
Citation: Singh, G.; Jeyaraj, R.;

Sharma, A.; Paul, A. A Novel Data

Management Scheme in Cloud for

Micromachines. Electronics 2023, 12,

3807. https://doi.org/

10.3390/electronics12183807

Academic Editor: Gyu Myoung Lee

Received: 25 July 2023

Revised: 31 August 2023

Accepted: 4 September 2023

Published: 8 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Novel Data Management Scheme in Cloud for Micromachines
Gurwinder Singh 1 , Rathinaraja Jeyaraj 2,3 , Anil Sharma 4 and Anand Paul 3,*

1 Department of Computer Science and Applications, Sikh National College, Banga 144505, India;
gurwinder.11@gmail.com

2 Department of Computer and Information Sciences, University of Houston-Victoria, Victoria, TX 77901, USA;
jrathinaraja@gmail.com

3 School of Computer Science and Engineering, Kyungpook National University,
Daegu 41566, Republic of Korea

4 School of Computer Applications, Lovely Professional University, Punjab 144001, India; anil.19656@lpu.co.in
* Correspondence: paul.editor@gmail.com

Abstract: In cyber-physical systems (CPS), micromachines are typically deployed across a wide range
of applications, including smart industry, smart healthcare, and smart cities. Providing on-premises
resources for the storage and processing of huge data collected by such CPS applications is crucial.
The cloud provides scalable storage and computation resources, typically through a cluster of virtual
machines (VMs) with big data tools such as Hadoop MapReduce. In such a distributed environment,
job latency and makespan are highly affected by excessive non-local executions due to various
heterogeneities (hardware, VM, performance, and workload level). Existing approaches handle
one or more of these heterogeneities; however, they do not account for the varying performance of
storage disks. In this paper, we propose a prediction-based method for placing data blocks in virtual
clusters to minimize the number of non-local executions. This is accomplished by applying a linear
regression algorithm to determine the performance of disk storage on each physical machine hosting
a virtual cluster. This allows us to place data blocks and execute map tasks where the data blocks are
located. Furthermore, map tasks are scheduled based on VM performance to reduce job latency and
makespan. We simulated our ideas and compared them with the existing schedulers in the Hadoop
framework. The results show that the proposed method improves MapReduce performance in terms
of job latency and makespan by minimizing non-local executions compared to other methods taken
for evaluation.

Keywords: cyber-physical system; data block placement; data locality; MapReduce scheduling

1. Introduction

A micromachine is a miniature version of a traditional device, typically on a microme-
ter or millimeter scale. Micromachines have a wide range of applications in CPS, as shown
in Figure 1, including aerospace, automotive, healthcare, industry, consumer electronics,
etc. A microsensor, for example, can measure physical, chemical, or biological properties
such as temperature, pressure, or chemical composition. Because data is generated rapidly
and in large quantities, for example, transportation management [1], it is not possible to
store, analyze, and make decisions at the physical layer. Therefore, data is transferred
via networking devices in the communication layer and processed by cloud-influenced
data processing platforms [2], such as dew, edge, mist, and fog computing layer through
stream/query processing using distributed processing tools such as Storm, S4, Kafka,
etc. However, these layers are not capable of storing and batch processing such massive
amounts of data. Thus, the collected data are stored in the cloud data center (CDC) and
processed using the Hadoop framework [3], which provides Hadoop Distributed File
Systems (HDFS) and MapReduce to store and process large datasets. Today, HDFS and
MapReduce are offered as services [4] from the cloud on a pay-per-use basis on a cluster of

Electronics 2023, 12, 3807. https://doi.org/10.3390/electronics12183807 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12183807
https://doi.org/10.3390/electronics12183807
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2872-2422
https://orcid.org/0000-0003-0165-181X
https://orcid.org/0000-0002-0737-2021
https://doi.org/10.3390/electronics12183807
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12183807?type=check_update&version=3

Electronics 2023, 12, 3807 2 of 20

VMs. However, heterogeneity in cloud execution environments [5] inhibits MapReduce
performance significantly. Heterogeneity occurs in different ways in cloud virtual execution
environments [6]: hardware heterogeneity, VM heterogeneity, performance heterogeneity,
and workload heterogeneity. In recent work [5], one or more of these heterogeneities have
been exploited to improve the job latency and makespan for a batch of workloads. As
Hadoop 2.0 allows users to customize the map/reduce task container size for each job in a
batch, schedule problems become more complicated. In particular, HDFS data block place-
ment and locality aware map task scheduling play a crucial role in improving MapReduce
job scheduler performance. Placement of data blocks in HDFS is carried out as follows.
Data collected from the CPS environment are transferred over the Internet and stored on
the cluster by HDFS in blocks of a predefined size. These data blocks are replicated [7] to
ensure fault tolerance by taking advantage of rack awareness in the physical cluster. In
contrast, when a cluster of VMs is hosted on different physical machines (PMs) across the
CDC, ensuring fault tolerance with data replication for HDFS is not possible. Additionally,
it has a significant impact on the execution of locality based map tasks. When all VMs are
hosted within a rack, the network cost to perform non-local execution is negligible. There is,
however, no guarantee of rack awareness [7]. In this case, once the data blocks are placed in
the VMs, it is rarely expected to move them around the cluster again to perform non-local
execution, which involves additional network costs. Therefore, distributing VMs across the
CDC guarantees rack awareness with additional network costs for non-local executions.
Hence, it is important to minimize the number of non-local executions when the VMs in
the virtual cluster are distributed in the physical cluster.

Figure 1. Big data management for CPS applications.

Second, open source MapReduce schedulers [8,9] are mostly driven by resource
availability in the virtual cluster. Due to the highly heterogeneous capacity and performance
of PMs in the CDC, VMs also exhibit heterogeneous performance. It is possible for the
storage of a set of VMs to be allocated to the same hard disk drive (HDD), even if multiple

Electronics 2023, 12, 3807 3 of 20

HDDs are available on the same PM. In the cloud system, there is no option by default to
allocate storage space from specific HDDs to VMs. In the worst-case scenario, VMs share a
single HDD. The result is varying latency for map tasks due to disk IO contention/races
among VMs hosted on the PM. Due to this, data local execution is severely affected since
disk IO is mostly used to serve data for other tasks from other VMs. At this moment,
performing non-local execution obviously consumes additional network bandwidth and
time. In addition, the nature and resource requirements of map tasks in MapReduce for
different jobs are also highly heterogeneous. Sometimes, a map task could be CPU or
memory intensive and the container size for map tasks from different jobs could also differ.
Therefore, it is necessary to exploit the dynamic performance of VMs based on the map
task requirements of different jobs to achieve data local execution.

