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Abstract: Reinforcement learning (RL) has demonstrated considerable potential in solving chal-
lenges across various domains, notably in autonomous driving. Nevertheless, implementing RL in
autonomous driving comes with its own set of difficulties, such as the overestimation phenomenon,
extensive learning time, and sparse reward problems. Although solutions like hindsight experience
replay (HER) have been proposed to alleviate these issues, the direct utilization of RL in autonomous
vehicles remains constrained due to the intricate fusion of information and the possibility of system
failures during the learning process. In this paper, we present a novel RL-based autonomous driving
system technology that combines obstacle-dependent Gaussian (ODG) RL, soft actor-critic (SAC), and
meta-learning algorithms. Our approach addresses key issues in RL, including the overestimation
phenomenon and sparse reward problems, by incorporating prior knowledge derived from the ODG
algorithm. With these solutions in place, the ultimate aim of this work is to improve the performance
of reinforcement learning and develop a swift, stable, and robust learning method for implementing
autonomous driving systems that can effectively adapt to various environments and overcome the
constraints of direct RL utilization in autonomous vehicles. We evaluated our proposed algorithm
on official F1 circuits, using high-fidelity racing simulations with complex dynamics. The results
demonstrate exceptional performance, with our method achieving up to 89% faster learning speed
compared to existing algorithms in these environments.

Keywords: reinforcement learning; meta learning; deep reinforcement learning; autonomous driving;
robot operating system

1. Introduction

Reinforcement learning (RL) has recently gained notable attention in various fields,
including autonomous driving, due to its capability to address unanticipated challenges in
real-world scenarios. Autonomous driving software defects can pose potential risks, thus
developing safe and efficient methods when using AI technologies for autonomous driving
systems is important [1]. Autonomous driving systems, by employing RL algorithms, are
able to accrue experience and refine their decision-making procedures within dynamic
environments [2–4]. This can be largely attributed to RL’s inherent ability to adapt and learn
from complex and fluctuating situations, demonstrating its aptitude for these applications.
The basic concept of RL lies in the structure of Markov decision processes (MDP), a system
where algorithms learn via a trial-and-error approach, striving to reach predetermined
objectives by learning from mistakes and rewards. The aim of RL is to optimize future
cumulative rewards and formulate the most efficient policy for distinct problems [5]. Recent
integration of deep learning with RL has demonstrated promising outcomes across various
domains. This involves the employment of advanced neural networks such as convolutional
neural networks (CNNs), multi-layer perceptrons, restricted Boltzmann machines, and
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recurrent neural networks [6,7]. By fusing reinforcement learning with deep learning, the
system’s learning capabilities are significantly enhanced, allowing it to process complex
data such as sensor feedback and environmental observations, thus facilitating more
informed and effective driving decisions [8]. However, the application of RL to autonomous
driving presents a unique array of challenges, particularly when it comes to deploying RL
in real-world environments. The uncertainties inherent in these environments can make the
effective execution of RL quite challenging. As a result, researchers often struggle to achieve
optimal RL performance directly within the actual driving context, highlighting the various
obstacles encountered when applying RL to autonomous driving [9]. Several challenges
plague the application of RL to autonomous driving: overestimation phenomenon, learning
time, and sparse reward problems [10,11].

Firstly, the overestimation phenomenon is prevalent in model-free RL methods, such
as Q-learning [12] and its variants like the double deep Q network (DDQN) [13,14] and
dueling DQN [15]. These methods are susceptible to overestimation and incorrect learning,
primarily due to the combination of insufficiently flexible function approximation and the
presence of noise, which lead to inaccuracies in action values. Secondly, the significant
amount of learning time required is another hurdle. When RL is fused with neural networks,
it generates policies directly from interactions with the environment, bypassing the need
for a basic dynamics model. However, even simple tasks necessitate extensive trials and
a massive number of data for learning. This makes high-performance RL both time-
consuming and data-intensive [16]. Lastly, the issue of sparse reward arises during RL
training. This presents challenges in scenarios where not all conditions receive immediate
compensation. Although techniques like hindsight experience replay (HER) [17,18] have
been proposed to mitigate this issue, the direct application of RL to autonomous vehicles is
still limited due to the complex fusion of information and potential system failures during
the learning process. This paper addresses the challenges of RL in autonomous driving and
reduces the reliance on extensive real-world learning by introducing a set of innovative
techniques to enhance the efficiency and effectiveness of RL: data preprocessing through
obstacle-dependent Gaussian (ODG) [19,20] DQN, prior knowledge through Guide ODG
DQN, and meta-learning-based guided ODG DDQN.

