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Abstract: An unmanned swarm is usually composed of a group of homogeneous or heterogeneous
hardware platforms, software control systems, and interfaces for human—-computer interaction that
operate collectively to achieve a specific goal by information interaction. They exhibit robustness
and fault tolerance when facing complex missions, making it crucial in military, transportation,
intelligent traffic, and other fields. However, the coupling between the hardware and software of
a heterogeneous unmanned swarm can indeed have significant implications for system flexibility,
software development and deployment, and hardware maintenance. Over the years, there has been a
significant shift from traditional hardware-focused control systems to a greater emphasis on the core
software layer. In this paper, a distributed network architecture is proposed to solve this problem,
in which hardware resources are abstracted and represented to accomplish standardization and
unification by defining a consistent and uniform set of data formats, and a resource pool of hardware
data is constructed to realize the function that the number and scale of platforms is irrelevant, the
task module can be plug-and-play at any time, and the software can be configured on demand. The
resource scheduling of a single platform is achieved through process and thread communication using
shared memory, while the resource scheduling of a cross platform is achieved through a network using
request and response and subscription and notification. As a result, it can satisfy the development of
functional modules in a software-defined mode and gradually improve the intelligence capability of
an unmanned swarm. Based on the above architecture, the overall framework of the autonomous
navigation system and the collaborative control system has been successfully established. Finally, a
hardware-in-the-loop simulation environment is constructed, and the integration and verification of
the proposed distributed architecture is carried out by the cooperative formation experiment, which
proves the feasibility of this proposal.

Keywords: unmanned swarm; distributed; network architecture; plug-and-play; software-defined

1. Introduction

With the rapid iteration and upgrading of new technologies such as artificial intelli-
gence, electronic communication, cloud computing, and the Internet of Things, unmanned
swarms have been promoted from the laboratory to our lives. An unmanned swarm can
enter dangerous areas, find trapped or missing people, and provide real-time information
to help speed up rescue operations. Compared with a homogeneous unmanned swarm,
heterogeneous unmanned swarms are composed of different types or categories of un-
manned platforms, which have different features and functions in terms of hardware.
For example, if consisting of unmanned aerial vehicles (UAVs), unmanned ground vehicles
(UGVs), and unmanned surface vehicles (USV), it can be regarded as a heterogeneous
unmanned swarm. A homogeneous swarm is suitable for relatively simple tasks, while a
heterogeneous swarm is applicable for handling more complex and diverse tasks, but may
require more technology and resources to solve interaction problems between different
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hardware. For heterogeneous unmanned platforms, software is generally strongly depen-
dent on hardware. Unfortunately, deploying software with the same functionality to a new
hardware platform often requires substantial modification and adaptation efforts, which
significantly hampers the software migration capability. Then, the software engineers
have to carry out repetitive work according to the programming specifications of specific
hardware. In order to overcome this limitation and free developers from heavy work,
there is an urgent need for a software development environment that is independent of the
computer operating system and has nothing to do with the hardware, which exists between
the underlying operating system and the upper-level functional software. It utilizes a
standardized programming interface to offer a unified model and is responsible for the
scheduling and services of functional software. The fundamental software components
that enable the mentioned functions are referred to as communication middleware, the
robot development environment, or the robot operating system [1]. Player/Stage, which is
regarded as one of the earliest robotic communication middleware, provides a fundamental
framework, drivers, and loaded device shared library [2], not treating multiple machines
as a whole but treating each device individually merely as a data repository for each robot
actuator and sensor, where users can conduct control programs on demand [3,4]. Micro [5]
is an object-oriented distributed middleware that improves the software development
process by increasing the integrity of heterogeneous software, modularity, and portability
of robotic applications, provides efficient data exchange and reliable communication, and
is widely used in industrial environments. The 4D /real-time control system (4D/RCS)
reference model architecture has been developed for military unmanned vehicles regarding
how their software components should be identified and organized by the National Insti-
tute of Standards and Technology (NIST), which is a typical hierarchical control system
architecture [6]. Since the hierarchical structure of the system has to be designed in advance,
this architecture is not suitable for incremental development. It is unable to seamlessly
integrate new functional modules in response to changing requirements. Additionally,
the 4D /RCS architecture only defines interfaces at the conceptual and semantic levels, lack-
ing standardized definitions at the syntactic, messaging, and transmission levels. Willow
Garage Corporation released a distributed robot operating system (ROS) [7] that defines
the universal and custom protocol of robot sensors and actuators and is widely used in the
academic domain. The point-to-point communication mechanism is used, nodes serve as
the fundamental communication unit, and multi-process or multi-machine cooperation is
achieved through the master node. However, due to the inherent attributes of real-time and
reliability, it is rarely used in military equipment. Joint architecture for unmanned systems
(JAUS) was proposed by the United States Department of Defense (DoD) to develop an
open architecture for the domain of unmanned systems [8]. It establishes the methods of
information exchange and protocol specifications among functional modules of unmanned
systems, providing a set of message sets that lay the foundation for interconnection and
interoperability between unmanned systems. However, JAUS is not a comprehensive
architecture: it does not discuss how to design unmanned systems but instead defines
the information exchange between high-level constituent modules of unmanned systems.
A data-centric publish/subscribe middleware called data distribution service (DDS) by
The Object Management Group (OMG) has been proposed, which sets standards for data
exchange, behavior interaction, and quality of service requirements among distributed
applications. It is considered the next-generation standard for system integration and is
suitable for IoT scenarios with high real-time performance and flexibility [9]. However,
a significant amount of computational and memory resources is required to manage data
publishing, subscription, and communication, which could impose a burden on resource-
constrained embedded systems. BMW Corporation and other manufacturers established
the AUTOSAR Alliance to develop a set of automotive electronics software development
environment and software architecture standards for electronic control units for the auto-
motive industry, namely automotive open system architecture (AUTOSAR) [10], in which
oems develop modules or systems. CyberRT is an open-source, high-performance runtime
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framework designed by Baidu specifically for autonomous driving scenarios. AUTOSAR
and CyberRT are primarily aimed at civilian autonomous driving systems, typically used
in urban scenarios with relatively fixed environments and a single platform, that are less
commonly applied in the domain of heterogeneous unmanned swarms. The Defense
Advanced Research Projects Agency (DARPA) proposed the system of systems integra-
tion technology & Experimentation (SoSITE) project for system integration [11], which
covers combat capability, weapon payloads, positioning and navigation, time synchroniza-
tion, warfare management, and data communication, distributed across a large number
of manned and unmanned platforms. However, it is still in its experimental stage and
has not yet reached a high level of maturity. Inspired by the organization structures of
collective robots, a morphable, intelligent, and collective robot operating system (micROS)
was proposed, which consists of many individuals interconnected and a layered structure
for each node that could be robots, computers, or humans. Networking is the basis for con-
structing a distributed architecture and real-time is a distinguished feature [12]. However,
due to its resource-intensive nature and being tightly coupled with the operating system
before being made available to clients, limitations on its widespread adoption within an
unmanned swarm are imposed.