Moreover, disk IO becomes a bottleneck when Hadoop/non-Hadoop VMs share a
single HDD among them. In general, big data batch processing (MapReduce and Spark)
jobs tend to be more disk-intensive, requiring constant disk bandwidth to bring input
data blocks for map task execution. However, each VM hosted on a PM shares the disk
bandwidth for different tasks. This causes map task latency to increase. Therefore, data
blocks must be stored based on HDD performance, so map tasks receive input data blocks
seamlessly. Moreover, as VMs in the hired virtual cluster could be of a different flavor, the
number of data blocks processed per unit of time varies greatly. Hence, it is important to
understand the capacity and processing performance of different VMs before loading data
blocks. To achieve this, we first determine the performance of individual disks on PMs,
then choose the most suitable disk for storing data blocks. Based on disk performance, the
number of data blocks to be stored in each VM is calculated. Therefore, understanding the
performance of each VM for map tasks of different jobs could help schedule map/reduce
tasks in the right VM. The reason for this is that map tasks require data to be localized
as much as possible without switching them around the cluster. In contrast, reduce tasks
require minimal network bandwidth consumption. This can improve MapReduce job
latency and makespan when MapReduce jobs are periodically submitted as a batch.

Our major contributions from this paper are summarized below.

1. In MapReduce, it is very important to minimize non-local executions for map tasks in
order to minimize latency and makespan. Due to co-located VM interference, map
tasks fail to receive their required data blocks on time when HDD contention is high in
a PM. At this point, it is impossible to avoid non-local execution. In order to overcome
this problem, we predict the IO performance of every HDD in PMs in the CDC before
loading data blocks from the CPS environment. Because IO contention is directly
correlated with disk IO performance, linear regression is used to predict disk IO
performance to place data blocks. This minimizes non-local executions for map tasks,
which ultimately minimizes job latency and makespan for a batch of MapReduce jobs.

2. Furthermore, the performance of VMs that host Hadoop MapReduce is also impacted
by co-located VMs that interfere with resource sharing. Since map tasks from different
jobs have different resource requirements, it is important to allocate map tasks to the
right VM. Consequently, varying performance Hadoop VMs are observed and ranked
for scheduling map tasks to minimize job latency.

The remainder of the paper is organized as follows. In Section 2, we give a brief
overview of Hadoop MapReduce and the motivations behind our work. Section 3 discusses
the related works on data local execution for map tasks and the dynamic performance of
VMs. Subsequently, the proposed methodologies are justified and explained in Section 4.
The results and analysis of our proposed method are presented in Section 5. Finally,
Section 6 includes concluding remarks.

2. Hadoop MapReduce Background

In this section, we offer a brief overview of Hadoop’s framework for managing big
data. The Hadoop framework consists of two major components: HDFS and MapReduce.
The HDFS manages huge data across multiple servers and feeds it to MapReduce for

Electronics 2023, 12, 3807 4 of 20

processing. MapReduce jobs consist of two phases: map and reduce, as shown in Figure 2.
A map phase consists of a set of map tasks. A map task processes a set of data blocks
from HDFS and produces an arbitrary size of intermediate output. A set of reduce tasks
is launched during the reduce phase, depending on how much parallelism we intend to
extract. Reduce tasks collect and consolidate portions of the map tasks’ output. Prior
to executing the reduce function, the reduce tasks perform a series of steps (merge, sort,
group). From the group function, the reduce function receives a list of inputs and writes the
output to HDFS. As part of this execution sequence, the output of map tasks is moved to
reduce tasks through the process of “shuffle/copy”. It is possible to start the reduce phase
simultaneously with the map phase. However, the reduce function in the reduce phase can
be executed only after the map phase is finished. Physical resources for MapReduce jobs are
allocated by a component called YARN, which comprises two modules: resource manager
(RM) and node manager (NM). RM distributes clustered server resources (CPU, RAM,
storage) between different frameworks (such as Hadoop and Spark). The NM manages
local resources on the server according to the size of each map and reduce task.

Figure 2. MapReduce Phases.

3. Related Works

With the increasing use of cloud-based data processing services to support CPS ap-
plications, managing virtual resources to improve MapReduce job latency and makespan
has become difficult. Therefore, big data processing with tools offered by the cloud is
increasingly becoming a research hotspot. Different block placement and MapReduce
job/tasks scheduling play a vital role in improving job latency and makespan. Over a
decade, there have been many data block placement algorithms proposed to improve
makespan and novel scheduling algorithms [10] to exploit dynamic performance to im-
prove job latency in a cloud environment. In this section, we discuss some of the significant
previous works on data placement and MapReduce job scheduling exploiting heterogeneity
in cloud environments.

Distributed file systems, such as Google File System [11] and HDFS [12], divide input
datasets into fixed-size blocks. The Modulo-based data block placement algorithm [13] is
introduced for block placement to minimize energy consumption and improve makespan in
a virtual cluster environment. It is performed in terms of CPU-intensive, IO-intensive, and
interactive jobs. Roulette wheel scheme (RWS)-based data block placement and heuristic-
based MapReduce job scheduler (HMJS) are proposed in [5] to enhance data local execution
for map tasks, job latency, and makespan. In this work, the authors consider the computing
capacity of VMs to place data blocks but not the heterogeneous performance of VMs. In
addition, disk IO performance largely affects map phase latency, even though CPU and
memory are available for map tasks. To handle this, constrained two-dimensional bin
packing is proposed to place heterogeneous map/reduce tasks to minimize job latency
and makespan. In [14], the authors propose a workflow level-based data block placement

Electronics 2023, 12, 3807 5 of 20

in a cloud environment to optimize the data sharing among multiple jobs in a batch.
To manage geo-distributed workloads, the authors in [15] place the data based on the
computing capacity of nodes in the CDC. These data blocks are typically stored based on
rack awareness in case of a physical cluster. This leads to a varying number of data blocks
on each physical machine in the cluster, as shown in Figure 2. However, in a cloud virtual
environment, there is no rack awareness [16] as VMs might be hosted in the same PM or
different PMs within a rack. This results in an unequal number of data blocks in each VM,
regardless of its performance and location. A detailed description of different replication
strategies in distributed file systems on the cloud is mentioned in [17,18].

To improve data local execution in a heterogeneous environment, a sampling-based
randomized algorithm is proposed in [19]. In this work, the authors estimate the workload
arrival at runtime for a set of candidate nodes in the cluster. The node that is estimated
with the smallest workload in the future is chosen to place data blocks. A dynamic data
replication strategy is proposed in [20] to minimize network bandwidth consumption and
latency. The authors consider a set of characteristics, such as number of replicas, depen-
dency between datasets, and the storage capacity to decide the lifetime of a replica. A
similar approach is applied in [7] to retain the data blocks that are most wanted. Interest-
ingly, the authors in [21] place data blocks based on the availability of cache memory in
the server. A location-aware data block placement strategy for HDFS is devised in [22], by
identifying virtual nodes’ processing capacities in the cloud. To take advantage of data
local executions, data locality aware scheduling is performed in [23]. A similar approach is
carried out in [24], with the focus of minimizing the total data transfer cost at the time of
non-local execution. In an IoT environment, data blocks located on different decentralized
nodes are processed and the results are combined. To achieve this, the authors in [25]
proposed an edge-enabled block replica strategy that stores in-place, partition-based, and
multi-homing block replicas on respective edge nodes. To estimate the workers’ and tasks’
future resource consumption, a Kernel Density Estimation and Fuzzy FCA techniques are
used in [26] to cluster data partitions. Fuzzy FCA is also used to exclude partitions and jobs
that require less resources, which will reduce needless migrations. In another work [27],
the authors place data blocks based on the evaluation indicators, such as node’s disk space
capacity, memory and CPU utilization, rack load rate, and network distance between racks.

