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Abstract: Bird identification is the first step in collecting data on bird diversity and abundance,
which also helps research on bird distribution and population measurements. Most research has
built end-to-end training models for bird detection task via CNNs or attentive models, but many
perform unsatisfactorily in fine-grained bird recognition. Bird recognition tasks are highly influenced
by factors, including the similar appearance of different subcategories, diverse bird postures, and
other interference factors such as tree branches and leaves from the background. To tackle this
challenge, we propose the Progressive Cross-Union Network (PC-Net) to capture more subtle parts
with low-level attention maps. Based on cross-layer information exchange and pairwise learning,
the proposed method uses two modules to improve feature representation and localization. First, it
utilizes low- and high-level information for cross-layer feature fusion, which enables the network
to extract more comprehensive and discriminative features. Second, the network incorporates deep
semantic localization to identify and enhance the most relevant regions in the images. In addition,
the network is designed with a semantic guidance loss to improve its generalization for variable
bird poses. The PC-Net was evaluated on an extensively used birds dataset (CUB-200-2011), which
contains 200 birds subcategories. The results demonstrate that the PC-Net achieved an impressive
recognition accuracy of 89.2%, thereby outperforming maintained methods in bird subcategory
identification. We also achieved competitive results on two other datasets with data on cars and
airplanes. The results indicated that the PC-Net improves the accuracy of diverse bird recognition, as
well as other fine-grained recognition scenarios.

Keywords: fine-grained visual classification; bird image recognition; pairwise learning

1. Introduction

Birds, as an important part of the ecosystem, can be used as indicators to monitor the
health and sustainability of green space ecosystems [1]. The identification and classification
of birds contribute to a deeper understanding of their habits and ecological characteristics,
which can help to study and conserve birds in greater depth. Accurate bird detection
is particularly important in various applications [2], including ecological studies, bird
category identification, field surveys, and tracking seasonal migration and habitat changes.
For instance, in ecological studies, it is essential to monitor bird populations accurately
to assess the impact of environmental changes on their habitats. Similarly, bird category
identification requires precise detection to differentiate between similar subcategories and
to understand their unique characteristics.

Identifying birds accurately has always been a challenging task, particularly in dif-
ferentiating between birds of different families and genera within the same ornithological
order. This is due to the large number and variety of birds, as well as their great differences
in morphology, color, and size. These differences exist not only between different classes,
but also within the same classes, thus making bird differentiation more difficult. As com-
puter vision (CV) technology and deep learning algorithms evolve, bird recognition can be
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accomplished on machines that do not have a priori knowledge of ornithology. With the
capability of feature learning, convolutional neural networks (CNNs) have sparked great
progress in various computer vison tasks, including bird detection and classification. For in-
stance, Wei et al. [3] introduced a Mask-CNN model that generates object/part masks based
on part annotations to select useful feature descriptions. Zhang et al. [4] proposed a region-
based model with detectors to select the parts with high feature responsiveness for training.
However, these methods can only accomplish bird target detection and coarse category
recognition. In bird image classification, there is often a high degree of feature crossover,
where different subcategories may share the same features, and the same subcategories
may vary greatly in appearance and posture. As shown in Figure 1, the target detection
method cannot accurately distinguish the subcategories of birds, and it cannot achieve
the requirements of the ecological scenarios to accurately count the distribution of birds.
Therefore, fine-grained visual classification (FGVC) has now become a research hotspot.

Figure 1. Examples of small differences between different subcategories of birds and large differences
in the same subcategories of birds.

Currently, most of the mainstream fine-grained research methods rely on supervised
learning with manually annotated labeled information [5–7]. Manual annotation of an
image is challenging for researchers due to the specialized knowledge required for labeling
and the high cost of time. Moreover, labeled data may suffer from data bias problems, thus
leading to models that cannot be generalized to new data or that perform poorly when
trained on new data. Weakly supervised learning requires only image-level labeled data
compared to strongly supervised learning, thus addressing the issue of data scarcity. By
introducing weakly supervised signals, the model can better handle situations where there
is crossover between categories, adapt to the features of different categories, and improve
the generalization and processing capabilities. This approach enables models to learn from
more diverse data and better capture the subtle differences between bird subcategories.
Therefore, weakly supervised learning has become an increasingly popular approach in
bird image classification. It offers a promising solution to the challenges posed by strongly
supervised learning methods and bears the potential to significantly enhance the prediction
precision of bird classification.