The main contribution of the paper is to propose a more general and versatile dis-
tributed software architecture designed to facilitate collaborative tasks among heteroge-
neous unmanned swarms. This architecture addresses the challenge of managing and
coordinating diverse unmanned platforms by centralizing the extraction and characteriza-
tion of their hardware resources. As a result, the management of these different unmanned
systems becomes more consistent and streamlined, relieving software developers from the
burden of engaging in labor-intensive and repetitive tasks. In essence, the proposed archi-
tecture allows for seamless communication and cooperation between various unmanned
systems that may possess differing hardware configurations, capabilities, and character-
istics. By providing a unified framework for accessing and utilizing hardware resources,
the architecture ensures that software developers can focus more on the development of
higher-level functionalities and applications, rather than grappling with the complexities
of managing diverse hardware interfaces and interactions.

The research content of this paper can be summarized in the following parts.

(1) A software architecture for unmanned swarms is proposed, realizing the virtual-
ization, standardization of hardware resources, and functionalization of software resources,
and satisfying the agile development and deployment of heterogeneous unmanned swarm
control systems.

(2) The resource scheduling and management mechanism for a single platform is
designed to realize the abstract expression of resources independent of hardware. The com-
munication mechanism of the process is implemented between functional modules while
the thread is implemented within functional modules through a packaged API interface,
satisfying the plug-and-play of software modules.

(3) The resource management and scheduling mechanism are designed for a cross
platform, which achieves the rapid invocation of resources required for multi-unmanned
platforms collaboration through cross-platform resource request and response and sub-
scription and notification.

(4) It is proposed to use a real-time memory database to establish a unified global data
space for the whole system, enabling us to provide a unified data international interface for
a single platform and multi-platforms that achieves fast data exchange and distribution
through a balanced tree.