The data preprocessing method employs the ODG algorithm to combat the overesti-
mation phenomenon. By preprocessing distance information through ODG DQN, it allows
for more accurate action values, fostering stable and efficient learning [21]. The prior knowl-
edge method draws on human learning mechanisms, incorporating knowledge derived
from the ODG algorithm. This strategy mitigates the issue of sparse rewards and boosts the
learning speed [22], facilitating more effective convergence. Lastly, the meta-learning-based
guide rollout method uses ODG DQN to address complex driving decisions and sparse
rewards in real-world situations. By enriching prior knowledge using a rollout approach,
this method aims to create efficient and successful autonomous driving policies.

Our main contributions can be summarized as follows:

• Efficiency and speed of learning: The newly proposed RL algorithm utilizes ODG
DQN on preprocessed information, enabling the agent to make optimal action choices,
which significantly enhances the learning speed and efficiency.

• Improvement of learning stability: With the use of prior knowledge, the guide-ODG-
DQN helps mitigate the issue of sparse rewards, thus increasing the learning stability
and overall efficiency.

• Adaptability to various environments: The meta-learning-based ODG DDQN lever-
ages model similarities and differences to increase learning efficiency. This allows
for the reliable training of a universal model across diverse environments, with its
performance demonstrated in environments like Gazebo and Real-Environment.

In this context, the purpose and objectives of this study are to propose a stable and effi-
cient reinforcement learning method to effectively address the overestimation phenomenon,
learning time, and sparse reward problems faced in the field of autonomous driving. By
doing so, we aim to improve the performance of reinforcement learning, overcome the
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obstacles for implementing autonomous driving systems in real environments, and provide
more stable and efficient vehicle control strategies.

The remainder of this paper is organized as follows: in the stable and efficient method
section, we mainly introduce the proposed reinforcement learning algorithm. To verify
the effectiveness of our work, the experimental evaluations and necessary analysis are
presented in the experiment. Finally, we summarize our work in the Conclusions section.

2. Stable and Efficient Reinforcement Learning Method

LiDAR (light detection and ranging) information serves as an invaluable perspective
for autonomous driving systems, functioning much like a driver’s sense by identifying
obstacles through environmental analysis. LiDAR-based RL methods have found extensive
application in research focused on judgement and control within autonomous driving
systems such as the partially observable Markov decision process (POMDP) [23]. How-
ever, learning methodologies based on Q-learning, such as DDQN, encounter persistent
overestimation issues, posing obstacles to the enhancement of learning efficiency and
convergence speed.

To mitigate these issues, we propose a method that preprocesses and transforms the
LiDAR value into valuable information attuned to the operating environment, implement-
ing it as the ODG technique [24]. This approach, as depicted by the ODG module (in
yellow) of Figure 1, is designed to reduce learning convergence time and boost efficiency
by preprocessing RL input data, thus remedying scenarios with inaccurate action values.
Furthermore, we introduce the concept of prior knowledge to address the sparse rewards
issue that impedes RL’s learning stability [25]. By integrating prior knowledge information
from sparse reward sections, as demonstrated in the guide-ODG-DQN framework shown
in the guide module (in blue) of Figure 1, we can enhance learning stability.

Figure 1. Process flow of stable and efficient reinforcement learning using proposed method.

It is noted that in RL, model performance can decline when the learning environment
changes. Thus, we propose the meta-Guide ODG-DDQN method, represented in the target
reward module (in purple) in Figure 1, to devise a more robust and adaptable RL algorithm.
After training the model according to an initial goal, we modify the reward function to
attain subsequent objectives. This approach effectively communicates the action value to
the agent in diverse obstacle environments with reliability and swiftness. The proposed
methodology consists of three progressively developed algorithms.
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2.1. ODG DQN

Overestimation, a consequence of inaccurate action values, is underscored as a critical
issue in the DDQN literature [13,26–28]. Traditional LiDAR information incorporates an
infinite range, which represents all information at the maximum distance or the value of
obstacle-free spaces. This arrangement leads to an overlap of LiDAR information within
the system, causing overestimation and impeding the model’s ability to select these infinite
values. In Q-learning, this predicament can be defined by Q(s, a) = V∗(s) for a given state
s, as detailed in Equation (1). When environmental noise triggers an error, it is defined per
Equation (2). If the max function is applied at the moment of peak value in Q-learning
for action selection, the expression aligns with Equation (3). The bias, symbolized by√

C/m− 1, causes the model to overestimate the bias relative to the optimal value with
Q-learning [12,13].