In a production environment, a batch of jobs is periodically executed to extract insight
from huge data in physical/virtual clusters at different times. The nature of jobs would not
change much and reveal more information about workload behavior. Fair scheduler [8]
equally shares the underlying resources to all the jobs in the batch, resulting in an equal
chance for each job. However, if a job is idle and waiting for the resources, the resources
allocated to that job are held idle until the job completion. To provide resources based on
the job’s requirements, capacity scheduler [9] is introduced to define the resources required
for each job in the batch. Like fair scheduler, capacity scheduler also holds resources unused
when the job is waiting for other resources. In addition, both fair and capacity schedulers
do not consider the heterogeneity in the underlying hardware resources. To adopt various
dynamic parameters in big data applications to improve energy efficiency, workload
analysis [28] is conducted to select the optimal configuration and system parameters. They
used micro-benchmarks and real-world applications to demonstrate the idea proposed. In
this study, a variety of processing elements, as well as system and Hadoop configuration
parameters, are tested. These metrics emphasize the performance of the MapReduce
scheduler. Identifying the right combination of these parameters is a challenging task
that cannot be performed at the time of execution. Therefore, Metric Important Analysis
(ensemble learning) was carried out by Zhibin Yu et al. [29] using MIA-based Kiviat Plot
(MKP) and Benchmark Similarity Matrix (BSM). This produces more insight than traditional-
based dendrograms to understand job behavior by using three different benchmarks:
iBench, CloudRank-D, and SZTS.

Heterogeneity at different levels of the cloud environment is considered before data
block distribution in the virtual cluster by using a framework, called MRA++ [30]. This

Electronics 2023, 12, 3807 6 of 20

method uses some sample map tasks to gather information on the capacity and performance
of individual nodes in the cluster. If a node is underperforming, it does not attract compute-
intensive tasks. Thus, stragglers are avoided. Balancing data load among the nodes in
the Hadoop cluster is very difficult to determine in a heterogeneous environment as the
performance of individual nodes varies significantly. A novel data placement technique
was proposed by Vrushali Ubarhande et al. [31] to minimize makespan in a heterogeneous
cloud environment. Computing performance is determined for each virtual node using
some heuristics, and data blocks are placed accordingly. The authors claim that data
locality and makespan are compared to classical methods. To balance optimal load across
the virtual cluster, a topology-aware heuristic algorithm [32] was designed to minimize
non-local execution for map tasks and minimize global data access during the shuffle phase.
Here, the computation cost was minimized up to 32.2% compared to classical MapReduce
schedulers.

In light of these related works, the following observations are made. To improve
the performance of data local execution, existing works rely mostly on establishing the
processing performance or capacity of the VM. However, they do not consider disk IO
performance in a PM. Moreover, the performance of VMs fluctuates due to co-located VM
resource consumption interference. Therefore, in this paper, we propose the following
works to increase the data local executions, thereby minimizing job latency and makespan
in a cloud virtualized environment. As

1. disk IO load is directly correlated to the overall HDD performance, we employ simple
linear regression algorithm to predict HDD performance based on the number of IO
operations performed over time.

2. VM performance varies due to the co-located VM’s interference, map tasks are sched-
uled based on the VM performance in terms of CPU and disk IO.

4. Proposed Methods

In this section, performance of disk IO is predicted and used for placing the data
blocks to ensure data location. This helps MapReduce tasks execute without waiting for
disk access when memory and CPU are available. In particular, map tasks benefit from this
approach by minimizing the number of non-local executions. In addition, to improve map
task performance further, map tasks are placed based on the heterogeneous performance of
VMs in different PMs.

4.1. Predicting Disk IO Performance to Place Data Blocks Using Regression

4.1.1. Problem definition

A numerical predictive problem is defined as follows: given a number of read + write
access of a disk, performance of an HDD is predicted. According to the performance of
each HDD, a set of data blocks is distributed on the cluster VMs.

4.1.2. Problem formulation

Generally, the Hadoop framework is offered as a service on a cluster of VMs, hosted
on different PMs with different configurations in a CDC, as shown in Figure 3. A CDC
consists of t racks (Rack1, Rack2, . . ., Rackt), each with u PMs (PM1, PM2, . . ., PMu). These
PMs host Hadoop and non-Hadoop VMs. In Figure 3, a cluster of v Hadoop VMs (VM1,
VM2, . . ., VMv), highlighted in shade, is assumed. HDFS services such as name node
(NN), secondary name node (SNN), and data node (DN) are run on different VMs. YARN
components such as RM and NM are also serving to the MapReduce jobs. These Hadoop
VMs in the virtual cluster are distributed across the CDC based on resource availability in
PMs, which are generally of varying capacities and performance. Therefore, heterogeneity
in the physical environment is unavoidable, as it causes varying performance for the
same task at different runs. Sometimes, a set of VMs might be allocated with the same
HDD on a PM even though multiple HDDs are available. In this case, though CPU and
memory capacity are available for launching map tasks, due to IO contention by co-located

Electronics 2023, 12, 3807 7 of 20

VMs on the same HDD, it takes time to bring data blocks into memory for map tasks.
In Figure 4, disk IO consumption every 5 s is shown for four cases on a wordcount job
to understand how map tasks consume disk bandwidth: HDFS access with interference,
HDFS access without interference, local file system (LFS) access with interference, and LFS
access without interference. From Figure 4, it is evident that the map task latency of a
wordcount job increased by up to 50% due to co-located VM interference when compared
to map task execution with no interference. Because of co-located VM interference, the map
task is held idle for a significant amount of time while waiting for disk IO. As a result, job
latency increases and resources are underutilized. Figure 5 shows that when co-located
VM interference increases, CPU and network resources are mostly unused, while disk IO is
interfered with by co-located VMs. This indicates that the hired resources are not properly
utilized, and job latency deteriorates. This influences overall job latency and the number of
local map tasks executed. Therefore, it is important to consider HDD performance before
distributing data blocks.

Figure 3. Hadoop virtual cluster.

Figure 4. Disk IO consumption for map task in wordcount job during co-located VM interference.

Electronics 2023, 12, 3807 8 of 20

Figure 5. Unused CPU and network resources due to disk IO contention in each PM.

Once the big data is uploaded onto HDFS, it divides the input file into n equal sized
blocks (along with replication, in total N = 3 ∗ n number of blocks) and identifies the target
VM for storing the data block. Here, in general, the target VM is chosen based on the storage
availability. In the proposed approach, we predict the disk IO performance based on the
disk access requests to the HDDs to decide the target disk for loading data blocks. The
idea is the number of disk IO access (read + write) is directly proportional to the amount
of disk IO bandwidth consumed most of the time by the Hadoop VMs. Therefore, based
on the disk access, we can predict the performance of a Hadoop VM. Because applications
running in VMs exhibit similar behavior to disk access, we use a simple linear regression
algorithm, which is a supervised learning model that helps with numerical prediction. It
takes an input variable (independent variable) and produces an approximate/estimated
output (dependent variable), as shown in Equation (1).