Recent research [8] has shown that low levels of information have higher sensitivity
in fine-grained image categorization tasks. Given that birds are characterized by high
similarity across subcategories and high variation within the same subcategory, we believe
that low-level attention maps work better for capturing the more subtle parts that reflect
differences between classes. Therefore, incorporating low-level attention maps in the
feature extraction process could improve the efficiency of bird recognition. Building on
this idea, this paper proposes a Progressive Cross-Union Network(PC-Net) that utilizes the
spatial and semantic distinctions between different stages of the backbone to effectively
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integrate cross-layer features. Compared to other pairwise learning methods, PC-Net
extracts highly responsive feature regions from images with the same label but different
contents, thereby leading the network to learn meaningful parts. The main contributions of
this work are as follows:

(1) We present the Cross-Layer Fusion Module (CLFM) to interact with features from
different stages to enrich semantic features.

(2) We also propose the Deep Semantic Localization Module (DSLM) to strengthen highly
responsive feature regions and to weaken the influence of the background.

(3) We introduce a Semantic Guidance Loss (SGloss) to react to the spatial gap between
different categories and to enhance the generalization of models.

During expriments, we evaluated the performance of the PC-Net on a dataset of
11,788 images with 200 bird subcategories, wherein we achieved a recognition accuracy of
89.2%, which outperformed most mainstream models.

The structure of the paper is as follows: In Section 2, we provide an overview of the
related work. Section 3 outlines the methodology employed in this study. Section 4 covers
the datasets and experimental details. In Section 5, we discuss the experiment results,
including comparisons with existing models and an ablation study. Finally, we make a
conlusion in Section 6.

2. Related Works

Many scholars studying weakly supervised learning have argued that the key to
improving classification accuracy lies in the extraction of discriminative features. As a
result, Zheng et al. [9] proposed a multiattention network that synergistically combines
region localization and region-based feature learning. Zheng et al. [10] argued that most
localization methods have limitations in that the number of localizations is specified.
Thus, a trilinear attention sampler was proposed to improve this problem. Fu et al. [11]
proposed a revolving network to learn informative features at multiple scales, which are
optimized through two scale losses. Unlike other methods that address discriminative
region localization separately and independently, it uses the correlation between the region
detection and the fine-grained feature learning to make the two mutually reinforcing. All
of these methods learn local features through a localization network, which often requires
a multi-stage feature extraction network. However, this approach destroys the correlation
between the local and the whole, thereby resulting in poor robustness. Despite the successes
of these methods, there are still challenges in fine-grained bird recognition, such as high
levels of feature crossover.

Other researchers have proposed higher-order feature encoding methods, among
which the Bilinear Convolutional Network (B-CNN) proposed by Lin et al. [12] has been
widely used. The B-CNN extracts fine-grained features by encoding highly parameterized
feature representations; the feature representations after higher-order encoding have richer
semantic information, thus improving the behavior of the model. This has led to the
development of a series of higher-order feature coding methods aimed at improving the
bilinear confluence process or streamlining the bilinear confluence, thus providing new
ideas for FGVC. Li et al. [13] proposed a Semantic Bilinear Pooling CNN (SBP-CNN),
which learns the correlation between neighboring levels and expands the distance between
different samples through a generalized cross-entropy loss. Shu et al. [14] devised a method
to enhance the accuracy of the B-CNN model while simultaneously reducing the parameter
dimensions. Unlike the B-CNN, Shu et al. used a symmetric network model where both
steams use the same CNN, thereby resulting in a decrease in the number of parameters.