∑
a
(Qt(s, a)−V∗(s)) = 0, (1)

1
m ∑

a
(Qt(s, a)−V∗(s))2 = C, (2)

maxaQt(s, a) ≥ V∗(s) +

√
C

m− 1
, (3)

where m is the number of actions and C is a constant.
To address this overestimation, our algorithm utilizes the ODG module to preprocess

state values. Illustrated in Figure 2, this module, based on Equation (4) with DQN [6], is
engineered to establish an optimized steering angle model for the agent via Q-learning-
based RL. This paves the way for the development of an optimized path plan built on the
steering angle generated by the agent.

Q(st, at) = E[rt + γmaxaQ(st+1, a)]. (4)

Figure 2. ODG DQN structure.

LiDAR information, a principal component in autonomous driving systems, is prepro-
cessed via the ODG module, subsequently offering the processed data to the RL approach
as the state value. Through the use of a Gaussian distribution, the ODG module converts
LiDAR information into continuous values. As depicted in Figure 3, the creation of a
unique state happens when an agent selects an action, preventing the duplication of action
values and facilitating a more efficient selection of the optimal action value in accordance
with the equation.
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Figure 3. Overestimation in Q-learning.

For the implementation of our proposed algorithm to RL using LiDAR information, a
standard procedure in autonomous vehicles, we employ ODG-based preprocessed LiDAR
information. As demonstrated in Figure 4, the yellow line corresponds to the original
LiDAR data, whereas the blue line symbolizes post-processed data. These data include
information on obstacle location and size, derived using Equation (5) with ODG [19].

a = frep(θi) =
n

∑
k=1

Ak exp(− (θk − θi)
2

2σ2
k

), (5)

where
Ak = (dmax − dk) exp(0.5), (6)

Q(s∆
t , at) = E[rt + γmaxaQ(s∆

t+1, a)]. (7)

In contrast to the overlapping LiDAR information provided by conventional methods,
ODG supplies non-overlapping LiDAR data, adjusting the maximum range according
to the obstacle’s size and distance. This preprocessing enables the agent to make more
efficient decisions related to optimal action values based on the processed information,
thereby enhancing both the speed and efficiency of learning. The reward function used for
training is defined in Equation (8).

R = Rg + Rv + Rψ. (8)

where Rg represents the target reward, Rv denotes the reward for speed, and Rψ signifies
the reward for steering angle.

Figure 4. Difference between traditional LiDAR and ODG information.
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2.2. Guide ODG DQN

The soft actor critic (SAC) method [29] is a robust approach that allows for the ob-
servation of multiple optimal values while avoiding the selection of impractical paths.
This facilitates a more extensive policy exploration. The SAC employs an efficient and
stable entropy framework for the continuous state and action space. As delineated in
Equation (10) with SAC [29], the SAC learns the optimal Q function through updating
Q-learning via the maximum entropy RL method.

∑
t
E(st ,at)∼ρπ

[r(st, at)], (9)

J(π) =
T

∑
t=0

E(st ,at)∼ρπ
[r(st, at) + αH(π(·|st))]. (10)

The algorithm initially makes the guide value sparse and, as learning progresses,
gradually densifies it, employing the gamma value as outlined in Equation (12) with
SAC [29]. The term min A is representative of the environmental vehicle.

minψ A < ∆ψ < maxψ A, (11)

v = maxψ A− |∆ψ|. (12)

A report on hierarchical deep RL, an approach that implements RL via multiple
objectives, emphasized the need to solve sparse reward problems as environments become
increasingly diverse and complex. Normally, in problems tackled by RL, rewards are
generated for each state, like survival time or score. Every state is linked to an action,
receives a reward, and identifies the Q-value so as to maximize the sum of the rewards.
However, there are instances where a reward may not be received for each state. These
scenarios are referred to as sparse rewards.

