view, the camera generally maintains a large area of view. Hence, the
proportion of the UAV in the image is usually small. The original YOLOv8 model backbone
network down-samples for a total of five times to obtain five layers of feature expressions
(P1, P2, P3, P4, and P5), wherein Pi denotes a resolution of 1/2i of the original image.
Although multi-scale feature fusion is achieved in the neck network via top-down and
bottom-up aggregation paths, this does not affect the scale of the feature map, and the final
detection head part is detected after passing through P3, P4, and P5. The feature map scales
are 80 × 80, 40 × 40, and 20 × 20, respectively. In the small target detection task, there are
often tiny targets to be detected. The TIB-Net data used in this paper contains many tiny
UAV targets, usually smaller than 10 × 10 pixels in scale. Such marks have lost most of
their feature information after multiple down-sampling and are still challenging to detect
with high resolution by the P3 layer detection head.
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To achieve micro-target identification, as mentioned above, and also gain a better
detection effect, we introduced a new detection head on the YOLOv8 model by P2 layer
features, called the micro-target detection head; the structure is shown in Figure 4. The
resolution of the P2 layer detection head is 160 × 160 pixels, which is equivalent to only
two down-sampling operations in the backbone network, containing richer information on
the underlying features of the target. The two P2 layer features, obtained from top-down
and bottom-up in the neck network, are fused with the same scale features in the backbone
network, in the form of concat, while the output features are the fused results of the three
input features, which makes the P2 layer detection head fast and effective when dealing
with tiny targets. The P2 layer detection head, together with the original detection head,
can effectively mitigate the scale variance caused by the P2 detection head, which, together
with the initial detection head, can effectively reduce the negative effects of scale variance.
The added detection head is specific to the underlying features and is generated from low-
level, high-resolution feature maps, which are more sensitive to small targets. Although
adding this detection head increases the computation and memory overhead of the model,
it significantly improves the detection of tiny targets.
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B. Removing the large-target detection head

The large target detection header P5 layer is obtained by down-sampling the image
by a factor of 32. When the target size is smaller than 32 pixels, it is likely that, at most,
only one point of the target is sampled or not sampled. Therefore, the YOLOv8 large target
detection layer is redundant when detecting small-sized UAV targets. Based on the above
conclusions, this paper cuts out the large target prediction layer and the related feature
extraction and feature fusion layers from the YOLOv8 network structure. It only retains the
4-fold down-sampling, 8-fold down-sampling, and 16-fold down-sampling feature maps
for UAV prediction. In the improved network structure shown in Figure 3, the 16-fold
down-sampled feature maps of the third C2f layer are directly fed into SPPF for multi-scale
feature extraction. The fused feature maps are then discarded from the Upsample-Concat-
C2f module and directly connected to the next module, and all network layers after the
medium target detection layer are discarded. This improved network structure reduces the
computational bottleneck by removing redundant calculations with guaranteed accuracy.
The improved detection head is shown in Figure 4.
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3.2.2. Improvement of the Feature Extraction Module

When the image shows good resolution, and the detection object is of moderate size,
the image contains a significant enough amount of redundant pixel information that strode
convolution (i.e., stride > 1) can conveniently skip this redundant pixel information. The
model is still able to learn features efficiently. However, in more complex tasks involving
ambiguous images and small objects, the assumption of redundant information no longer
holds, and the current model starts to suffer from a loss of detail, which significantly
impairs its ability to learn features. Small objects are challenging to detect because they are
characterized by low resolution and have limited information about the content needed
to learn patterns. In YOLOv8, the feature extraction module Conv, a stride convolutional
layer, rapidly degrades its detection performance in tasks with low image resolution or
small detection objects. For this reason, the current paper introduces a new CNN building
block, SPD-Conv, in the feature extraction stage to replace the stride convolution layer.
SPD-Conv consists of an SPD (space-to-depth) layer and a non-stride convolution layer and
can be applied to most CNN architectures. In an earlier study [32], the authors introduced
SPD-Conv into the backbone and neck of YOLOv5. They experimentally demonstrated
that the method significantly improved the performance in complex tasks dealing with
low-resolution images and small objects. Combined with the improved ideas of this paper
for YOLOv5, demonstrated experimentally, we only need to introduce SPD-Conv in the
feature extraction module (i.e., backbone) of YOLOv8 to improve the detection of tiny
UAV targets without adding too much redundancy, as shown in Figure 3. The SPD-Conv
structure is shown at a scale = 2 in Figure 5.
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The SPD-Conv operation consists of two steps. Firstly, the feature map of the input
image undergoes preprocessing from space to depth; subsequently, the preprocessed feature
map is subjected to a standard convolution. Figure 5 illustrates the feature map of a C1
channel, demonstrating the process of slicing up the input feature map. After pruning, four
sets of sub-shaped images are obtained, where each sub-shaped image retains the same
number of channels as the input feature map. As the scale is set to 2, the width and height
of the output feature map are halved compared to the input. The resulting sub-feature
images are combined through a standard convolution, ensuring the preservation of all
sub-feature information due to the use of a standard convolution with a step size of one.