(5) Constrained by unmanned swarm formation tasks, the system integration ex-
perience is carried out in typical scenarios to verify the reliability and stability of the
distributed architecture.
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2. Methods
2.1. Overall Architecture

The overall architecture proposed in this paper for an unmanned swarm is divided into
four layers, shown in Figure 1 from bottom to top, such as the hardware layer, basic software
layer, communication middleware of single platforms and multi-platforms, and functional
software layer.
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Figure 1. The schematic diagram of overall architecture.

The hardware layer is composed of sensors, actuators, computing units, communi-
cation units, network devices, and IO interfaces of unmanned swarms, which is some of
the main factors that contribute to hardware resource heterogeneity. The sensors contain
a lidar, millimeter wave radar, camera, GNSS/INS, etc. The actuators contain a steering
system, braking system, mission payload system, etc.

The basic software layer is composed of the operating system, third-party software
libraries, communication driver software, and IO driver software, which offer the fun-
damental support for the functional software and software framework. The operating
system is based on Linux and its variants, such as Ubuntu, NeoKylin, Unity Operating
System (UOS), etc., and the GCC/G++ compiler and Python compiler are configured
to form the software development environment for the unmanned swarm. Third-party
software libraries are related to functional software for processing sensor data. The com-
munication driver software contains Ethernet communication, serial communication, CAN
communication, etc. The IO driver software contains PWM, ADC, etc., which accomplishes
standardized data interface for hardware devices.

The software framework layer is composed of a single platform and multi-platforms.
The software framework within the platform adopts a unified and standardized technical
protocol. The unified representation of resources between platforms is realized through
resource virtualization, and data aggregation and distribution between multi-platforms is
realized based on cross-platform resource scheduling.
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The functional layer is mainly composed of application software and test software.
The former contains human-machine interaction, path planning, positioning and orienta-
tion, intelligent decision, motion control, etc. The latter contains a data playback module,
which supports multiple speed adjustments and is used to search for problems in the system.

Based on the above design, software and hardware can be decoupled individually,
the function of an unmanned swarm is mainly defined by software, and hardware is not
bound to a specific function but is abstracted into a resource pool of software or service,
which contributes to the construction of a software-defined unmanned swarm.

2.2. Resource Representation

Unmanned systems are often characterized by their digital nature in which all physical
signals and data are converted into digital format for processing, communication, and
control. With the exception of physical devices in the hardware layer, the entire design
process can be considered purely digital, especially when dealing with a software-centric
system. The essence of the concept involves simulating the behavior of the real-world
environment in a continuous time and space context. The simulation progress is carried
out by breaking down time into smaller segments through an operation cycle, shown in
Figure 2. The state or discrete data are abstracted as information, corresponding to specific
moments in time.
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Figure 2. The schematic diagram of digital system.

The communication between unmanned systems requires a high real-time perfor-
mance. As a result, a lightweight representation of large amounts of data generated is
needed to improve the efficiency of the information interaction between heterogeneous
unmanned systems.

In the integration process of existing modules within a single platform system, chal-
lenges arise due to the use of different data protocols in original modules. This can involve
a nested structure and class that result in non-contiguous memory addresses because of
the varied nature of the data being stored. Handling large data blocks, particularly in the
megabyte range, can introduce challenges related to dynamic memory allocation, copying,
and performance, which may lead to failures or be time consuming. To address these issues,
the structure is introduced for managing diverse data blocks, ensuring dynamic memory
allocation and recycling, which mitigates the risk of memory leaks and redundant data
copying. Within a single platform, a unified data protocol is adopted, consisting of a frame
header followed by data. The API interface of the middleware is utilized to implement data
concatenation, which involves combining multiple separate pieces of data into a single,
continuous, and larger piece of data for transmission. Subsequently, the functions provided
by the middleware are invoked to facilitate the actual data transmission and reception,
shown in Figure 3.
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Figure 3. The schematic diagram of single-platform resources.