Q(st, at) = E[rt + αγGmaxaQ(st+1, a) + (1− α)γmaxaQ(st+1, a)], (13)

where
Gmaxa f (a) := Guideaction(S∆

t+1). (14)

Our proposed solution to these issues is the guide-ODG-DNQ model that integrates
SAC with ODG-DQN. This proposed guide-ODG-DQN algorithm transforms the initial
Q-value from the state value. This value is extracted from the environment, and it is
connected with the ODG formula, which is our prior knowledge, and the LiDAR value
extracted with ODG, as depicted in Figure 5. The algorithm extracts a guide action that
minimizes the cases where a reward is not received for every state.

The guide-ODG-DQN is designed to store high-quality information values in the
replay memory from the outset based on prior knowledge. The agent then continues learn-
ing based on this prior knowledge, facilitating easier adaptation to various environments
and enabling faster and more stable convergence. Moreover, to prevent over-reliance on
prior knowledge that could compromise the effectiveness of RL, the agent learns from its
own experiences during the learning process, which are represented by the gamma value.
The agent also contrasts this newly learned information with the values derived from the
existing prior knowledge. Consequently, our proposed guide-ODG-DQN mitigates the
sparse reward phenomenon, thereby enhancing both the stability and efficiency of the
learning process.
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Figure 5. Structure of guide-ODG-DQN.

2.3. Meta-Learning-Based Guide ODG DDQN

RL is fundamentally a process of learning through trial and error. The RL agent must
experience a diverse set of situations, making decisions in each scenario to understand
which actions yield the highest rewards. Striking a balance between experimentation,
to ensure no high-reward actions are overlooked, and leveraging acquired knowledge
to maximize rewards is crucial. However, achieving this balance typically necessitates
numerous trials and, consequently, large volumes of data. Training an RL agent with
excessive data might result in overfitting, wherein the agent conforms too closely to the
training data and fails to generalize well to new circumstances.

To overcome these limitations, we introduce a novel method known as meta-learning-
based guide-ODG-DDQN. This approach involves storing rewards for each step an integral
part of RL in the replay memory, with the stored rewards divided according to the number
of targets to be learned as shown in Figure 6. This model facilitates few-shot learning within
RL by training the model to recognize similarities and differences, thus preparing it to
perform proficiently in unfamiliar environments with minimal data. The training is guided
by two main objectives. The first is to train the target model using the initial reward, while
the second is to continue learning by reducing the weight assigned to the initial reward and
increasing the weight of the reward for the subsequent target, as depicted in Equation (15).

RΛ = γRJ1 + (1− γ)RJ2 , γ ∈ [0, 1]. (15)

By applying our meta-learning-based ODG RL, the model achieves multiple significant
outcomes. It allows for the training of a universal model that can operate reliably across
various environments. The model’s efficiency of learning is boosted due to its ability to
identify similarities and differences. Furthermore, learning can proceed using a common
target while preserving the existing target. In essence, the proposed algorithms augment
the efficiency and stability of traditional RL methods, safely accelerating the learning speed
within a virtual environment, which ultimately improves efficiency when the model is
implemented in real-world environments.
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Figure 6. Structure of meta-learning-based guide-ODG-DDQN.

3. Experiment

In the process of validating our proposed algorithm, we conducted an experiment
evaluating key aspects such as learning efficiency, stability, strength, and adaptability to
complex environments. Learning efficiency was determined by examining the highest
reward achieved as learning started to converge, in relation to the number of frames
experienced in the virtual environment. The DQN algorithm was used as the basis to
analyze the rate of convergence and the magnitude of the reward. For the evaluation of
learning stability, we assessed the consistency between the path plan generated through RL
(PRL) and the target path produced by ODG (PODG). Here, Pk represents the set of paths.
This assessment involved the use of the root mean square error (RMSE), where PRL and Pi
represent the path plans formed through RL and ODG, respectively. The route yielding the
highest reward was considered optimal. Finally, we evaluated the algorithm’s performance
in complex environments. This part of the evaluation was focused on the vehicle’s ability
to effectively navigate through real world maps, leveraging learning strength. We also
tested the resilience and adaptability of the algorithm when faced with unfamiliar scenarios
without further training. Metrics such as entry and exit speed, as well as racing track
lap time, were used to measure performance. The evaluation environments were chosen
with care for distinct aspects of the study: the Gazebo map was used to evaluate learning
efficiency and stability, the Sochi map for learning strength, and the Silverstone map to
test adaptability to complex conditions, as shown in Figure 7. The experiment setup was
designed to reflect real world dimensions, such that each unit length in the simulation
corresponded to one meter in reality [30,31].