3.2.3. Improvement of the Feature Fusion Module

GAM, an attention mechanism module, is a lightweight, practical, and simple com-
ponent that can be seamlessly integrated into CNN architectures. Its primary purpose
is to enhance the performance of deep neural networks by minimizing information loss
and amplifying global interaction representation within a given feature mapping. The
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GAM module adopts the CBAM attention mechanism, which operates from channel to
spatial order. In an earlier work [33], the GAM module was successfully integrated into
various models across different datasets and classification tasks, resulting in significant
improvements in model performance that underscore the efficacy of the GAM module. As
a plug-and-play module, GAM is widely cited, as in the literature [34], by inserting GAM
into the backbone and head of YOLOv7, enabling the network to extract critical features by
amplifying the interaction of global dimensional features. The GAM structure is shown in
Figure 6.
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Given the mapping of input attribute F1, intermediate states F2 and output F3 are
defined as follows:

F2 = Mc(F1) ∗ F1 (1)

F3 = Ms(F2) ∗ F2 (2)

Since small targets are small in size and have few and inconspicuous features, adding
the GAM attention module to the feature fusion network can amplify global interaction
and enhance the retention ability of the network for small target features, while directly
improving the feature fusion in the neck part of the network. In the detection task, the
GAM attention module can help the model to extract the attention region effectively and
improve the detection performance.

4. Experimental Preparation and Results

In this paper, we use the public UAV dataset TIB-Net [17] to evaluate the model’s
performance and introduce the dataset, network setup and training, evaluation index,
ablation experiment, comparison experiment, and self-built dataset experiment.

4.1. Dataset Introduction

The TIB-Net UAV dataset comprises 2850 images showcasing various types of UAVs,
including multi-rotor UAVs and fixed-wing UAVs. The images were captured by a fixed
camera on the ground at a distance of about 500 m from the aerial drones, and the resolution
of the collected images was 1920 × 1080 pixels. These scenes cover several low-altitude
scenes (sky, trees, buildings, etc.) from UAV flight images, fully considering samples at
different times of the day and in different weather. It can be seen from Figure 7 that the
UAV occupies only less than 1% of each image. Some of the samples are shown in Figure 8.

4.2. Network Setup and Training

This section details the training process of the TIB-Net dataset on YOLOv8 and the
modified YOLOv8. The hardware configuration used for the experiments is an 8 GB
NVIDIA GeForce RTX 3070 graphics card, the deep learning framework PyTorch 1.13.1,
Python version 3.7.15, CUDA version 11.7, and Ubuntu 22.04 as the operating system.
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4.2.1. Loss Function Setting

The loss functions of the improved YOLOv8 are consistent with YOLOv8, and both
include rectangular box loss (Lossbox), distribution focus loss (Lossd f l), and classification
loss (Losscls).

Loss = a · Lossbox + b · Lossd f l + c · Losscls (3)

Among them, a, b, and c all represent the weight proportion of the corresponding loss
function in the total loss function. In this experiment, the three weights are a = 7.5, b = 1.5,
and c = 0.5, respectively.