For multi-platform systems, the European Telecommunications Standards Institute
(ETSI) abstracted heterogeneous unmanned systems into resource trees through a tree
data structure to manage and organize resources, which not only visually demonstrated
the relationship between unmanned systems in an intuitive and efficient way but also
offered practical benefits, such as generating unique identifiers and facilitating a resource
search through a hierarchical structure. In order to facilitate the interaction between
multi-platforms, a resource virtualization middleware is designed to create the root node,
representing the highest-level tree structure for each respective platform, which is uniquely
identified by a path such as a string or other identifier, shown in Figure 4. The resource
virtualization middleware utilizes the component structure information provided in the
resource template file, including details about components such as fused situation maps
and the pose of the multi-platforms, constructing the corresponding resource structures.

root<rootResource>

global<globalResource>
create(@2020-12-25 16:16:02.279
modified @2020-12-25 16:16:02.279

Robot<resourceObject>
create(@2020-12-25 16:16:07.597
modified@2020-12-25 16:16:07.597

State<resourceObject>
create@2020-12-25 16:16:07.597
modified@2020-12-25 16:16:07.597

Command<resourceObject>
create@2020-12-25 16:16:07.614
modified@2020-12-25 16:16:07.614

Direction<attribute>
create(@2020-12-25 16:16:07.615
modified@2020-12-25 16:16:07.712
readOnly=false

name=Direction

type=string

data=left

Stop<attribute>
create@2020-12-25 16:16:07.659
modified@2020-12-25 16:16:07.713
readOnly=false

name=Stop

type=string

data=true

Figure 4. The structure of resource tree.
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2.3. Resource Scheduling of Single Platform

For the autonomous navigation software of a single platform, the communication
middleware is proposed to satisfy requirements. The middleware is designed to manage
communication between threads, processes, and the Ethernet, providing developers with
a means to develop multi-threaded, multi-process, and multi-network communication
programs. The middleware enables real-time data exchange among all modules in the
entire system, and provides quality of service (QoS) for various types of communication
data. Figure 5 shows that the communication middleware is composed of memory manage-
ment, thread management, socket management, time management, and task management,
deployed as an intermediate layer between operating systems and functional software
on computing.

(1) Unified Programming Interface. Whether it is inter-thread, inter-process, or net-
work communication, the same programming interface is used. Developers only need to
modify the addresses to achieve fast redeployment between any devices.

(2) Single Socket Management. A communication socket can simultaneously bind (or
connect) multiple internal and external ports. Developers only need to focus on the connec-
tion topology between devices and modules in the system to achieve rapid networking.

(3) No Startup Order Requirement for the Entire Network. There is no distinction
between the server and client, and developers do not need to worry about whether the
server is started first.

(4) Timeout Detection and Blocking Support. All types of data transmission support
both blocking and non-blocking modes. Developers can use blocking mode to achieve
synchronization triggers between multiple threads, processes, and networks.

(5) Support for Multiple Communication Modes. The point-to-point and publish—
subscribe models are allowed, enabling the rapid construction of one-to-one, one-to-many,
and many-to-many network topologies.

Communication middleware Thread communication within function module

+task0_loop() :virtual void
Memary management Thread management F—| +taskl_loop() :virtual void
+task2_loop() :virtual void
Ensure that data blocks can be Ensure that threads are started +task3_loop() :virtual void
gm)ar;ln:;tcizgl)i;?agggezng prevent and stopped accurately, and +task4_loop() :virtual void
memary leaks or repetitive data achieve rr_lult!-thread
copying synchronization M

Process communication between function

Socket management Time management

module

Create communication sockets,
support peer-to-peer (PAIR) mode,
publish-subscribe mode (PUB-

Ensure that each task in each
module runs on its intended
schedule

+Driver module
+Cost-map fusion module

SUB) +Objgc_t detection and tracking Module
+Decision module
e

Task management

Provides flexible thread scheduling policies, such as the ability to set a specific task K—
to run on a CPU core, change the priority of a task

Operating system

Figure 5. The schematic diagram of communication middleware.

According to the complexity of the task, the autonomous navigation function module
is divided into several sub-modules, and each sub-module realizes independent functions,
supports the plug-and-play of the functional module, and completely liberates the de-
veloper from heavy work. Functional modules are deployed on a computer, and each
runs in an independent process, which, in turn, contains multiple threads, each thread
achieving relatively independent functions, shown in Figure 6. For example, the multi-line
lidar modeling module is realized by two threads: one thread realizes the function of data
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acquisition, and the other thread realizes the function of modeling, such as ground seg-
mentation. The orientation module is implemented by one thread. The decision module is
realized by four threads, which are input acquisition, local path planning, control command
delivery, and path display. The platform control module is realized by three threads, which
can collect control commands, send them to the chassis controller, and collect the chassis
status. The human-machine interaction module is realized by two threads: one thread realizes
the communication function with the console and receives the task path and remote control
commands, and the other thread realizes the collection and feedback of the platform state.
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Path
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Figure 6. The schematic diagram of unmanned platform control system.