(a) (b) (c)

Figure 7. Map environment. (a) Gazebo map; (b) Sochi map; and (c) SILVERSTONE map.
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First, the index for learning efficiency is determined as follows. As learning begins to
converge, the learning efficiency corresponding to the highest reward for the number of
frames (in millions) experienced in the virtual environment is considered. Based on the
DQN algorithm, we evaluate how fast convergence occurs and how high the reward is.

Second, the evaluation metric for learning stability assesses how well the path plan
generated through RL matches the target path pursued. The path plan created by RL in the
virtual environment, PRL, and the path plan created with the ODG, PODG, are represented
in terms of the RMSE. Both PODG and PRL are individually compared with the reference
path, and their respective errors are calculated using Equation (16).

RMSE =

√
n

∑
i=1

(ŷi − yi)2

n
, (16)

where ŷi represents the path generated by ODG in PODG, which is known to exhibit high
real-time performance and stability, and yi corresponds to PRL, which is the path plan
generated through RL. The optimal route with the highest reward is considered. n is the
number of steps the agent operates in the simulation environment, corresponding to the
episodic steps in RL. A smaller RMSE corresponds to a more stable.

Finally, we evaluate the performance in complex environments, as depicted in Figure 7.
The assessment metrics focus on how effectively the vehicle navigates through intricate
obstacles while ensuring safety and speed. We showcase the learning strength in the Sochi
Circuit and the learning diversity in the Silverstone Circuit. For this evaluation, we utilized
real maps and employed the metrics of “Enter and Exit Speed” and “Racing Track Lap
Time” to assess the agent’s performance. In summary, our results demonstrate the learning
strength and diversity of the proposed algorithm in handling complex environments and
showcase its robustness when encountering new scenarios without further training.

3.1. Learning Performance and Efficiency Evaluation

The hyperparameters used in set up are listed in Table 1. The set up is aimed at verify-
ing the efficiency of the algorithm to be applied in a real environment. Therefore, reducing
the learning time is the priority. To evaluate whether learning efficiency and stability are
ensure, a basic circular map is selected, and a performance comparison experiment is
conducted for each RL algorithm: DQN, ODG-DQN, DDQN, and guide-ODG-DQN. The
agent model and environment used in the experiment are shown in Figure 8.

Table 1. Hyperparameters in set up.

Hyper Parameters

v car speed ∈ [0, 0.7] m/s

a action (steering angle) ∈ [−1/3, 1/3]◦

ψ angular speed = ∈ [0, 0.1] m/s

τ update target network = 10,000

α learning Rate = 0.00025

Msize minibatch Size = 64

γ discount = 0.99

Eps exploration Rete = 1

Rv v− a ∗ v

Rψ 5 = argmaxθdL , 0 = otherwise

Rg crash = −200, finish = 300, checkpoint = 100
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(a) (b)

Figure 8. Set up check point and arrival point. End point (red), point1 (orange), point2 (yellow), and
point3 (green). (a) Agent; (b) Check point.

The reward function used for training is defined in Table 1. First, to compare the
DQN and ODG-DQN algorithms for the Gazebo map, we determine the number of steps
in which the checkpoint is reached during training, as indicated in Table 2. In DQN, over
50% of untrained failure cases are overestimated, whereas in ODG-DQN, 10% of untrained
failure cases occur, corresponding to overestimation occurrence reduced by 80%.

Table 2. Epochs of algorithm passing checkpoints the first time. Fail: Overestimation.

Algorithm (Step)