In addition to the methods discussed above, many researchers have proposed a paired
learning approach [15,16]. Zhuang et al. [17] proposed to learn contrast cues from image
pairs to identify semantic differences between different classes. The cross-entropy loss
(CELoss) [18] forces the network to mine features with higher confidence in the samples,
which leads to a poorer generalization of the network. Dubey et al. [19] proposed the
intentional introduction of obfuscation in the activations to solve the overfitting problem in
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fine-grained image classification. Their approach aimed to calculate the spatial distance
between different category labels to encourage the network to learn other auxiliary cues.
However, this method did not account for changes in the spatial location of the image and
introduced additional disturbances to the model, which affected its classification accuracy.
Further research is needed to develop more effective paired learning methods that can better
capture the intricate differences between bird subcategories and improve the performance
of the FGVC. Finally, we summarize the above work in Table 1.

Table 1. Summary of recent research works. We summarize them in three categories.

Reference Object DL Frame Contributions Limitations

[9]
Bird,
Car,
Aircraft

VGG
Learning more features by acquiring multiple
discriminative regions from the feature channel.

Extraction of features
from parts, lack of
grasp of the target as
a whole.

[10] Cars,
Naturalist Species

ResNet
Selection of hundreds of detailed parts from
which useful feature representations are
extracted to improve classification standard.

[11]
Bird,
Car,
Dog

VGG
Possible to perform multiscale feature extraction to
generate attention regions from coarse to fine.

[12]
Bird,
Car,
Aircraft

VGG

The use of bilinear pooling fuses information
from different channels to transform first-order
statistics into second-order, thus improving
the performance of the model. High number of

parameters and
computational effort
make the model not
cost-effective.

[13]
Bird,
Car,
Aircraft

VGG
ResNet

Improving bilinear pooling into a semantics-
differentiated double branching.

[14]
Bird,
Car,
Aircraft
Textures

VGG
Improvement of the limitation of large
parametric quantities of bilinear networks
by two parameter approximations.

[17]
Bird,
Car,
Aircraft,
Dog

ResNet
DenseNet

Proposes pairwise interactions via mutual
learning vectors to capture the semantic
differences among them. Direct feature

interaction across
different images,
which leads to poor
results.

[19]
Bird,
Car,
Aircraft,
Dog
Flower

ResNet
DeseNet
BilinearCNN

Proposes simplified conditional probability
separately to improve the overfitting problem.

3. Methods
3.1. Network Architecture

The overall network architecture of the PC-Net is illustrated in Figure 2, where
ResNet50 [20] is used as the feature extractor, and the two inputs share the network
parameters. The details of the design are as follows: (1) Image preprocessing uses the
mixup data enhancement method [21] for data crossover to prevent overfitting. (2) The
Cross-Layer Fusion Module (CLFM) obtains an overall feature representation containing
both low- and high-level semantic information for classification. (3) The Deep Semantic
Localization Module (DSLM) enhances the feature representation of discriminative regions,
while irrelevant features are suppressed. (4) Semantic Guidance Loss (SGloss) and CELoss
optimization training are performed. ResNet50 consists of multiple convolutional layers
and residual connections, which contain 5 stages. The initial stage of ResNet50 exhibits
a relatively straightforward structure, thus serving as a preprocessing step for the input
image. The latter 4 stages have a more similar structure that consists of different numbers of
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residual blocks, including 3, 4, 6, and 3 residual blocks in that order. In this study, ResNet50
has been used as a backbone network for extracting features at different levels.

Figure 2. Architecture diagram of Progressive Cross-Union Network. CLFM is used on stages 3, 4,
and 5 for cross-layer fusion. DSLM operates in the fifth stage for deep semantic localization.

