Active STARS-Assisted Rate-Splitting Multiple-Access Networks
Abstract
:1. Introduction
1.1. Previous Works
1.2. Motivation and Contributions
- We propose an ASTARS-assisted downlink RSMA network with M reflection users (RUs) and M transmission users (TUs), where the direct link exists between BS and RUs while the link between BS and TUs is blocked. We derive the exact outage probability expressions of and with imperfect/perfect SIC for ASTARS-RSMA networks over cascaded Rician fading channels. We further demonstrate that the outage performance of with imperfect/perfect SIC exceeds that of when the reflection coefficient is larger.
- We further derive the asymptotic outage probability expressions of and with imperfect/perfect SIC by applying Taylor series and the Laplace transform. On this basis, we calculate the diversity orders of and with imperfect/perfect SIC. We confirm that the diversity orders of both and with imperfect SIC are . Conditioned on the perfect SIC scenario, the diversity orders of both and are related to the number of ASTARS elements, while ’s diversity order is also to the one direct link;
- We evaluate the system throughput and EE of ASTARS-RSMA networks with imperfect/perfect SIC in the delay-limited mode. We confirm that the system throughput of ASTARS-RSMA with imperfect SIC is lower than the expected upper limit due to the impact of residual interference caused by imperfect SIC. Moreover, we reveal that the EE of ASTARS-RSMA with perfect SIC is superior to that of ASTARS-RSMA with imperfect SIC, and the EE improves with an increase in the number of ASTARS elements.
- We contrast the outage probability, system throughput, and EE of ASTARS-RSMA with those of PSTARS-RSMA and ASTARS-NOMA. We confirm that the ASTARS-RSMA has a superior performance compared to PSTARS-RSMA and ASTARS-NOMA in terms of outage probability, system throughput and EE. We reveal that despite the fact that ASTARS increases power consumption compared to PSTARS, it can bring about further EE improvements in the RSMA network.
1.3. Organization and Notation
2. System Model
2.1. Device Deployment Location
2.2. User’s Received Signal Model
2.3. Channel Statistics
3. Outage Analysis
3.1. ’s Outage Probability
3.2. ’s Outage Probability
3.3. Delay-Limited Mode
4. Diversity Analysis
4.1. ’s Diversity Order
4.2. ’s Diversity Order
5. EE Analysis
6. Simulation Results
6.1. Outage Analysis
6.2. System Throughput Analysis
6.3. EE Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Yang, P.; Xiao, Y.; Xiao, M.; Li, S. 6G wireless communications: Vision and potential techniques. IEEE Netw. 2019, 33, 70–75. [Google Scholar] [CrossRef]
- Chen, S.; Liang, Y.-C.; Sun, S.K.S.; Cheng, W.; Peng, M. Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel. Commun. 2020, 27, 218–228. [Google Scholar] [CrossRef]
- You, X.; Wang, C.X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; Zhang, C.; Jiang, Y.; Wang, J.; et al. Towards6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 2021, 64, 110301. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.-S.; Zhang, R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef]
- Zhang, H.; Di, B. Intelligent omni-surfaces: Simultaneous refraction and reflection for full-dimensional wireless communications. IEEE Commun. Surv. Tutor. 2022, 24, 1997–2028. [Google Scholar] [CrossRef]
- Yang, L.; Yang, J.; Xie, W.; Hasna, M.O.; Tsiftsis, T.; Renzo, M.D. Secrecy performance analysis of RIS-aided wireless communication systems. IEEE Trans. Veh. Technol. 2020, 69, 12296–12300. [Google Scholar] [CrossRef]
- Keykhosravi, K.; Keskin, M.F.; Dwivedi, S.; Seco-Granados, G.; Wymeersch, H. Semi-passive3D positioning of multiple RIS-enabled users. IEEE Trans. Veh. Technol. 2021, 70, 11073–11077. [Google Scholar] [CrossRef]
- Yang, L.; Meng, F.; Zhang, J.; Hasna, M.O.; Renzo, M.D. On the performance of RIS-assisted dual-hop UAV communication systems. IEEE Trans. Veh. Technol. 2020, 69, 10385–10390. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Renzo, M.D.; Al-Dhahir, N. Reconfigurable intelligent surfaces: Principles and opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Y.; Mu, X.; Zhou, J.T.; Song, L.; Poor, H.V.; Hanzo, L. Simultaneously transmitting and reflecting intelligent omni-surfaces: Modeling and implementation. IEEE Veh. Technol. Mag. 2022, 17, 46–54. [Google Scholar] [CrossRef]