Experiment DQN ODG-DQN

P.1 P.2 P.3 P.4 P.1 P.2 P.3 P.4

No. 1 5 10 15 20 4 7 12 18

No. 2 6 14 Fail Fail 4 9 13 17

No. 3 7 11 16 20 4 7 12 16

No. 4 Fail Fail Fail Fail 4 8 12 17

No. 5 Fail Fail Fail Fail 5 8 12 18

No. 6 6 12 16 20 5 8 12 17

No. 7 5 10 16 19 4 8 13 17

No. 8 5 13 15 19 4 9 12 17

No. 9 Fail Fail Fail Fail 4 8 Fail Fail

No. 10 Fail Fail Fail Fail 5 9 12 17

Average 5.75 13.3 15.6 19.6 4.3 8.9 12.2 17.1

Guide-ODG-DQN and DDQN are compared under the same conditions. Figure 9a
shows the results of learning in terms of the epoch values of the safe convergence section
for each algorithm implemented 10 times. As indicated in Table 3, the learning convergence
rate increases by 51.7%, 89%, and 16.8%, respectively, compared with the other algorithm.
Figure 9b shows that the learning is inappropriate due to overestimation in the case of
DQN. In the cases of ODG-DQN, DDQN, and guide-ODG-DQN, learning converges at
approximately 500, 300, and 200 epochs, respectively the results are summarized in Table 4.

Table 3. Decrease in the epochs of ODG-DQN.

Algorithm Decrease in the Epochs

DQN→ ODG-DQN 51.7%
DQN→ guide-ODG-DQN 89%

DDQN→ guide-ODG-DQN 16.8%
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Next, to evaluate the stability of the RL results, the center line corresponding to the
Gazebo map is applied as a reference. The path generated by each algorithm is shown in
Figure 9a. Moreover, Table 5 shows the results obtained by comparing the algorithms in
terms of the RMSE, as defined in Equation (16). The RMSE for guide-ODG-DQN is 0.04,
corresponding to the highest stability. The guide-ODG-DQN achieves the lowest RMSE,
corresponding to the highest stability, as shown in Figure 9c.

Table 4. Summary of normalized performance up to 10 cycles of play on track. Fail: Overestimation.

Experiment
Algorithm (Epoch)

DQN ODG DQN DDQN Guide ODG DQN

No. 1 1342 587 181 134

No. 2 Fail 621 175 175

No. 3 1416 576 177 121

No. 4 Fail 572 201 143

No. 5 Fail 610 182 172

No. 6 1321 593 177 144

No. 7 1422 631 188 155

No. 8 1452 579 192 177

No. 9 Fail Fail 181 165

No. 10 Fail 668 185 143

Average Value 1391 672 184 153

Table 5. RL RMSE.

Algorithm RMSE

DQN 0.0745
ODG-DQN 0.1142

DDQN 0.1082
Guide-ODG-DQN 0.0395

(a)

Figure 9. Cont.
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(b) (c)

Figure 9. Experiment set up result. (a) RL algorithm path comparison; (b) RL reward graph; and
(c) RL RMS.

3.2. Results through Simulation that Mimics the Real Environment

The hyperparameters values used in circuit are listed in Table 6. As the evaluation
metric for a complex environment, shown in Figure 10a, the method of learning the speed is
considered instead of that for learning angles. Therefore, the angle is set to that associated
with the ODG to ensure stability. The reward function used for all RL frameworks is the
same as that defined in Table 6. Figure 10b shows the official competition map provided
by F1TENTH. Using the control point specified in the actual Sochi Autodrom map, we
compare the path in the winding road and hairpin curve.

(a) (b)

Figure 10. Actual existing Sochi Autodrom map information, officially provided by F1TENTH.
(a) Agent; (b) control point.

Table 6. Hyperparameters for the F1TENTH.

Hyperparameters

a action (car speed) ∈ [0, 20] m/s

∆ψ ODG steering angle ∈ [−12, 12]◦

maxv max car speed = 20 m/s

τ update target network = 10,000

α learning rate = 0.00001

Msize minibatch size = 128

γ discount = 0.99

Eps exploration rate = 1

RΛ a−maxv −
∣∣∆ψ

∣∣
Rψ 100 = argmaxθdL , 0 = otherwise

Rg crash = −100, finish = 200, and episode step = episodeΛ
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The agent starts at the wall of control point 1. Linear velocity graphs for ODG, Gap
Follower, DDQN, and meta ODG DDQN are shown in Figure 13. In this case, 100 points on
the x-axis are used as control points, and 100-step linear velocity values are output on both
sides based on these values.

3.2.1. Sochi International Street Circuit

The Sochi Autodrom, previously known as the Sochi International Street Circuit and
the Sochi Olympic Park Circuit, is a 5.848 km permanent race track in the settlement of
Sirius next to the Black Sea resort town of Sochi in Krasnodar Krai, Russia, as shown in
Figure 11. Here, the learning strength is demonstrated, in the Sochi Circuit.