To better learn the feature relationships between different images, pairs of input
two images belonging to the same category are used, where the auxiliary and primary
images utilize the mixup data enhancement method in order to perform data crossover
and prevent overfitting. Mixup is a method based on data augmentation that mixes two
different samples to create a new sample. The two samples of PC-Net belong to the same
label, which is also the label of this new sample. In this way, the diversity of data can be
increased, thus improving the stability and generalization capabilities. According to the
principle proposed in the literature [21], the beta distribution of the hyperparameters θ is
first calculated as the mixing coefficients λ:

λ = β(θ1, θ2), (1)

where β refers to the beta distribution, and the hyperparameters θ1 and θ2 take the value of
1. From this, the mixing formula for mixup is obtained as follows:

Imixed = λ× Ia + (1− λ)× Ib, (2)

where Ia refers to the main image input by the method, Ib refers to the auxiliary image
input by the method, and Imixed refers to the mixed sample image. Due to the large
differences between different samples of the same subcategories, applying this hybrid
enhancement method can reduce the variability and provides more informative pairwise
learning features.

3.2. Cross-Layer Fusion Module (CLFM)

PC-Net uses cross-layer fusion to aggregate semantic information at different stages.
Each layer learns other feature representations to close the information gap at different
stages. Figure 3 illustrates the proposed Cross-Layer Fusion Module (CLFM), which com-
bines the features of the 3rd, 4th, and 5th stages from the backbone network.
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Figure 3. An illustration of the CLFM.

Concretely, we have two different features X, Y from the pretrained backbone. We use
global max pooling for X, Y to extract important information to prepare for cross fusion.

Next, we perform feature interactions on the two max pooling features X
′
, Y
′

in the
channel dimension to obtain the complementary feature M

′
by elementwise multiplication:

M
′
= X

′ ⊗Y
′
, (3)

where⊗ denotes the elemental multiplication operation. The complementary features of M
′

are normalized by softmax to compute the feature weights for each part. The normalization
principle equation is defined as follows:

M =
exp
(

M
′
i

)
∑n

1 exp
(

M
′
j

) , i ∈ [1, n]. (4)

The weight feature M contains complementary information about the features X, Y.
Mapping it to the feature map X obtains a complementary feature of Y with respect to Y:

AY
X = X⊗M. (5)

The above is the realization of two different stages of feature integration. We aim to
achieve feature convergence across multiple phases. Further, for the feature maps F, T, P of
the 3rd, 4th, and 5th stages from ResNet50, they are taken to the two-by-two interaction
described above.

AT
F = F • T, (6)

AP
T = T • P, (7)

AF
P = P • F, (8)
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where • denotes the fusion process introduced previously, AT
F denotes the complementary

features of feature F with respect to feature T, AT
F denotes the complementary features of

feature T with respect to feature P, and AT
F denotes the complementary features of feature

P with respect to feature F. By this point, three features have been fused two-by-two. By
cross-summing, the cross-layer fusion features for each stage with respect to the other two
parts are finally obtained.

ZP = P + AT
F , (9)

ZF = F + AP
T , (10)

ZT = T + AF
P. (11)

3.3. Deep Semantic Localization Module (DSLM)

Since the network focuses more and more on higher response regions as it deepens,
this usually refers to the discriminative part of the foreground. The PC-Net proposes the
Deep Semantic Localization Module (DSLM) that generates an independent activation
graph to respond to these regions, thus paving the way for optimal pairwise learning, as
shown in Figure 4.

Figure 4. An illustration of the DSLM.

The module takes feature K ∈ RC×W×H as the input, where C, W, and H denote the
number of channels, width, and height, respectively. We first compute the mean values on
the H and W of the feature maps as the weighting factor:

g = MeanH(MeanW(K)), (12)

where MeanH denotes the mean in height dimensions and MeanW denotes mean in width
dimensions. The weighting factor g is applied elementwise to multiply the feature map K,
thus resulting in the weighted feature K

′
with respect to K:

K
′
= g⊗ K. (13)

To obtain the semantically active part, the weighted feature K
′

is summed by
a channel dimension:

k = ∑C
i=0K

′
. (14)

Then, we remove the negative values in the tensor to obtain the foreground portion:

ki =

{
0, ki ≤ 0
ki, otherwise

. (15)
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Finally, the semantic activation map E is obtained as follows:

E =
k− kmin

kmax
. (16)

3.4. Optimized Loss Function

A Semantic Guided Loss (SGLoss) was designed to better learn the spatial infor-
mation between pairs of input images. For the semantic activation maps obtained from
the DSLM, SGLoss calculates the spatial distance between its different images to ensure
feature diversity.