2.4. Resource Scheduling of Muti-Platform

The status data and control data of unmanned platforms are expressed in the form of
resources. However, the lack of universality in communication protocols between different
unmanned platforms can indeed present challenges when attempting to achieve intercon-
nectivity and interoperability. Therefore, a standard approach must be used to collect,
store, and transfer information of multiple types. In this paper, resource virtualization for a
multi-platform is proposed. The resource tree structure of a neighbor unmanned platform is
registered locally, and network resources are formed locally to represent neighbor resources,
as shown in Figure 7.

The construction of a middleware for cross-platform resource interoperability is a
strategic approach for enabling effective resources scheduling and interaction by introduc-
ing request and response and subscription and notification. The former is used for periodic
data, such as the platform position and platform or payload control commands. The latter
is mainly used for conditional data, such as the delivery of the mission path, driving mode
switching, and device power. Based on the establishment of a resource tree, the local plat-
form can obtain the resource tree structure of the neighbor system. The neighbor resource
is essentially a reference of the local resource in other systems.
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Figure 7. The schematic diagram of cross-platform resource virtualization.

In the implementation of cross-platform request and response, platforms can initiate
requests for network resources through distributed directories, and the neighbor platforms
will respond to the source platform according to the requests. However, due to a limited
communication range, platforms that are relatively far apart cannot directly communicate
with each other. With the help of a distributed directory, platforms select a suitable link
in the dynamic network topology and forward the request to neighboring platforms.
The neighboring platform receives the request, processes it, and then forwards the response
back to the source platform after completing the processing.

The process of cross-platform resource request and response is as follows, shown in
Figure 8.

(1) The network proxy of the resource middleware on the unmanned platform 1 detects
the presence of neighbor unmanned platform 2 and communicates this information that
the neighbor unmanned platform 2 accesses to the distributed directory management.

(2) The resource middleware of unmanned platform 1 uses distributed resource tree
management to request the resource tree structure of neighboring unmanned platform 2
through cross-platform methods.

(3) Neighbor unmanned platform 2 records the current state after receiving the request,
traverses its own resource tree, and records the structure of the resource required. After the
traversal is complete, the entire resource structure is sent to unmanned platform 1.

(4) After receiving the resource tree structure of neighbor unmanned platform 2,
the distributed directory management of unmanned platform 1 registers the resources
of neighbor unmanned platform 2 locally as neighbor resources to complete the request
and response.

For conditional data, if there are only requests and responses from network resources,
each platform has to constantly send requests to monitor whether the resources interested
have changed. This method is not only inefficient but also occupies network bandwidth
and computing resources. Therefore, the subscription and notification of cross-platform
resources is proposed in this paper. Similar to cross-platform resource request and response,
platforms can subscribe to network resources interested. The resource middleware through
the network proxy selects a suitable path and forwards a subscription to neighboring
platforms. When the subscribed resource event is triggered, the neighboring platform will
again use the network proxy and the established path to notify the source platform about
the corresponding resource changes. In this mode, platforms will only receive relevant data
when the resources interested obtain corresponding changes, greatly reducing the load of
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the network and platform. Figure 8 illustrates the process of cross-platform subscription
and notification.

Unmanned platform 1 Unmanned platform n

Resource Resource Resource Resource
Requests Responses Requests Responses

O Root IE

Network . Local
—' resource Middleware resource
Neighbor 1 — -
Resource Tree Distributed Middleware

Directo N directory
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Elements 1 y
Local

Cross platform resource Elements
resource subscfrlpt!or‘/ status

requests/respo notification

Elements nses A
status -

A A Local

Cross platform resource -

resource requests/res
O subscription/notif Requests ponses

ication OR T

O - 4 U Subscription A

N Network proxy Network proxy

eighbor

Directol Responses

OR

Notification
= < Networl
— Lesource
resource

Figure 8. The schematic diagram of cross-platform resource schedule. Red arrows indicate data trans-
mission through subscription and notification methods, and blue arrows indicate data transmission
through request and response methods.

(1) Unmanned platform 1 sends a request to neighbor unmanned platform 2 to sub-
scribe to the resource tree. Neighbor unmanned platform 2 accepts the request and registers
it as a subscription event.

(2) A new resource is created on neighbor unmanned platform 2, and the structure of
the new resource is sent to unmanned platform 1.