IOPk
i = y = mx + c (1)

Here, i, k, and x indicate PM, disk number, and input value, respectively. IOPk
i indi-

cates kth disk in ith PM. In our case, x is defined as “number of disk IO access (read + write)”
and y is the performance of every five seconds. m and c are the parameters to be estimated.
While reading/writing on an HDD, some data are transferred back and forth by consuming
disk bandwidth. Even though we cannot predict the behaviour of applications running
inside non-Hadoop VMs, based on bandwidth consumption (in %) over time, it is possible
to approximate the performance of a VM as the output variable. This is calculated by
averaging the disk IO consumption rate every five seconds. By recording thousands of
such samples, we build a linear model using regression. This is applied to each HDD on
the PMs in the data centre. Despite many Hadoop VMs being hosted on the same HDD,
data blocks are stored on the drive, which gives high performance.

In general, VMs are not migrated very frequently. Therefore, predicting IO perfor-
mance of a VM using this method is useful for most of the time. By default, three copies
of a data block are distributed across the virtual cluster. What if three copies are stored
in three different VMs hosted on the same PM? Multiple copies of the same block are
used to achieve fault tolerance, but there is no way to ensure rack awareness to achieve
fault tolerance in a virtual cluster. Therefore, after predicting the IO performance of an
individual disk, it is guaranteed that no copies of a block are created in VMs hosted on
the same physical machine. Moreover, if disk IO performance is predicted to be high, then
the number of blocks present in that VM is high, as given in Equation (2). In general, the
number of data blocks (DB) stored in each VM is the same. However, in the proposed
approach, the number of data blocks available on a disk for a VM is directly proportional
to the performance of disk IO on that PM. If the performance is the same in all HDDs, then
an equal number of data blocks is stored in each VM.

∀i,j,k (DB)k
i,j =

⌊
(IOP)k

i ∗ e
⌋

(2)

Electronics 2023, 12, 3807 9 of 20

Here, i, j, and k indicate PM, VM, and disk number, respectively; e denotes the number
of data blocks possible on the respective HDD based on the available storage. Algorithm 1
provides a summary of the proposed prediction-based block placement strategy. Figure 6
shows the overall flow of the proposed approaches. Initially, big data are uploaded onto
the virtual cluster hired by dividing the data into blocks. At this point, the service provider
assists the data-loading phase by providing the performance of HDDs associated with VMs
in the cluster to improve data local execution. Then, while executing a batch of jobs, the
map tasks in each job are scheduled based on the varying performance of VMs to minimize
job latency and makespan.

Figure 6. Prediction-based data block placement.

Whenever a virtual cluster is scaled up based on demand, the number of VMs and
their type (different configurations and capacities, such as micro, min, etc.) are chosen
based on the requirements. Users can redistribute blocks from heavily loaded machines to
lightly loaded machines to balance the cluster load. As a result, the data blocks are moved
in accordance with the disk IO performance of the PM that hosts the new VMs.

Algorithm 1: Prediction based block placement at the data loading stage
Input : N data blocks, IOP
Output : DB
for w = 1...N do

for j = 1...|VM| do
for k = 1...|HDD| do

if DBk
i,j ≤ DBe

i,j then
DBk

i,j = w

DBk
i,j ++

continue w
end

end
end

end

4.2. Scheduling Map Tasks Based on the Heterogeneous Performance of VMs

Once the data blocks are loaded based on the performance of disk IO, MapReduce
jobs can be launched on them. Each map task has three options as the replication factor
is 3, by default. Therefore, a map task can be executed in one of the three VMs in which
a specific block has been stored. To decide this, the dynamic performance of each VM is
computed, based on which map tasks are launched. This idea might seem arbitrary while
dealing with with one job. However, when a batch of jobs is executed, map tasks from
different jobs might be configured with different resource capacity. Therefore, choosing the
right VM for executing a map task is very important.

Typically, Hadoop VMs are co-located with non-Hadoop VMs, which affects the
performance of the Hadoop VMs by sharing the IO resources of the underlying PM. Even
though the performance of the disk is high, there could be a chance that CPU and memory

Electronics 2023, 12, 3807 10 of 20

are tightly shared by co-locating VMs. Therefore, it is also important to observe that
data local execution is minimized due to the unavailability of resources. Therefore, we
dynamically monitor the performance of each Hadoop VM. If the performance of a VM
is not significant, then the frequently accessed data blocks from that VM are migrated to
another VM, which results in high performance. This way, there is a chance to increase
the number of local executions, thereby improving the latency and makespan for a batch
of MapReduce jobs. CPU performance of jth VM in the ith PM (VMCPU

ij) is calculated
by finding the PM with maximum CPU frequency (CPU_F) among all the PMs in which
Hadoop VMs have been hosted, as given in Equation (3).

VMCPU
ij =

VMCPU_F
ij

max(∀PMCPU_F
i)

(3)

Equation (4) calculates the Disk IO performance of jth VM in ith PM (VMDIO
ij) con-

sidering a current disk bandwidth (CB) rate of jth VM in ith PM (VMCB
ij) over the disk

bandwidth (B) of kth disk in ith PM (PMB
ik).

∀i, j VMDIO
ij = ∀k,

∑ VMCB
ij

PMB
ik

(4)

Map and reduce tasks from different jobs have different resource requirements. Map
tasks demand more CPU and storage access, while reduce tasks need CPU and network
bandwidth. Therefore, to launch map tasks in VMs, it should have seamless disk bandwidth
while the job begins. In addition, it should have seamless network bandwidth while moving
map outputs to reduce nodes where reduce tasks are running. To find the virtual node that
is suitable for running map tasks, we calculate the influence of jth VM in ith PM for map
(VMMI

ij) by considering the latency of the last z map tasks (ML) executed in jth VM, using
Equation (5).

∀i,j, VMMI
ij = min

(
∀z,

MLjz

∑z
m=1 MLjm

)
(5)

Typically, overall performance of a VM is calculated regardless of the task’s type.
Using Equation (6), we find map task performance (MP) in each VM (VMMP

ij) based on
CPU frequency and Disk IO bandwidth of respective VM hosted in each PM.

∀i,j, VMMP
ij = VMCPU

ij × (1−VMDIO
ij)× (1−VMMI

ij) (6)

Finally, VMs are sorted in descending order, using Equation (7), based on its perfor-
mance to launch map tasks, or else reduce tasks could be launched in place of map tasks.

rank = sort(VMMP
ij) (7)

Algorithm 2 describes how map tasks are scheduled for a job. After calculating the map
performance rank for VMs, task scheduler schedules map tasks. For the initial scheduling
of map tasks, only the top 10% of map nodes are selected from the rank list. If no container
is possible and no data locality is possible, the remaining 90% of nodes in the rank list are
used for scheduling map tasks. However, the performance of these 90% of nodes would be
relatively inferior to that of the first 10%. Non-local execution is preferred when locality
cannot be achieved on any node in the rank list. This means that map tasks are performed
on nodes where the data is not locally available. This approach may result in higher data
transfer costs or reduced performance, but it allows tasks to be executed even when data
locality cannot be achieved. When a virtual cluster is expanded by adding additional VMs
with varying capacity and performance, the existing rank list becomes obsolete since the
new VMs might perform better and be included in the top 10% or lower. It is therefore

Electronics 2023, 12, 3807 11 of 20

essential to reevaluate Equations (3)–(7). By comparing the ranking of newly added VMs
with the ranking of existing VMs, high performing VMs can be ranked relatively. Due to
the dynamic nature of performance throughout the execution, it is helpful to launch map
tasks on the appropriate VMs. As map task scheduler calculates dynamic performance and
is highly heuristic, its computational time is constant for every VM.