- Liu, Y.; Mu, X.; Xu, J.; Schober, R.; Hao, Y.; Poor, H.V.; Hanzo, L. STAR: Simultaneous transmission and reflection for 360° coverage by intelligent surfaces. IEEE Wirel. Commun. 2021, 28, 102–109. [Google Scholar] [CrossRef]
- Mu, X.; Liu, Y.; Guo, J.; Schober, R. Simultaneously transmitting and reflecting(STAR) RIS aided wireless communications. IEEE Trans. Wirel. Commun. 2022, 21, 3083–3098. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Di, B.; Tan, Y.; Renzo, M.D.; Han, Z.; Poor, H.V.; Song, L. Intelligent omni-surfaces: Ubiquitous wireless transmission by reflective-refractive metasurfaces. IEEE Trans. Wirel. Commun. 2022, 21, 219–233. [Google Scholar] [CrossRef]
- Björnson, E.; Özdogan, Ö.; Larsson, E.G. Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying? IEEE Wirel. Commun. Lett. 2020, 9, 244–248. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, L.; Chen, X.; Liu, C.; Yang, F.; Schober, R.; Poor, H.V. Active RIS vs. passive RIS: Which will prevail in 6G? IEEE Trans. Commun. 2023, 71, 1707–1725. [Google Scholar] [CrossRef]
- Jian, M.; Alexandropoulos, G.C.; Basar, E.; Huang, C.; Liu, R.; Liu, Y.; Yuen, C. Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques. Intell. Converged Netw. 2022, 3, 1–32. [Google Scholar] [CrossRef]
- Bazrafkan, A.; Poposka, M.; Hadzi-Velkov, Z.; Popovski, P.; Zlatanov, N. Performance Comparison Between A Simple Full-Duplex Multi-Antenna Relay And A Passive Reflecting Intelligent Surface. IEEE Trans. Wirel. Commun. 2023. early access. [Google Scholar] [CrossRef]
- Zhi, K.; Pan, C.; Ren, H.; Chai, K.; Elkashlan, M. Active RIS versus passive RIS: Which is superior with the same power budget? IEEE Commun. Lett. 2022, 26, 1150–1154. [Google Scholar] [CrossRef]
- Dong, L.; Wang, H.-M.; Bai, J. Active reconfigurable intelligent surface aided secure transmission. IEEE Trans. Veh. Technol. 2022, 71, 2181–2186. [Google Scholar] [CrossRef]
- Tasci, R.A.; Kilinc, F.; Alexandropoulos, G.C. A new RIS architecture with a single power amplifier: Energy efficiency and error performance analysis. IEEE Access 2022, 10, 44804–44815. [Google Scholar] [CrossRef]
- Xu, J.; Zuo, J.; Zhou, J.T.; Liu, Y. Active simultaneously transmitting and reflecting(STAR)-RISs: Modelling and analysis. IEEE Commun. Lett. 2023. early access. [Google Scholar] [CrossRef]
- Ma, Y.; Li, M.; Liu, Y.; Wu, Q.; Liu, Q. Optimization for reflection and transmission dual-functional active RIS-assisted systems. IEEE Trans. Commun. 2023. early access. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Wu, Q.; Shi, Q.; Zhao, Y. Enhanced secure com-munication via novel double-faced active RIS. IEEE Trans. Wirel. Commun. 2023, 71, 3497–3512. [Google Scholar] [CrossRef]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G networks: Use cases and technologies. IEEE Commun. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Jaafar, W.; Naser, S.; Muhaidat, S.; Sofotasios, P.C.; Yanikomeroglu, H. Multiple access in aerial networks: From orthogonal and non-orthogonal to rate-splitting. IEEE Open J. Veh. Technol. 2020, 1, 372–392. [Google Scholar] [CrossRef]
- Mao, Y.; Dizdar, O.; Clerckx, B.; Schober, R.; Popovski, P.; Poor, H.V. Rate-Splitting Multiple Access: Fundamentals, Survey, and Future Research Trends. IEEE Commun. Surv. Tutor. 2022, 24, 2073–2126. [Google Scholar] [CrossRef]
- Khan, W.U.; Liu, J.; Jameel, F.; Sharma, V.; Jantti, R.; Han, Z. Spectral efficiency optimization for next generation NOMA-enabled IoT networks. IEEE Trans. Veh. Technol. 2020, 69, 15284–15297. [Google Scholar] [CrossRef]
- Rimoldi, B.; Urbanke, R. A rate-splitting approach to the gaussian multiple-access channel. IEEE Trans. Inf. Theory 1996, 42, 364–375. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, M.; Saad, W.; Shikh-Bahaei, M. Optimization of rate allocation and power control for rate splitting multiple access(RSMA). IEEE Trans. Commun. 2021, 69, 5988–6002. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, M.; Saad, W.; Xu, W.; Shikh-Bahaei, M. Sum-rate maximization of uplink rate splitting multiple access(RSMA) communication. IEEE Trans. Mob. Comput. 2020, 21, 2596–2609. [Google Scholar] [CrossRef]