(3) Unmanned platform 1 receives new resources from unattended neighbor platform 2
and sends them to distributed resource tree management, which creates corresponding
neighbor resources through universal resource management.

2.5. Dynamic Storage and Management

To back up and store data, a unified global data space is established for the entire
system using a real-time database, named MongoDB, providing a unified data access
interface for multi-platforms. It is responsible for data sharing and exchange among
components in the system, including two major categories, such as periodic data and
conditional data. The data stored in the real-time database are stored in circular queues.
Each functional module is allocated an input circular queue and an output circular queue.
The functional module continuously extracts data from the input circular queue and
decides whether to clear the data based on its own QoS. Messages are formatted as internal
communication frames, storing communication data packets. When extracting data, they
are divided into two parts.

Frame Header Information. The frame header contains information such as the source
platform ID and data type, which plays a crucial role in identifying and categorizing the
data being transmitted.

Data information. This is the actual payload of the communication packet, which
contains the actual data being transmitted.

In order to improve the efficiency of data exchange, a B-tree index is used in this paper,
known for efficient locating and high utilization. It allows for the efficient retrieval and
manipulation of data in the database.
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{

Vsafe = {(U/w) o< \/2 ~dist(v, ) - a1mex & W < \/2 ~dist(v, w) - almax}

Viim = {(v,w) | v€[vg — Aimax - £, 00 + Aomax - t] & we[wo — X1pmax - t, W + Xopax - t]}

3. Results
3.1. Kinematic Model

The unmanned platform has six degrees of freedom, including the x coordinate, y
coordinate, z coordinate, pitch angle, yaw angle and roll angle. In this paper, it is assumed
that the unmanned platform only moves in a plane, so the z-direction value, pitch angle, and
roll angle are 0. Therefore, the x coordinate, y coordinate, yaw angle, velocity, and angular
velocity can be selected to create a five-dimensional state vector. According to the motion
law of the unmanned platform, the kinematics model of the unmanned platform can be
calculated, as shown in Formula (1):

xX(tgs1) x(tg) +v(te) - cos(g(ty)) - At
Y(trs1) y(te) +o(ty) - sin(g(t)) - At
p(ter1) = | @(tk1) | = P(t) +w ()Af =F-p(t) +B-u(ty) (1)
0(tey1) o(ty) +a(t) - A
w(tey1) w(te) + a(ty) - Af

where x(t;) and y(f;) are the x-direction and y-direction coordinates of the unmanned
platform at time t;, respectively. ¢(t;) is yaw angle. v(t) is velocity. w(t) is angle velocity.
a(ty) is linear acceleration, and a(f) is angular acceleration. It is assumed in this paper that
the unmanned platform moves at a uniform speed within a sampling time, so both a(#)
and a(ty) are 0. The matrix F = fiag{1,1,1,0,0}. The matrix B is shown in Formula (2).

cos(p(tg)) - At 0
sin(@(tg)) - At 0
0 At 2)
1 0
0 1

B =

The control vector u(t;) is composed of v(#;) and w(tx), as shown in Formula (3).

(i) = | o) ©)

The DWA (Dynamic Window Approach) algorithm is introduced for implementing
local path planning for the unmanned platforms [13]. The core idea is to sample within the
global space composed of velocity and angular velocity and simulate the motion trajectories
of the unmanned platform at the current velocity for a certain period of time. Using optimal
control theory, the velocity and angular velocity area selected corresponding to the optimal
trajectory from multiple sets of trajectories to control the motion of the unmanned platform.

The velocity and acceleration of unmanned platforms are limited by physical limits,
which can be expressed in Formula (4). Among them, Vy,, is the maximum speed and
angular velocity to ensure that no obstacles are encountered, and Vj;;, is the maximum
speed that the unmanned platform can reach, which ensures the state space of velocity and
angular velocity.

4)

where a1, and ay,4, are the maximum linear deceleration and maximum linear accelera-
tion of the unmanned platform, respectively. a1, and a2,y are the maximum angular
deceleration and maximum angular acceleration of the unmanned platform, respectively.
dist(v, w) is the shortest distance between the predicted trajectory and the obstacle.

As a result, the cost function can be expressed as Formula (5):

G(v,w) = 6 - heading(v,w) + B - distance(v, w) + 7 - velocity(v, w) ()
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where (v, w)e{ Vi fe & Vi, } is the velocity and angular velocity of the current sampling.
heading is the angle difference between the predicted trajectory and the target position.
distance is the distance between the predicted trajectory and the obstacle, and the respective
weights of J, B, and 7.