Algorithm 2: Heterogeneous performance aware map task scheduling
Input : MapReduce jobs, rank
Output : VMij ←map tasks
m←number of map tasks a job
Mnp − pth map task of nth job
∀p,Mnp ← 0
Cn—number of completed map tasks of nth job
Cn ← 0
while Cn ≤ m do

Get a map task (p) from nth job
Get top 10% VMs from rank
while until 10% nodes do

if containers && data locality then
mapnp = 1
Launch map task
Cn ++

end
end
if mapnp! = 1 then

Get remaining 90% VMs from rank
while until 90% of nodes do

if containers && data locality then
mapnp = 1
Launch map task
Cn ++

end
end

else
if perform non-local execution then

mapnp = 1
Launch map task
Cn ++

else
add mapnp into task queue

end
end

end

5. Results and Analysis
5.1. Experimental Setup

We simulate our ideas on an Ubuntu server with a 12-core CPU (hyper-threaded),
64 GB memory, 4× 1 TB HDDs, and a maximum disk bandwidth rate of 100 MB. We
compare the proposed ideas with classical Fair scheduler [8], Rowlett Wheel Scheme (RWS)-
based job schedulers, and Heuristics-based MapReduce Job Schedulers (HMJS) [5], based on
quality-of-service parameters, such as non-local execution, job latency, and makespan, using
Hadoop 2.7.0. We chose these works because they demonstrate how our proposed method
performs compared to a classical scheduler without any heterogeneities and one that does.
We also assume workload size and VM configuration parameters, as described below. VMs
and PMs in CDC are assumed to be highly heterogeneous, as shown in Figure 7. Five
different VM Flavors (VMFs) with different configurations (CPU, memory) are considered
in the simulation, namely, VMF1 (1 vCPU, 2 GB), VMF2 (2 vCPU, 4 GB), VMF3 (4 vCPU,

Electronics 2023, 12, 3807 12 of 20

4 GB), VMF4 (8 vCPU, 16 GB), and VMF5 (12 vCPU, 24 GB). Twenty VMs in each VMF are
considered in the virtual cluster deployed in different PMs (shown in Figure 7) in random
across CDC using KVm hypervisor. We have used KVM hypervisor and considered the
following network parameters: ethernet cables with a maximum bandwidth of 250 MHz
and supporting 10 Gbps data transfer speeds, and network switches with a capacity of
1 Gbps. The amount of network bandwidth consumed is not defined in numbers, instead
it can be assumed with job latency and makespan, as we focus on disk IO access in
different HDDs and do not restrict the simulation environment related to network-related
parameters. We simulate disk IO interference based on normal distribution, as if co-located
VMs perform random executions. The range for normal distribution is defined by the
minimum and maximum disk IO access rate in each PM (as given in Section 5.2). The
frequency of disk IO interference is also random, as we cannot expect the interference on
certain patterns in real-time.

Figure 7. Experimental setup in the simulation.

Workloads for the experiment considered are wordcount, wordmean, wordmedian,
and kmean to process datasets of sizes 128 GB, 64 GB, 256 GB, and 192 GB, respectively,
totaling 640 GB. These datasets can be downloaded from [33]. Wordcount calculates the
frequency of word occurrences in a file. The average length of words is calculated by
wordmean job. The median length of words in a file is computed by the wordmedian job.
The kmean job finds clusters in the given input data file. For all datasets, the input block
size is 128 MB, and the replication factor is 3. The number of map/reduce tasks and their
resource requirements is given in Table 1. One map task is assigned to a block, such that
the number of map tasks for each job is 1000, 500, 2000, and 1500, respectively. Map task
latency and reduce task latency are also fixed and included in the table. These latencies are
approximated and taken from our lab experiments.

Electronics 2023, 12, 3807 13 of 20

Table 1. Resource requirements of each job.

MapReduce
Job

No. of Map
Tasks

No. of Reduce
Tasks

vCPU Memory Map Task
Latency

Reduce Task
LatencyMap Reduce Map Reduce

wordcount (J1) 1000 20 1 1 2 1 21 39

wordmean (J2) 500 15 1 2 1 1 18 33

wordmedian (J3) 2000 15 1 2 1.5 2 15 30

kmean (J4) 1500 10 2 2 1.5 2.5 21 60

In the field of big data analytics and distributed computing, the datasets listed in
Table 1 are usually used as benchmarks. These datasets and the MapReduce jobs represent
a range of characteristics and properties commonly encountered in real-world applica-
tions. Inherently, they contain varying distributions of data, which can influence resource
utilization. For example, a skewed distribution in the dataset can lead to resource imbal-
ances within the virtual cluster. In addition, MapReduce jobs can differ in their resource
consumption depending on the nature of the datasets. The frequency and intensity of
input/output operations involved in processing the datasets should be considered. In
some cases, datasets may require frequent disk access, resulting in higher disk IO resource
utilization. It may be necessary to use more computational resources for certain datasets
that involve complex computations or algorithms. For example, wordcount, wordmean,
and wordmedian MapReduce jobs are highly IO intensive, as the size of map task output
is greater than the size of its input. Therefore, disk IO access for HDFS operation is high
throughout the execution, as discussed in Figure 8. In addition, reduce tasks tend to read
massive input from map tasks, which require more disk IO bandwidth to distribute the
output. Secondly, the kmean job involves massive computational resources as reduce task
performs clustering the data points. In this job also, map tasks produce the output bigger
than the size of its input. This diversity allows for a comprehensive assessment of the
proposed method’s effectiveness across different data types and distributions.

Figure 8. IO access pattern in different hard disk drives.

5.2. Prediction Based Block Placement

In general, the classical scheduler places data blocks across VMs evenly, but our
proposed method places data blocks based on the performance of HDDs. To predict the
performance of HDDs, we use the trace of disk IO access recorded every five seconds.
Consider three physical machines (nodes), each with one HDD. Assume the first node hosts
five VMs, the second node hosts three VMs, and the third node hosts one VM. IO-intensive
applications such as web applications are run in a VM to record disk IO access behavior.
Disk access on Node 1 fluctuates between 70 MB/s and 89 MB/s because of hosting five
VMs. Each VM races against each other to hold disk access, such that disk IO is constantly
delivering data to running tasks. If many map tasks are launched on Node 1, then bringing
data blocks of a job that requires more IO access into memory takes more time. Moreover,
data blocks might be in different sectors/disks on the HDD. Similarly, on Node 2, disk

Electronics 2023, 12, 3807 14 of 20

access ranges between 55 MB/s and 74 MB/s as three VMs are hosted on this machine.
Node 3 disk access varies between 20 MB/s and 39 MB/s. However, the disk bandwidth
consumption may go down to the starting range mentioned above. Figure 8 shows the
recorded disk IO access for every 5 s.