Specifically, the input of SGLoss is the semantic activation map obtained from the
DSLM. The semantic activation map a is first preprocessed to compute the mean and
variance by rows, respectively.

Emean
a = MeanH(a), (17)

Estd
a = StdH(a), (18)

where StdH denotes the standard deviation over the height dimensions. Next, we use the
mean and variance for data augmentation:

D =
Ea − Emean

a
Estd

a
. (19)

To avoid interference from background noise, the data in D are normalized:

Di =

{
0, Di ≤ 0
Di, otherwise

. (20)

Regarding the loss of spatial distance between the two graphs a, b, the final SGLoss is
computed as follows:

LSG =
1
N ∑N

n=1Mean(Da ⊗ Db), (21)

where N denotes the batch size.
In addition, the PC-Net uses CELoss to measure the prediction error. During training,

the classification loss is calculated for each layer after the cross-fusion across layers:

LCE = −∑M
m=1y log pi

c, (22)

where M is the number of object categories, y is the true labeled value of the input image,
and pi

c is the vector of the predicted scores at stage i with respect to category c.
The final overall loss is defined as follows:

L = LCE + αLSG, (23)

where α is a hyperparameter used to balance the CELoss and SGLoss.

4. Experiment
4.1. Datasets

The proposed model was evaluated using the CUB-200-2011 [22], which is a popular
benchmark for fine-grained image classification tasks. The CUB-200-2011 contains 11,788
images from 200 different bird categories. Compared to other fine-grained datasets(e.g.,
airplanes, cars), the poses of the birds are more variable.

To validate the generalization of the model, this study also experimented on the
Stanford Cars dataset [23] and the Fine-Grained Version Visual Classification of Aircraft
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(FGVC-Aircraft) dataset [24]. Stanford Cars is a dataset of car images collected by Stanford
University mainly for differentiating car type image classifications. The FGVC-Aircraft is
derived from the Kaggle website dataset, which contains 10,000 images of 100 different
aircraft model variants. Table 2 summarizes the detailed statistics for each dataset.

Table 2. Details of experiment datasets used in this article.

Dataset Name Number of Classes Train Text

CUB-200-2011 200 5994 5794
Stanford Cars 196 8144 8041
FGVC Aircraft 100 6667 3333

4.2. Experiment Details

In the work, We used a pretrained ResNet50 with the ImageNet [25] as the baseline.
Stochastic gradient descent(SGD) [26] was used as the optimizer, where the momentum
was 0.9, the weight decay was 5 × 10−4, and the initial learning rate was 0.002. The epoch
size was 200. The batch size was 16. The training process was optimized by a cosine
annealing scheduler [27]. During training, random horizontal flipping was applied for
data augmentation. The input was resized to 550 × 550 and then randomly cropped to
448 × 448. In the testing phase, a center crop was used, as is illustrated in Figure 5.

Figure 5. Example of data enhancement.

All experiments were conducted within the Ubuntu 20.04.4 environment with NVIDIA
GTX 3090 GPUs with 24 G of memory size. The deep learning framework used was
PyTorch [28] version 1.12.1 with Cuda 11.6 for training.

5. Results and Discussions
5.1. Evaluation Indexes

The experiment used the accuracy as a classification evaluation metric, i.e., the proba-
bility of a correct prediction in all samples. The FGVC is a single label classification problem,
where each image has a unique correct category. The accuracy is determined as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
, (24)

where TP is true positive, which denotes the number of positive samples categorized as
positive; FN is false negative, which denotes the number of samples labeled as positive
samples that are categorized as negative; FP is false positive, which denotes the number
of samples labeled as negative samples that are categorized as positive; and TN is true
negative, which denotes the number of samples labeled as negative samples that are
categorized as negative.