4.2.2. Network Training

Before training, the dataset images and labels are divided into the training set, val-
idation set, and test set in a ratio of 7:1:2. The maximum number of epochs for training
the dataset is set to 150, with the first three epochs used for warm-up training. The SGD
optimization strategy is employed for learning rate adjustment, with an initial learning
rate of 0.01. Considering the presence of numerous tiny objects in the sample images
and the need to balance real-time performance with accuracy in the detection process, the
sample size is normalized to 640 × 640. This size allows the model to be deployed on edge
devices without losing too much helpful information from the images. To ensure fairness
and the comparability of the model’s performance, no pre-trained weights are used in
ablation or comparative experiments. Additionally, all training processes share consistent
hyperparameter settings. The most important parameter settings for the training process
are shown in Table 1.

Table 1. Important parameter setting table.

Parameters Setup

Epochs 150
Warmup-epochs 3

Warmup-momentum 0.8
Batch Size 8

Imgsize 640
Initial Learning Rate 0.01
Final Learning Rate 0.01

Patience 50
Optimizer SGD
NMSIoU 0.7

Momentum 0.937
Mask-ratio 4

Weight-Decay 0.0005

4.3. Evaluation Indicators

To validate the model performance, P, R, AP, mAP, the number of parameters, model
size, and frames per second (FPS) [35] are chosen as experimental evaluation indicators.

(1) Accuracy and recall rates are calculated as follows:

P =
TP

TP + FP
· 100% (4)

R =
TP

TP + FN
· 100% (5)

where TP (true positives) denotes the number of targets detected correctly, FP (false pos-
itives) denotes the number of backgrounds detected as targets, and FN (false negatives)
denotes the number of targets detected as backgrounds.

(2) The average precision and average precision mean are calculated as follows:
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AP =
∫ 1

0
p(r)d(r) (6)

mAP =
1
N ∑N

i=1 APi (7)

where N is the number of categories and AP is the average accuracy of each category. In
our UAV detection task, N = 1.

4.4. Ablation Experiments

For this section, based on the TIB-Net UAV dataset, ablation experiments were con-
ducted to explore the improvement effects of each added or modified module on the overall
model. Starting with the original YOLOv8s as a baseline, the detection head, backbone,
and neck improvements were sequenced. To analyze the performance improvement of
each module, the benchmark Model 1, improved Model 2 (with added tiny-head), im-
proved Model 3 (added tiny-head and cropped large-head), improved Model 4 (with added
tiny-head, cropped large-head, and improved SPD-Conv), improved Model 5 (with added
tiny-head, cropped large-head, and added GAM), and improved Model 6 (with added
tiny-head, cropped large-head, improved SPD-Conv, and added GAM) were defined. The
changes in evaluation metrics for these six models were quantitatively explored, and the
optimal results for each evaluation metric were highlighted. The experimental results of
the models on the TIB-Net dataset are shown in Table 2.

Table 2. Results of the various ablation experiments.

Components 1 2 3 4 5 6

+Tiny-Head
√ √ √ √ √

-Large-Head
√ √ √ √

+SPD-Conv
√ √

+GAM
√ √

P 81.4% 92.2% 91.9% 92.6% 93.1% 93.3%

R 78.1% 91.6% 91.6% 92.8% 92.2% 93.3%

mAP 86.1% 94.4% 93.5% 94.9% 93.6% 95.1%

Parameters/million 11.126 10.852 3.527 4.209 3.785 4.467

Model Size/MB 21.9 22.1 7.3 8.7 7.9 9.2

FPS/f.s-1 285 217 259 232 246 221

Referring to Table 2, it can be seen that:

1. The increase from the tiny detection head improved the model by 10.8%, 13.5%,
and 8.3% for P, R, and mAP, respectively, indicating that the increase from the high-
resolution detection head can effectively enhance the detection ability of tiny targets.
At the same time, it can be seen that after trimming off the large target detection layer,
the parameter amount was reduced by 70.2% and the model size was reduced by
67%, while R remained unchanged, P was reduced by 0.3%, and mAP was reduced by
0.9%, indicating that the low-resolution detection head made little contribution to the
detection of tiny UAV targets and generated a large redundant network.

2. The experimental results of improving models 3, 4, 5, and 6 show that improving
the SPD-Conv module had a better improvement effect on the recall R of the model,
indicating that improving the Conv module to SPD-Conv in the backbone network can
better retain the features of the minutiae targets and reduce the probability of missing
detection for the minutiae targets; adding GAM had a better improvement effect on
the accuracy P of the model, indicating that adding the GAM attention module in the
addition of the GAM attention module in the neck had a good impact on the feature
fusion of the network and reduced the probability of false network detection. When
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both SPD-Conv and GAM were added, P, R, and mAP were improved, although the
number of parameters and the model size slightly increased.