- Mao, Y.; Clerckx, B.; Li, V.O.K. Rate-splitting multiple access for downlink communication systems: Bridging, generalizing, and outperforming SDMA and NOMA. EURASIP J. Wirel. Commun. Netw. 2018, 1, 133. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Singh, K.; Clerckx, B.; Li, C.-P.; Alouini, M.-S. Rate-Splitting Multiple Access for Intelligent Reflecting Surface Aided Multi-User Communications. IEEE Trans. Veh. Technol. 2021, 70, 9217–9229. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, Q.; Chen, W.; Ng, D.W.K. Rate-Splitting Multiple Access for Intelligent Reflecting Surface-Aided Secure Transmission. IEEE Commun. Lett. 2023, 27, 482–486. [Google Scholar] [CrossRef]
- Shambharkar, D.; Dhok, S.; Singh, A.; Sharma, P.K. Rate-Splitting Multiple Access for RIS-Aided Cell-Edge Users With Discrete Phase-Shifts. IEEE Commun. Lett. 2022, 26, 2581–2585. [Google Scholar] [CrossRef]
- Katwe, M.; Singh, K.; Clerckx, B.; Li, C.-P. Rate Splitting Multiple Access for Sum-Rate Maximization in IRS Aided Uplink Communications. IEEE Trans. Wirel. Commun. 2023, 22, 2246–2261. [Google Scholar] [CrossRef]
- Dhok, S.; Sharma, P.K. Rate-Splitting Multiple Access With STAR RIS Over Spatially-Correlated Channels. IEEE Trans. Commun. 2022, 70, 6410–6424. [Google Scholar] [CrossRef]
- Katwe, M.; Singh, K.; Clerckx, B.; Li, C.P. Improved Spectral Efficiency in STAR-RIS Aided Uplink Communication using Rate Splitting Multiple Access. IEEE Trans. Wirel. Commun. 2023, 22, 5365–5382. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Cheng, W.; Dong, X.; Dong, L. Active Intelligent Reflecting Surface Aided RSMA for Millimeter-Wave Hybrid Antenna Array. IEEE Trans. Commun. 2023. early access. [Google Scholar] [CrossRef]
- Niu, H.; Lin, Z.; An, K.; Wang, J.; Zheng, G.; Al-Dhahir, N.; Wong, K.-K. Active RIS Assisted Rate-Splitting Multiple Access Network: Spectral and Energy Efficiency Tradeoff. IEEE J. Sel. Areas Commun. 2023, 41, 1452–1467. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Y.; Mu, X.; Dobre, O.A. STAR-RISs: Simultaneous Transmitting and Reflecting Reconfigurable Intelligent Surfaces. IEEE Commun. Lett. 2021, 25, 3134–3138. [Google Scholar] [CrossRef]
- Cantrell, P.E.; Ojha, A.K. Comparison of generalized Q-function algorithms. IEEE Trans. Inf. Theory. 1987, 33, 591–596. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products, 6th ed.; Academic Press: New York, NY, USA, 2000. [Google Scholar]
- Simon, M.K. Probability Distributions Involving Gaussian Random Variables; Springer: New York, NY, USA, 2006. [Google Scholar]
- Hildebrand, E. Introduction to Numerical Analysis; Dover: New York, NY, USA, 1987. [Google Scholar]
- Zhong, C.; Suraweera, H.A.; Zheng, G.; Krikidis, I.; Zhang, Z. Wireless information and power transfer with full duplex relaying. IEEE Trans. Commun. 2014, 62, 3447–3461. [Google Scholar] [CrossRef]
- Laneman, J.; Tse, D.; Wornell, G. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inf. Theory 2004, 50, 3062–3080. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series, Vol. 1 and Vol. 2, Elementary Functions and Special Functions; Gordon & Breach Sci. Publ.: New York, NY, USA, 1986. [Google Scholar]
Monte Carlo simulation times | |
Rician factor | −7 (dB) |
Target data rates | (BPCU) |
Amplification factor | |
Amplitude coefficients | and |
Quantity of ASTARS elements | |
Noise intensity | (dBm) and (dBm) |
Path-loss coefficients | (dBm) and |
Communication distances | (m) and (m) |
ASTARS element power consumption | (dBm) |
Network | Resist Fading | Spectrum Efficiency | Energy Consumption |
---|---|---|---|
ASTARS-RSMA | Stronger | Higher | More |
ASTARS-NOMA | Stronger | Lower | More |
PSTARS-RSMA | Weaker | Higher | Less |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Yue, X.; Han, Z.; Liu, X.; Xiang, W. Active STARS-Assisted Rate-Splitting Multiple-Access Networks. Electronics 2023, 12, 3815. https://doi.org/10.3390/electronics12183815
Xie J, Yue X, Han Z, Liu X, Xiang W. Active STARS-Assisted Rate-Splitting Multiple-Access Networks. Electronics. 2023; 12(18):3815. https://doi.org/10.3390/electronics12183815
Chicago/Turabian StyleXie, Jin, Xinwei Yue, Zhihao Han, Xuliang Liu, and Wei Xiang. 2023. "Active STARS-Assisted Rate-Splitting Multiple-Access Networks" Electronics 12, no. 18: 3815. https://doi.org/10.3390/electronics12183815
APA StyleXie, J., Yue, X., Han, Z., Liu, X., & Xiang, W. (2023). Active STARS-Assisted Rate-Splitting Multiple-Access Networks. Electronics, 12(18), 3815. https://doi.org/10.3390/electronics12183815