5.2. Results on the CUB-200-2011

Table 3 presents the results of the different methods on the CUB-200-2011 dataset, and
the PC-Net achieved an optimal score of 89.2%.
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Table 3. The accuracy comparison of different algorithms on CUB-200-2011.

Methods Backbone Accuracy/%

B-CNN [12] VGG 84.1
RA-CNN [11] VGG 85.3
MA-CNN [9] VGG 86.5

SBP-CNN [13] VGG 87.8
SBP-CNN [13] Resnet50 88.9
Corss-X [16] Resnet50 87.7
API-Net [17] Resnet50 87.7

TASN [10] Resnet50 87.9
PCA-Net [15] Resnet50 88.3
API-Net [17] Resnet101 88.6
PCA-Net [15] Resnet101 88.9

PC-DenseNet [19] DenseNet 86.8

Ours Resnet50 89.2

The RA-CNN, MA-CNN, and TASN are methods based on subnetwork localization,
and they yielded accuracy values of 85.3%, 86.5%, and 87.9% respectively. The PC-Net
obtained 1.3% higher results than the TASN, which shows that features can be mined more
deeply by cross-layer fusion compared to the regional localization method.

The PCA-Net, Corss-X, API-Net, and PC-DenseNet are pairwise learning methods.
The accuracy of the first three were 88.3%, 87.7%, and 87.7% on Resnet50, respectively, and
88.9% and 88.6% on Resnet101, respectively. Among them, the Corss-X was not tested
on Resnet101. The PC-DenseNet achieved the best result of 86.8% on the DenseNet161
backbone, so Table 2 does not cite the results of this method on other backbone networks.
The results of all such methods were slightly higher than those based on subnetwork
localization. The localization methods only focused on the cropped region, which affected
the recognition accuracy once the localization was deviated and the selected region was
not accurate enough. The API-Net asserts to capture the comparison cues between two
images, while the PCA-Net aims to learn the semantic similarity between images of the
same category. This paper split the pairwise inputs into primary and auxiliary pictures,
which were used to encourage the network to learn other semantically active parts. The
PC-Net improved by 1.5% and 0.9% over the PCA-Net and API-Net, respectively, under the
same backbone, and it outperformed them by 0.6% and 0.3%, respectively, on the results of
the Resnet101, which is a deeper network.

Specifically, Table 4 shows the results of other metric evaluations. Figure 6 shows
the training process of the PC-Net on the CUB-200-2011 dataset. The loss curve stabilized
in the region around 100 rounds. Our curve changed significantly in the early rounds
and then became slower. The high resolution of our dataset primarily contributed to
this observation. Fine-grained models typically have more features and higher feature
dimensions. These additional features provide more information and allow the model
to capture subtle differences in the data more accurately. In addition, we used pairwise
learning networks for training and individual networks for testing. There was a gap in the
losses between the two.

Table 4. FLOPs, params, and inference time for PC-Net.

Parameters Value

FLOPs 37.4 G
Params 45.4 M

Inference time 0.02 s
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Figure 6. Loss curves of PC-Net in CUB-200-2011.

5.3. Results on the Stanford Cars and FGVC-Aircraft

Although the PC-Net is not optimized on the Stanford Cars and FGVC-Aircraft
datasets, which are commonly used for FGVC, it attained commendable outcomes, as
are shown in Table 5. The accuracy of this method on the Stanford Cars reached 94.6% and
93.0% on the FGVC-Aircraft, which shows that the network has some capabilities in the
recognition of other objects as well.

API-Net’s Resnet101-based network achieved 94.9% and 93.4% accuracy on the datasets
of Stanford Cars and FGVC-Aircraft, respectively, which is slightly higher than our method’s
results in this study. However, the PCA-Net proposed in this study is based on the Resnet50,
which is only 0.2% lower on the Stanford Cars data when compared to the API-Net’s
Resnet50-based network. The overall results from the three datasets and using different
depths of the backbone network show that the PCA-Net has better applicability.