3.2. Simulation Experiment

To verify the software framework proposed in this paper, a hardware-in-the-loop
simulation system is created. In terms of hardware, 16 heterogeneous unmanned swarms
are planned to be used, of which 5 edge computing devices are selected to simulate the
UGV controller, 10 edge computing devices are selected to simulate the UAV controller,
and 1 edge computing device is selected to simulate a command and control system to
issue mission instructions and monitor the status of various heterogeneous unmanned
systems. The data interaction between unmanned swarms is realized through Gigabit
Ethernet switches, as shown in Figure 9. The hardware specifications of the unmanned
swarm are shown in Table 1.

Table 1. The specifications of a hardware-in-the-loop simulation system.

Devices Specifications
Operating system Windows
Simulation server Memory DDR4 64 GB
CPU Xeon E5-2667v3@3.2 GHz
GPU Nvidia Titan X (Pascal)
Operating system Kylin
UGV 5 Memory DDR4 32 GB
CPU Phytium D2000@2.6 GHz
GPU Cambricon MLU220
Operating system Kylin
Memory DDR4 16 GB
UAV10 CPU Intel i7 6700 K
GPU NVIDIA GeForce GTX 670
Operating system Ubuntu18.04 OR Ubuntu20.04
Memory DDR4 16 GB
UGV (1-4)/UAV (1-9) CPU ARM A78AE v8.2
GPU NVIDIA Ampere architecture
GPU with 64 Tensor Cores

Figure 9. The hardware composition diagram of hardware-in-the-loop simulation system.

In terms of software, all 16 nodes mentioned above are deployed with the software
architecture proposed in this paper, and the UGV and UAV controllers are deployed with
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corresponding path planning algorithm. After the control center issues the task instruction
of the unmanned swarm, it is analyzed by the task-understanding module and sent to
the UGV swarm composed of 5 unmanned platforms and the UAV swarm composed of
10 unmanned platforms. The unmanned platform realizes autonomous navigation and
driving according to the path planning algorithm mentioned above. Each unmanned
platform uploads state data, sensor data, and task instructions to the proposed software
architecture, and builds a resource tree topology locally as the root node. Other platforms
in the neighborhood register in the global node through the network to build an entire
resource tree, which forms a global resource pool. The unmanned swarm can obtain the
messages of other unmanned platforms in the neighborhood through the method of request
and response and subscription and notification, as shown in Figure 10.

Command Center

Mission l
[— Mission Understanding ﬁ
UGV Controller Resource pool UAYV Controller
UGV 1 Resource tree| |Resource tree UAV 1
(Inter/Ubuntu20.04) (uevy) (VAVT) (Inter/Ubuntu20.04)
UGV 2 Resource Resource UAV 2
(Inter/Ubuntu18.04) tree tree (Inter/Ubuntu18.04)
: : (UGV 2) (UAV 2) : :
UGV 5 Retsrource Retsrource UAV 10
(Phytium/Kylin) u Ge\j 5) (u A\e/e 10) (Inter/Ubuntu16.04)
Status/Control/ 9T ==
AN Status/Control/
Sensor data, etc, Request OR Sensor data, etc.
< 5 Subscription 3 L

Data Data < > Data Data
Packing Unpacking Packing Unpacking

Response OR Notification

Figure 10. The schematic diagram of hardware-in-the-loop simulation process.

The resource tree of the unmanned platform mainly includes two types: the periodic
data mainly including the unmanned platform position, orientation, linear velocity, angular
velocity, etc., and the event data mainly based on the task instruction. The experimental
results show that the global traffic of the entire network is 56.07 KBps, the egress traffic
is 14.89 KBps, the ingress traffic is 1.31 KBps, the number of requests and responses is
divided into 25 instances, and the number of notifications is 81,297. Obviously, this is
because the data mounted on the resource tree are mainly periodic data, as shown in
Figure 11. In addition, it takes 11.95015 milliseconds from the mission command issued
by the command center to the receipt of the control information by the heterogeneous
unmanned swarm, which fully meets the needs of air-to-ground unmanned swarms in
performing collaborative tasks.
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Figure 11. The diagram of unmanned system workflow. ((a) indicates that functional software of
15 unmanned platform nodes is started through SSH remote access method of MobaXterm software in
the simulation server. The green part indicates that data synchronization between unmanned platform
nodes is successful. (b) indicates that the unmanned system realizes formation action according to
the issued task. (c) represents the network topology during the movement of the unmanned system,
and (d) represents the resource tree constructed by the unmanned platform, respectively).