(a) (b)

Figure 11. Circuit. (a) Sochi International Street Circuit; (b) Silverstone Circuit.

Table 7 lists the average speed for each control point for each algorithm. Table 7 shows
that the ODG algorithm that prioritizes stability achieves the lowest value of 7.66, and
the meta ODG DDQN achieves the highest value of 8.58. In other words, the meta ODG
DDQN completes the Sochi Autodrom with a speed 12.01% higher than that of the ODG.

Table 7. Average speed control point.

Algorithm

Method ODG Gap
Follower DDQN Meta ODG

DDQN

No. 1 8.98 7.98 8.23 8.48

No. 2 8.10 7.79 7.93 8.69

No. 3 8.04 8.02 7.78 8.86

No. 4 7.74 7.75 8.26 8.60

No. 5 7.84 7.79 7.94 8.49

No. 6 8.41 7.95 8.59 8.66

No. 7 7.58 7.76 8.35 8.59

No. 8 7.71 7.72 8.24 8.25

No. 9 7.41 7.67 7.81 8.34

No. 10 7.82 7.72 8.17 8.38

No. 11 9.15 8.03 8.66 8.82

No. 12 9.08 8.04 8.23 8.48

No. 13 7.40 7.80 8.53 8.51

No. 14 5.87 7.45 8.08 8.73

No. 15 6.89 7.64 8.05 8.70

No. 16 5.44 7.30 7.88 8.30

No. 17 7.99 7.69 8.36 8.86

No. 18 6.34 7.42 8.12 8.61

Average speed 7.66 7.75 8.17 8.58
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As shown in Figure 12a, to examine the speeds of entry and exit at the control point,
which are of significance in a racing game, the entry and exit speed for each algorithm are
presented in Table 8. In the case of ODG, which is an algorithm that prioritizes stability, as
shown in Figure 12b, understeer or oversteer does not occur [32,33]. A report on racing
high-performance tires [34] indicates that in this driving method, the vehicle enters at a
high speed and exits at a low speed.

(a) (b)

Figure 12. Corner driving: (a) clipping point; and (b) understeer and oversteer.

As shown in Table 9, ODG selects a drive with a 13.9% speed reduction. The racing
algorithm, Gap Follower, uses an out-in-out driving method with a 3.41% deceleration.
However, the DDQN and meta ODG DDQN algorithms lead to oversteer to achieve
maximum speed based on the angle extracted from the ODG, which pursues stability,
causing the vehicle to spin inward compared to the expected route. So, DDQN and meta
ODG DDQN show a driving method without deceleration at control points of 1.33% and
0.46%, respectively, by drawing a path.

Table 8. Control point enter and exit speed.

Enter and Exit Speed (m/s)

Method ODG GAP
Follower DDQN Meta ODG

DDQN

Control Point Enter Exit Enter Exit Enter Exit Enter Exit

No.1 9.46 8.59 7.99 8.04 8.07 8.46 8.42 8.63
No.2 9.28 6.98 8.07 7.58 8.02 7.91 8.86 8.61
No.3 8.08 8.08 8.05 8.06 7.63 8.00 8.83 8.97
No.4 8.69 6.86 8.07 7.49 8.16 8.44 8.75 8.54
No.5 8.83 6.92 7.98 7.66 8.21 7.74 8.54 8.51
No.6 8.59 8.32 7.95 8.03 8.61 8.65 8.77 8.64
No.7 8.42 6.81 8.05 7.54 8.26 8.51 8.83 8.45
No.8 8.35 7.15 7.88 7.62 8.63 7.91 8.25 8.34
No.9 7.11 7.77 7.56 7.86 8.01 7.68 8.24 8.54
No.10 8.97 6.74 8.03 7.49 8.38 8.03 8.34 8.52
No.11 9.14 9.25 8.06 8.07 8.56 8.84 8.96 8.77
No.12 9.23 9.02 8.07 8.07 8.35 8.18 8.64 8.41
No.13 8.51 6.37 8.07 7.60 8.70 8.43 8.39 8.72
No.14 6.33 5.48 7.61 7.36 8.43 7.80 8.71 8.85
No.15 7.63 6.22 7.89 7.47 8.13 8.04 8.85 8.65
No.16 5.84 5.07 7.48 7.17 8.05 7.78 8.58 8.10
No.17 8.96 7.09 8.00 7.44 8.42 8.38 9.02 8.79
No.18 7.36 5.39 7.67 7.23 8.18 8.12 8.59 8.72

Average
speed 8.27 7.12 7.92 7.65 8.27 8.16 8.64 8.60
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Moreover, the lap time is compared for the map shown in Figure 10b by considering
two laps (based on the F1TENTH formula). Table 10 indicates that meta ODG DDQN
achieves the highest speed.