3. Comparing the experimental results of the improved model 6 (i.e., our model) and
model 1 (i.e., the base model), as shown in Figure 9, we can see that because the
tiny-head, SPD-Conv, and GAM modules added some inference time, the improved
model FPS metric reached 221/f.s-1, which is lower compared to the 285/f.s-1 of the
base model; however, it can still guarantee meeting the real-time requirement in actual
deployment. In addition, our model significantly improved the P, R, mAP, number
of parameters, and model size compared with the base model, with P, R, and mAP
improving by 11.9%, 15.2%, and 9%, respectively. The number of parameters and
model size decreased by 59.9% and 57.9%, respectively, thus proving the effectiveness
and practicality of the improved model.
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Figure 9. Comparison graph between our model and the YOLOv8s experiment (parameters, model
size, and FPS are normalized separately).

In order to observe the detection effect of the improved model more intuitively, the base
model YOLOv8s and the improved model in this paper are used for drone detection, and the
effect comparison graphs are shown in Figures 10 and 11, respectively. In Figures 10 and 11,
the detection results of YOLOv8s are shown on the left, and the detection results of the
improved model are shown on the right. The UAV position and confidence level are indicated
by rectangular boxes and text, respectively, and the details of the area where the UAV is
located are shown in the upper right corner or lower right corner of the images, respectively.

In Figures 10 and 11, a comparison reveals that YOLOv8s exhibit instances of missed
detections when the UAVs are very small or have blended into the background, as shown in
Figure 10a,c,e, while false detections as shown in Figure 11a,c,e, highlighted by the yellow
boxes. In contrast, the improved model proposed in this paper accurately detects small UAV
targets against complex backgrounds such as buildings and trees. Additionally, our method
significantly improves the confidence regarding the detected UAVs. As shown in Figure 10b,
the confidence reached 0.96, while, as shown in Figure 11e,f, the confidence increased from
0.27 to 0.82. Therefore, the improved model in this paper effectively addresses the issues of
missed and false detections of small UAV targets against complex backgrounds.
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4.5. Comparative Experiments

To further verify the advantages of the algorithm used in this paper, the algorithm
in this paper was compared with other YOLO series algorithms for experiments, and
four advanced YOLO series algorithms (YOLOv5-S [36], YOLOX-S [37], YOLOv7 [38],
YOLOv7-tiny) at the present stage were selected on the TIB-Net dataset, taking into account
the lightweight model size and detection performance, respectively. To fully reflect the
model’s superiority in this paper, the TIB-Net [17] model was also selected as a comparison
object in the experiments. The parameters of the comparison experiments were carried out
according to Table 1, and the evaluation metrics were consistent with Table 3. The selected
experimental models are all official versions. The results of the comparison experiments
are shown in Table 3.
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Table 3. Comparison of experimental results.

Methods P R mAP Parameters/Million Model Size/MB FPS/f.s-1

TIB-Net 87.6% 87% 89.4% 0.163 0.681 5
YOLOv5-s 88.1% 90.9% 91.2% 7.013 14.3 256
YOLOX-s 90.5% 80.6% 88.7% 9.0 62.5 132
YOLOv7 64.2% 56% 52.4% 36.480 74.7 104

YOLOv7-tiny 85% 82.6% 85% 6.007 12.2 227
Ours 93.3% 93.3% 95.1% 4.467 9.2 221

According to Table 3, it can be seen that:

1. Comparing YOLOv7 and YOLOv7-tiny, it can be seen that although the number of
parameters and the model size of YOLOv7 are much higher than the other models, P,
R, and mAP present the worst results. Conversely, YOLOv7-tiny achieves good results
in terms of detection accuracy, with a smaller number of parameters and model size.
The reason for this is that the TIB-Net dataset has a smaller drone size and has fewer
drone features contained in the images, while the more complex YOLOv7 network
structure may learn many useless background features, which, in turn, results in
poorer detection results.

2. The TIB-Net detection network is at the other extreme; it can still maintain better
detection accuracy with a much smaller number of parameters and model size than
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other models. However, one disadvantage is also apparent; the FPS is only 5, far from
meeting the needs of real-time UAV detection.