The idea here is to predict the performance of an HDD based on the estimated disk IO
access required for a MapReduce job. As VMs reside on specific PMs and execute programs
that exhibit similar behavior, it is possible to generalize its impact on the HDD based on
the number of disk IO access and the performance. Hence, we collected 1152 samples in
total from all the three nodes mentioned above, which are split into 80:20 for training and
testing. In particular, we have to record samples on each HDD in the server that hosts
Hadoop VMs. Then, we build a regressor model for each HDD, such that it is used for
predicting its performance given input (estimated number of IO access). The approximate
number of disk IO access for a particular MapReduce job can be obtained by running that
job on a single block. Figure 9 shows the regressor model devised on 160 samples collected
on a HDD attached to Node 3. The scatter plot displays disk IO access (in millions) and
performance (in %) as coordinates. We can see various numbers of disk IO access ranging
from 0 to 300 millions to showcase the performance of a HDD in different degrees.

Figure 9. Training phase for Node 3.

To fit a linear model on the dataset collected, values for the parameters m and c must
be approximated from the dataset. Mean squared error (MSE) is the cost function typically
used in regression. Parameter values that minimize the cost function, i.e., using gradient,
are the values of interest. The MSE on the training set for the above model is 9.7, with the
resultant model y = 0.049x + 7.069. Here, the model parameters m and c obtain 0.049 and
7.069, respectively. The model error rate would change based on the HDD performance
for a given disk IO access, which depends on the particular PM running co-located non-
Hadoop VMs, hypervisor, and the host OS. The predicted accuracy is displayed in Figure 10
with the training set. The MSE with the testing set is 13.5, which shows that the better
predicted accuracy is coherent with the training set. Figure 11 shows the residual plot of
the predicted accuracy. It can be observed that the model has performed well closed to
the observed values by minimizing the deviations with the predicted disk IO performance
below 15 MB/s. The variation (residuals above to 3) that is seen with higher disk IO
performance can be explained with a higher number of samples obtained in the same range.
However, it is good enough and helpful in placing data blocks. In addition, collecting more
samples for the varying disk IO performance can help to estimate the model even better.
As a final argument, including a higher number of features related to disk access to infer
its performance is possible. However, the simple linear model with the number of disk IO
access abstract all the lower level features related to HDD.

Electronics 2023, 12, 3807 15 of 20

Figure 10. Predicted and observed values.

Figure 11. Residual plot.

If a VM is attached with a virtual HDD of 100 GB, and the HDFS block size is 128 MB,
then the VM is capable of storing 400 (e) blocks of different jobs. However, based on
Equation (2), if the performance of the physical HDD attached with that VM ((IOP)k

i)
is 85%, then (DB)k

i,j gets b0.85 ∗ 400c = 340. This means that storing 340 blocks in the
respective VM will benefit while launching a batch of jobs. However, there is a chance
of keeping the leftover storage unused. In this case, 15 GB is unused here. In another
case, if (IOP)k

i is 10%, then 90 of GB memory will be unused. As users pay for only the
amount of storage used, cloud service providers can charge the user accordingly. In the
worst-case scenario, 400 blocks of data are already stored in a VM. Unfortunately, disk
performance falls relative to the other VMs in the same PM. In order to maintain scheduler
performance afterward, the data blocks may be redistributed around the virtual cluster.
Another scenario is that cloud service providers can migrate VMs to a PM that provides
better HDD performance if a VM encounters prolonged HDD performance drops in a PM.

5.3. Scheduling Map Tasks Based on Heterogeneous Performance

The heterogeneous performance of VMs causes varying latency of the same task in
different VMs. If a map task execution lasts for a long time, then the latency of the map
phase is extended. As a batch of MapReduce jobs is executed periodically, data blocks could
be shifted to a VM that performs better. Therefore, the number of map tasks completed
per unit of time by a high-performing VM is higher than a VM with large capacity but
varying performance. Therefore, VMs are dynamically monitored for varying performance,
and data blocks are moved from one VM to another VM. We compared our approach with
existing schedulers: Fair scheduler [8], RWS, and HMJS [5] based on the configuration
mentioned in the Experimental setup. Figure 12 shows the number of non-local executions
achieved with different schedulers for a batch of four different workloads. Prediction-
based scheduler outperformed classical fair scheduler by 76% on average considering all
four workloads. On average, our proposed approach minimizes the number of non-local
executions by 72% compared to the RWS-based scheduler. Minimizing the number of non-
local executions leads to a reduction in job latency, as shown in Figure 13. It is observed that

Electronics 2023, 12, 3807 16 of 20

job latency is decreased up to 49% on average while using our proposed method over the
classical fair scheduler. This is because the fair scheduler partitions the resources for all the
jobs, so several local executions are very low, resulting in an increase in job latency (not the
map task latency). Similarly, on average, a 40% improvement is observed while using the
prediction-based approach compared to the RWS-based scheduler, because the RWS-based
scheduler focuses on the computing capacity of VMs, while the prediction-based approach
considers disk IO performance to minimize map phase latency.

Figure 12. Number of non-local execution with different schedulers for different jobs.

Figure 13. MapReduce job latency with different schedulers.

Although HMJS considers heterogeneous performance to minimize job latency, the
prediction-based scheduler takes into account the number of disks available on each
physical machine and its performance over time. Thus, the prediction-based scheduler only
outperforms HMJS by 26%. Finally, to emphasize the effectiveness of our proposed method,
we also compared the makespan of each scheduler for a batch of jobs. The prediction-based
scheduler improved the makespan by up to 66% compared to the traditional fair scheduler,
as shown in Figure 14. Similarly, it outperformed the RWS-based approach by 52%. It is
significant to note that the improvement of our proposed approach is 19% in comparison to
HMJS. HMJS uses a bin packing approach that randomly fits the most optimal combination
of containers in each VM. In contrast, our proposed method takes a different approach
to loading data blocks in advance to minimize map phase latency. When bin packing
is focused, data local execution is compromised to obtain the most optimal combination
of containers. Therefore, the number of non-local executions is steadily increasing while
working with a bin backing-based approach in HMJS. In our proposed approach, we
break this limitation by loading data blocks depending on the performance of the disk on
physical machines where VMs have been hosted. Moreover, disk IO performance could be
limited over time due to co-located VMs’ interference. Hence, we periodically observed
the change in disk IO performance and moved data blocks accordingly depending on disk
IO persistence. This significantly shortened the makespan when compared to HMJS. In

Electronics 2023, 12, 3807 17 of 20

addition to considering HDD performance for placing data blocks, cloud service providers
can monitor and balance workloads on PMs indirectly to manage HDD performance for
data block placement by planning and distributing workloads.

Figure 14. Makespan for different schedulers.