Linear velocity graphs for ODG, Gap Follower, DDQN, and meta ODG DDQN are
shown in Figure 13; using the control point specified in the actual Sochi Circuit, we compare
the path in the winding road and hairpin curve, as shown in Figure 14.

Table 9. Enter and exit speed.

Algorithm Speed Reduction

ODG 13.9%

Gap
Follower

3.41%

DDQN 1.33 %

Meta ODG
DDQN 0.46%

Table 10. Racing track lap time.

Algorithm Racing Track 2 Lap Time (s)

ODG 117.09

Gap
Follower 115.68

DDQN 115.41

Meta ODG
DDQN(ours3) 109.85

Figure 13. Control point speed.
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Figure 14. Map of the Sochi path.

3.2.2. Silverstone Circuit

Silverstone Circuit is a motor racing circuit in England, near the Northamptonshire
villages of Towcester, Silverstone, and Whittlebury, as shown in Figure 11. In this result,
the learning diversity in the Silverstone Circuit is demonstrated.

Using the RL model trained in Map Sochi, we conduct an experiment to determine
the degree of robustness to unfamiliar and complex environments. Therefore, we use the
algorithms ODG, Gap Follower, DDQN, and meta ODG DDQN. In addition, the meta ODG
DDQN algorithm is trained in a new environment. In other words, the robustness of the
new environment (c) was compared based on the driving style learned in (b) shown in
Figure 7.

Table 11 presents the results for a new environment. DDQN fails; however, meta ODG
DDQN exhibits high performance with the lowest lap time, as shown in Figure 15. In this
result, the learning diversity in the Silverstone Circuit is demonstrated.

Figure 15. Map (b) SILVERSTONE path.



Electronics 2023, 12, 3773 17 of 19

Table 11. Map (b) SILVERSTONE racing track lap time (two laps). Fail = Crash.

Algorithm Lap Time (s)

ODG 117.39

Gap follower 110.99

DDQN Fail

Meta ODG DDQN unlearned 108.60

Meta ODG DDQN learned 108.43

4. Conclusions

This paper introduces a novel RL-based autonomous driving system technology that
implements ODG, SAC, and meta-learning algorithms. In autonomous driving technology,
perception, decision-making, and control processes intertwine and interact. This work
addresses the issues of the overestimation phenomenon and sparse rewards problems by
applying the concept of prior knowledge. Furthermore, the fusion of meta-learning-based
RL yields robust results in previously untrained environments.

The proposed algorithm was tested on official F1 circuits, a racing simulation with
complex dynamics. The results of these simulations emphasize the exceptional performance
of our method, which exhibits a learning speed up to 89% faster than existing algorithms in
these environments. Within the racing context, the disparity between entry and exit speeds
is a mere 0.46%, indicating the smallest reduction ratio. Moreover, the average driving
speed was found to be up to 12.01% higher.

The primary contributions of this paper comprise a unique combination addressing
the challenges of overestimation phenomenon and sparse rewards problems effectively
in RL. Another major contribution is the demonstrated robust performance of the inte-
grated meta-learning-based RL in previously untrained environments, thereby showcasing
its adaptability and stability. Furthermore, we validated the performance of our pro-
posed method via complex racing simulations, particularly on official F1 circuits. The
results highlighted its superior performance in terms of learning efficiency, speed, stability,
and adaptability.

In essence, this paper tackles the significant challenges encountered during the rein-
forcement learning process by introducing an algorithm that bolsters the efficiency and
stability of RL. The high-fidelity simulations used in this study offer a realistic testing
environment closely mirroring real-world conditions. Given these advancements, our
proposed algorithm demonstrates significant potential for real-world applications, partic-
ularly in autonomous vehicles where learning efficiency and operational stability are of
the utmost importance.

As for future research, we suggest adding various multi-tasks to verify stable and
efficient learning in more complex environments. Based on this, we aim to study efficient
RLs in real environments through meta-learning, with as few iterations as possible.
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