3. YOLOv5-s yields the best overall performance except for our model, while the FPS
is 256 ahead of all models, and the P and R values are well balanced. In addition,
the detection of YOLOX is also good, but R and FPS are slightly low compared with
YOLOv5-s, and the model size is too large.

4. The improved model proposed in this paper outperforms other models in terms of P,
R, and mAP. In addition, it is at the top of all the models in terms of the number of
parameters, model size, and FPS, while the number of parameters and model size is
only higher than the TIB-Net network; FPS is slightly lower compared to YOLOv5-s
and YOLOv7-tiny, but it can meet the deployment requirements of real-time detection.
Overall, the tiny UAV detection network proposed in this paper achieves better
detection accuracy, model size, and detection speed and can meet the specifications of
practical engineering applications.

4.6. Self-Built Dataset Experiment

In order to evaluate the generalization performance of the model, this paper used
cameras to collect UAV flight images on different scenes and different periods and collected
a total of 1091 images of low-altitude scenes of various models of UAVs from major video
sites such as YouTube and other web channels to make a new dataset. Figure 12 shows
that most of the drones in the self-built dataset also occupy less than 1% of each image,
compared with Figure 7, where this is larger than for the drones in the TIB-Net dataset. In
addition, many new UAV images taken from high altitudes were added, to increase the
diversity of the dataset. Compared with the TIB-Net dataset, where most of the dataset
images are set against the sky, the background of the self-constructed dataset is more
complex, as shown in Figure 13, where the drone blends in with the mountain or plants.
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In the self-built dataset experiments, the new dataset was divided into training and
validation sets in the ratio of 7:3. To be consistent with the TIB-Net dataset, the images
were first resized to 640 × 640 for training, and the training parameters were consistent
with those in Table 1. The experimental results are shown in Table 4 and Figure 14.
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Table 4. Self-built dataset comparison—experimental results.

Model P R mAP

YOLOv8s 88.8% 73.9% 85.2%
Ours 97% 89.5% 95.3%
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As can be seen from Table 4, the P, R, and mAP of the improved model with the new
dataset were 97%, 89.5%, and 95.3%, respectively, which were about 8.2%, 15.6%, and 10.1%
higher, respectively, compared to the pre-improvement period. Comparing Tables 2 and 4,
it can be seen that the improved model improved P by 3.7% in the new dataset because
the UAV target volume in the new dataset was generally larger than that in the TIB-Net
dataset. However, the picture background in the new dataset was more complex. Hence,
the improved model reduced R by 3.8% in the new dataset. Overall, the improved model
still has high detection accuracy and shows that our method has good generalization. The
actual detection results are shown in Figure 15.
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5. Conclusions and Outlook

To address the problem that tiny UAV targets are challenging to detect, this paper
proposes an improved YOLOv8 detection model that can accurately detect UAV image
targets while satisfying edge device deployment. The model overcomes the adverse
effects of UAV size, airspace background, light intensity, and other factors on the detection
task. Specifically, firstly, in the detection head part, the high-resolution detection head is
added to improve the detection capability regarding tiny targets. In contrast, the large
target detection head and redundant network layers are cut off to effectively reduce the
number of network parameters and improve the UAV detection speed. Finally, the GAM
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attention mechanism is introduced in the neck to improve the target feature fusion of
the model, thus improving the model’s overall performance for UAV detection. Ablation
and comparison experiments were conducted on a complex TIB-Net dataset. Compared
with the baseline model, our method improved P, R, and mAP by 11.9%, 15.2%, and 9%,
respectively. Meanwhile, the number of parameters and model size were reduced by 59.9%
and 57.9%, respectively. In addition, the detection model achieved better results in the
comparison experiments and self-built dataset experiments. In conclusion, our method
is more suitable for engineering deployment and the practical application of UAV target
detection systems.

However, due to adding extra detection heads in the model and using both SPD-Conv
and GAM modules, which increased the model inference time, the FPS decreased compared
to the baseline model. In addition, from the self-built dataset experiments, it can be seen that
R decreases when the airspace background is more complex, i.e., the probability of missing
detection increases. Follow-up work will then be devoted to improving the detection
accuracy in more complex airspace backgrounds while reducing the model inference time.
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