5.4. Rank Calculation for Launching Map Task

As discussed in Section 4.2, to schedule map tasks in all the MapReduce jobs, as
displayed in Table 2, the performance score (MP) of each VM in the virtual cluster is
calculated based on disk IO (DIO), CPU, and map task influence (MI). Based on MP, a
rank list is prepared to choose the right VM for launching map tasks by adhering to the
data locality; rank list is then sorted in ascending order to choose the top 10% of VMs in
the first priority. Ten VMs in the virtual cluster running in different PMs are considered
for understanding the flow of heterogenous performance calculation. The parameters
in Table 2, such as VMCPU

ij , VMDIO
ij , VMMI

ij , VMMP
ij , and rank display the values for all

10 different VMs. These values are calculated based on Equations (3)–(7). There are various
scenarios of all these parameters that constitute rank 1 to 10. For instance, when VMCPU

ij ,

VMDIO
ij , and VMMI

ij hold values of 0.9, 0.95, and 0.1, respectively, the value for VMMP
ij is

high. Therefore, VM(10) is preferred for executing map tasks on the first priority. When
more than one VM holds the same rank, based on features such as data locality, etc.,
appropriate VM is chosen for executing map tasks. In contrast, on the opposite side, when
VMCPU

ij , VMDIO
ij , and VMMI

ij holds values of 0.65, 0.64, and 0.65, respectively, the value

for VMMP
ij is very low, which is 0.22. Therefore, VM(6) is least preferred for launching

map tasks.
Initially, the top 10% of the high performing VMs are chosen. As per the example

given in Table 2, only VM(10) is considered for launching map tasks. When a virtual cluster
contains 100 s of VMs, then there could be many VMs that could come under the top
10%. After successfully launching map tasks on these VMs, based on rank in the table, the
remaining tasks are executed. One important point to remember is that lower rank holder
VMs are not having many map tasks for execution, as its performance is less significant.
In contrast, the high performing VMs that hold top rank are considered for executing a
higher number of map tasks. Hence, based on the heterogeneous performance of each VM,
the respective number of map tasks can be executed. When this idea is combined with
predictive-based data block placement, the performance of MapReduce can be improved.

Electronics 2023, 12, 3807 18 of 20

Table 2. Rank calculation for different VMs.

V M(j) V MCPU
ij V MDIO

ij V MMI
ij V MMP

ij Rank

1 0.8 0.68 0.5 0.34 7

2 0.9 0.91 0.2 0.73 2

3 0.7 0.55 0.6 0.22 9

4 0.85 0.82 0.4 0.49 4

5 0.75 0.73 0.45 0.40 6

6 0.65 0.64 0.65 0.22 10

7 0.95 0.86 0.25 0.65 3

8 0.8 0.77 0.4 0.46 5

9 0.7 0.59 0.55 0.27 8

10 0.9 0.95 0.1 0.86 1

6. Conclusions

Without cloud services, it is impossible for CPS applications to use big data processing
frameworks, as it is expensive to set up on-premises. Hadoop is one of the most efficient
processing tools for crunching large volumes of data. It is also offered as a cloud service on
a cluster of VMs hosted on a cluster of physical servers in a CDC. In this case, heterogeneity
in physical servers and VM performance is unavoidable. It adversely affects disk read
performance for map tasks in MapReduce and the latency of map tasks. To handle these
issues, we distribute the data blocks based on the performance of disk IO and dynamically
exploit the heterogeneous performance of VMs to minimize job latency and makespan.
We simulated our ideas on Hadoop 2.7 and compared them to the classical fair scheduler,
RWS-based scheduler, and HMJS. Based on the results, our proposed scheduler outper-
formed existing schedulers for makespan by up to 66%, 52%, and 19%, respectively. The
performance of our predictions can be affected by cloud scheduler decisions in the event
of frequent virtual machine thrashing or dynamic resource sharing, although predictions
play a vital role in our work. Therefore, considering the heuristics of the cloud resource
scheduler in addition to the prediction for the placement of blocks could be an advantage.

Author Contributions: Conceptualization, G.S. and R.J.; methodology, G.S.; software, R.J.; validation,
A.S., A.P. and G.S.; formal analysis, R.J.; investigation, A.P.; resources, A.S.; data curation, G.S.;
writing—original draft preparation, G.S.; writing—review and editing, G.S.; visualization, R.J.;
supervision, A.S. and A.P.; project administration, A.P.; funding acquisition, A.P. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Research Foundation of Korea (Grant No.
2020R1A2C1012196), and in part by the School of Computer Science and Engineering, Ministry of
Education, Kyungpook National University, South Korea, through the BK21 Four Project, AI-Driven
Convergence Software Education Research Program, under Grant 4199990214394.

Data Availability Statement: Simulation of this research is carried out by a program developed
by our team. As a result, the data generated by the program is not available for online publishing
separately.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rathore, M.M.U.; Shah, S.A.; Awad, A.; Shukla, D.; Vimal, S.; Paul, A. A cyber-physical system and graph-based approach for

transportation management in smart cities. Sustainability 2021, 13, 7606. [CrossRef]
2. Jeyaraj, R.; Balasubramaniam, A.; Kumara, A.M.A.; Guizani, N.; Paul, A. Resource Management in Cloud and Cloud-Influenced

Technologies for Internet of Things Applications. ACM Comput. Surv. 2022, 55, 1–35. [CrossRef]
3. Jeffrey Dean, S.G. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 2008, 51, 2140–2144.

http://doi.org/10.3390/su13147606
http://dx.doi.org/10.1145/3571729

Electronics 2023, 12, 3807 19 of 20

4. Guo, Y.; Rao, J.; Jiang, C. Moving Hadoop into the Cloud with Flexible Slot Management and Speculative Execution. IEEE Trans.
Parallel Distrib. Syst. 2014, 28, 798–812. [CrossRef]

5. Jeyaraj, R.; Ananthanarayana, V.S.; Paul, A. Improving MapReduce scheduler for heterogeneous workloads in a heterogeneous
environment. Concurr. Comput. Pract. Exp. 2020, 32. [CrossRef]

6. Jeyaraj, R.; Ananthanarayana, V.S.; Paul, A. Dynamic ranking-based MapReduce job scheduler to exploit heterogeneous perfor-
mance in a virtualized environment. J. Supercomput. 2019, 75, 7520–7549.

7. Xiong, R.; Du, Y.; Jin, J.; Luo, J. HaDaap: A hotness-aware data placement strategy for improving storage efficiency in heteroge-
neous Hadoop clusters. Concurr. Comput. Pract. Exp. 2018, 30. [CrossRef]

8. Hadoop MapReduce Fair Scheduler. Available online: https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn-site
/FairScheduler.html (accessed on 20 May 2023).

9. Hadoop MapReduce Capacity Scheduler. Available online: https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yar
n-site/CapacityScheduler.html (accessed on 20 May 2023).

10. Hashem, I.A.T.; Anuar, N.B.; Marjani, M.; Ahmed, E.; Chiroma, H.; Firdaus, A.; Abdullah, M.T.; Alotaibi, F.; Mahmoud Ali, W.K.;
Yaqoob, I.; et al. MapReduce scheduling algorithms: A review. J. Supercomput. 2020, 76, 4915–4945. [CrossRef]

11. Ghemawat, S.; Gobioff, H.; Leung, S.T. The Google file system. ACM USA 2003, 37, 29–43.
12. Hadoop Distributed File System (HDFS). Available online: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html (accessed

on 20 May 2023).
13. Song, J.; He, H.Y.; Wang, Z.; Yu, G.; Pierson, J.M. Modulo Based Data Placement Algorithm for Energy Consumption Optimization

of MapReduce System. J. Grid Comput. 2018, 16, 409–424. [CrossRef]
14. Derouiche, R.; Brahmi, Z. A cooperative agents-based workflow-level distributed data placement strategy for scientific cloud

workflows. In Proceedings of the 2nd International Conference on Digital Tools & Uses Congress, Virtual, 15–17 October 2020.
15. Li, C.; Liu, J.; Li, W.; Luo, Y. Adaptive priority-based data placement and multi-task scheduling in geo-distributed cloud systems.