4. Discussion

By conducting a practical demonstration and rigorous verification of a formation
driving system integration within a hardware-in-the-loop environment, the proposed
software architecture in this paper shows its ability to facilitate seamless data exchange
and meet the real-time requirements of unmanned systems. Simultaneously, the proposed
software architecture has the following advantages over the classic ROS architecture.

Generalization. ROS is mainly for monomeric robots or homogeneous group robots,
and relies on traditional operating systems, such as Ubuntu, but cannot be adapted to the
common computing equipment such as Phytium, Loongson, and Rockchip and operating
systems such as Kylin and Unity in China. The proposed software architecture in this
paper has been successfully adapted and integrated with common hardware platforms
and operating systems in China due to its universal design pattern, providing valuable
experience for promoting cross-domain heterogeneous unmanned swarm collaboration.

Robustness. Implementing ROS can be resource-intensive in terms of computing
power and memory usage. The overhead associated with ROS communication mechanisms
and managing multiple nodes can lead to increased hardware requirements, especially for
unmanned swarms. The proposed software architecture in this paper adopts a lightweight
design, and the memory and power occupied by transmitting the same data are less.
At the same time, without using the master node, a distributed multi-platform resource
management method based on neighbors is proposed, which can support the decentralized
management of cross-platform resources for an unmanned swarm of any scale.

Real-Time Performance. The bottom layer of ROS uses a UDP/TCP communication
protocol for data transmission, and the proposed software architecture in this paper uses
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shared memory within the platform, while UDP/TCP communication is used between plat-
forms, which has a higher data transmission efficiency and reduces communication delay.

Standardization. While ROS has a vibrant community, some areas of the framework,
such as naming conventions, message formats, and package structures, may lack stan-
dardized practices, making code integration and sharing more challenging. The proposed
software architecture in this paper adopts a unified structure definition within a plat-
form, and uses a resource tree between platforms to perform the unified abstraction and
representation of data resources, which is universal.

However, only 15 unmanned heterogeneous platforms are implemented to conduct
formation driving tasks, including 5 UGVs and 10 UAVs. When the number of unmanned
swarm reaches hundreds, the proposed architecture may face complex communication
problems and real-time resource synchronization problems, which will be the focus of future
research. In addition, the privacy and security of the data exchange of a heterogeneous
unmanned swarm are also key considerations for software architecture in the future.

5. Conclusions

This paper introduces a distributed software architecture designed for unmanned
swarm systems that achieves message abstraction representation through the concept of
resources. The resource scheduling within a single platform is accomplished through
communication between processes and threads utilizing shared memory. By registering
the resource tree structure of neighboring platforms locally and mapping it to form a
representation of the remote resource tree of the neighbors, cross-platform data scheduling
and management are realized. The resources pool of hardware data is constructed to
decouple hardware resources from software functionality, which achieves the realization
of a software-defined unmanned swarm, wherein software is harnessed to empower and
enhance the capabilities of hardware components. Particularly, the unmanned architecture
in this article is applicable to both monolithic systems and swarm systems that consist
of multiple platforms. The architecture has the ability to unify the design across both
the micro-environment within a single platform and the macro-environment of the entire
unmanned swarm, which brings coherence and consistency to the systems’ behavior at
different scales. At the same time, this architecture has been customized and implemented
to function on various operating systems, including Ubuntu, Kylin, and Unity. Additionally,
it has been adapted to work with common computing hardware like Phytium, Loongson,
and Rockchip, which are prevalent in China. This adaptation showcases the architecture’s
versatility and adaptation to different operation environments and hardware platforms.
Finally, a hardware-in-the-loop simulation environment was constructed to verify the pro-
posed approach using the formation method. The experiment obviously proves that this
architecture can be applied in the software development of unmanned platform control
systems, demonstrating good scalability and flexibility. Due to the decoupling of functional
units, it supports parallel development and incremental development, allowing for reuse
across the entire lifecycle, including design, testing, and validation. In the future, the soft-
ware architecture proposed in this paper can be used in scenarios such as fire detection,
meteorological information collection, and emergency rescue through a heterogeneous
swarm composed of a fixed-wing UAYV, rotary-wing UAV or UGV.
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