Knowl.-Based Syst. 2021, 224, 107050. [CrossRef]
16. Du, Y.; Xiong, R.; Jin, J.; Luo, J. A Cost-Efficient Data Placement Algorithm with High Reliability in Hadoop. In Proceedings of the

Fifth International Conference on Advanced Cloud and Big Data (CBD), Shanghai, China, 13–16 August 2017; pp. 100–105.
17. Shakarami, A.; Ghobaei-Arani, M.; Shahidinejad, A.; Masdari, M.; Shakarami, H. Data replication schemes in cloud computing:

A survey. Clust. Comput. 2021, 24, 2545–2579. [CrossRef]
18. Sabaghian, K.; Khamforoosh, K.; Ghaderzadeh, A. Data Replication and Placement Strategies in Distributed Systems: A State of

the Art Survey. Wirel. Pers. Commun. 2023, 129, 2419–2453. [CrossRef]
19. Wang, T.; Wang, J.; Nguyen, S.N.; Yang, Z.; Mi, N.; Sheng, B. EA2S2: An efficient application-aware storage system for big data

processing in heterogeneous clusters. In Proceedings of the 26th International Conference on Computer Communication and
Networks (ICCCN), Vancouver, BC, Canada, 31 July–3 August 2017.

20. Bouhouch, L.; Zbakh, M.; Tadonki, C. Dynamic data replication and placement strategy in geographically distributed data centers.
Concurr. Comput. Pract. 2022, 35. [CrossRef]

21. Ahmadi, A.; Daliri, M.; Goharshady, A.K.; Pavlogiannis, A. Efficient approximations for cache-conscious data placement. In
Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation,
San Diego, CA, USA, 13–17 June 2022; pp. 857–871.

22. Xu, H.; Liu, W.; Shu, G.; Li, J. LDBAS: Location-aware data block allocation strategy for HDFS-based applications in the cloud.
KSII Trans. Internet Inf. Syst. 2018, 12, 204–226.

23. Gandomi, A.; Reshadi, M.; Movaghar, A.; Khademzadeh, A. HybSMRP: A hybrid scheduling algorithm in Hadoop MapReduce
framework. J. Big Data 2019, 6, 106. [CrossRef]

24. Jin, J.; An, Q.; Zhou, W.; Tang, J.; Xiong, R. DynDL: Scheduling data-locality-aware tasks with dynamic data transfer cost for
multicore-server-based big data clusters. Appl. Sci. 2018, 8, 2216. [CrossRef]

25. Qureshi, N.M.F.; Siddiqui, I.F.; Unar, M.A.; Uqaili, M.A.; Nam, C.S.; Shin, D.R.; Kim, J.; Bashir, A.K.; Abbas, A. An Aggregate
MapReduce Data Block Placement Strategy for Wireless IoT Edge Nodes in Smart Grid. Wirel. Pers. Commun. 2019, 106, 2225–2236.
[CrossRef]

26. Sellami, M.; Mezni, H.; Hacid, M.S.; Gammoudi, M.M. Clustering-based data placement in cloud computing: A predictive
approach. Clust. Comput. 2021, 24, 3311–3336. [CrossRef]

27. He, Q.; Zhang, F.; Bian, G.; Zhang, W.; Li, Z.; Yu, Z.; Feng, H. File block multi-replica management technology in cloud storage.
Clust. Comput. 2023. [CrossRef]

28. Malik, M.; Neshatpour, K.; Rafatirad, S.; Homayoun, H. Hadoop workloads characterization for performance and energy
efficiency optimizations on microservers. IEEE Trans. Multi-Scale Comput. Syst. 2018, 4, 355–368. [CrossRef]

29. Yu, Z.; Xiong, W.; Eeckhout, L.; Bei, Z.; Mendelson, A.; Xu, C. MIA: Metric importance analysis for big data workload
characterization. EEE Trans. Parallel Distrib. Syst. 2018, 29, 1371–1384. [CrossRef]

30. Anjos, J.C.S.; Carrera, I.; Kolberg, W.; Tibola, A.L.; Arantes, L.B.; Geyer, C.R. MRA++: Scheduling and data placement on
MapReduce for heterogeneous environments. Future Gener. Comput. Syst. 2015, 42, 22–35. [CrossRef]

31. Ubarhande, V.; Popescu, A.M.; González-Vélez, H. Novel Data-Distribution Technique for Hadoop in Heterogeneous Cloud
Environments. In Proceedings of the Ninth International Conference on Complex, Intelligent, and Software Intensive Systems,
Santa Catarina, Brazil, 8–10 July 2015; pp. 217–224.

http://dx.doi.org/10.1109/TPDS.2016.2587641
http://dx.doi.org/10.1002/cpe.5558
http://dx.doi.org/10.1002/cpe.4830
https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://dx.doi.org/10.1007/s11227-018-2719-5
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://dx.doi.org/10.1007/s10723-016-9370-2
http://dx.doi.org/10.1016/j.knosys.2021.107050
http://dx.doi.org/10.1007/s10586-021-03283-7
http://dx.doi.org/10.1007/s11277-023-10240-7
http://dx.doi.org/10.1002/cpe.6858
http://dx.doi.org/10.1186/s40537-019-0253-9
http://dx.doi.org/10.3390/app8112216
http://dx.doi.org/10.1007/s11277-018-5936-6
http://dx.doi.org/10.1007/s10586-021-03332-1
http://dx.doi.org/10.1007/s10586-022-03952-1
http://dx.doi.org/10.1109/TMSCS.2017.2749228
http://dx.doi.org/10.1109/TPDS.2017.2758781
http://dx.doi.org/10.1016/j.future.2014.09.001

Electronics 2023, 12, 3807 20 of 20

32. Chen, W.; Paik, I.; Li, Z. Tology-Aware Optimal Data Placement Algorithm for Network Traffic Optimization. IEEE Trans. Comput.
2016, 65, 2603–2617. [CrossRef]

33. PUMA. Purdue University. Available online: https://engineering.purdue.edu/~puma/datasets.htm (accessed on 20 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TC.2015.2485230
https://engineering.purdue.edu/~puma/datasets.htm

	Introduction
	Hadoop MapReduce Background
	Related Works
	Proposed Methods
	Predicting Disk IO Performance to Place Data Blocks Using Regression
	Problem definition
	Problem formulation

	Scheduling Map Tasks Based on the Heterogeneous Performance of VMs

	Results and Analysis
	Experimental Setup
	Prediction Based Block Placement
	Scheduling Map Tasks Based on Heterogeneous Performance
	Rank Calculation for Launching Map Task

	Conclusions
	References