Table 5. The accuracy comparison of different algorithms on Stanford Cars and FGVC-Aircraft.

Methods Backbone Stanford Cars/% FGVC-Aircraft/%

B-CNN [12] VGG 91.3 84.1
RA-CNN [11] VGG 92.5 85.3
MA-CNN [9] VGG 92.8 86.5

SBP-CNN [13] VGG 93.2 87.8
SBP-CNN [13] Resnet50 94.3 88.9
Corss-X [16] Resnet50 94.5 87.7
API-Net [17] Resnet50 94.8 87.7
PCA-Net [15] Resnet50 94.3 88.3
API-Net [17] Resnet101 94.9 88.6
PCA-Net [15] Resnet101 94.6 88.9

Ours Resnet50 94.6 93.0

5.4. Ablation Study
5.4.1. Effects of DSLM and CLFM

The PC-Net uses the ResNet50 model as its basis and adds the DSLM and CLFM
to its structure. This study designed a series of ablation experiments based on this. The
recognition accuracy curve is shown in Figure 7, which provides further evidence of the
effectiveness of the PC-Net. Based on the picture the results present, the accuracy was
improved with different additions of the DSLM and CLFM.
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Figure 7. Results of module ablation tests.

Table 6 shows the specific results of the ablated trials. Using the recognition accuracy
on the ResNet50 as a reference, the model achieved a classification accuracy of only 82.5%.
Adding the DSLM to the ResNet50 resulted in an accuracy of 86.4%, thus improving by
3.9% compared to the ResNet50 alone. This module is designed to augment the model’s
proficiency in precisely discerning intricate details within an image. The PC-Net also
employs the CLFM, which is a module that fuses different levels of information to improve
model accuracy. An accuracy of 87.8% was obtained in the experiment where the CLFM
was added to the ResNet50, thus improving it by 5.3%. Finally, with the addition of both the
deep semantic localization module and the cross-layer cross-fertilization module, namely,
the PC-Net proposed in this study, the model accuracy was 89.2%. This represents a
substantial improvement of 6.7% over the ResNet50 alone, thus comparing 2.8% and 1.4%,
respectively, for the addition of a single model. This shows that the proposed two modules
have a significant effect on improving the model accuracy. Moreover, the use of these two
modules is scalable and can be tried and optimized in different model architectures.

Table 6. Results of module ablation tests. (“Y” and “N” respectively indicate whether the component
is used or not).

ResNet50 DSLM CLFM Accuracy /%

Y N N 82.5
Y Y N 86.4
Y N Y 87.8
Y Y Y 89.2

Overall, the results of the ablation test prove the effectiveness of adding the DSLM
and CLFM.

5.4.2. Effects of Mixup

To validate the efficacy of the mixup data enhancement operation, this study per-
formed an additional ablation test. Since the mixup approach acts on pairwise inputs, our
ablation experiments were based on the environment in the second row of Table 6. Figure 8
shows the accuracy change curve with or without mixup data enhancement. Initially, the
model needed to learn more features, so the model without mixup had a higher accuracy.
However, as the model iteration went deeper, the model using mixup gradually overtook
it, thus demonstrating the stronger generalization ability of the mixup-enhanced model.
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Figure 8. Results of mixup ablation test.

The specific experimental results are presented in Table 7, indicating that the utilization
of mixup can enhance the effect of the PC-Net. Without mixup, the accuracy of the model
was 86.1%. After using the mixup data enhancement, the accuracy increased to 86.4%. This
shows that mixup data enhancement works in the PC-Net.

Table 7. Results of mixup ablation tests.

Methods Accuracy /%

Without mixup 86.1
With mixup 86.4

5.4.3. Effects of Loss

We investigated various strategies for loss function optimization. The previous
study [29] demonstrated the efficacy of the CELoss in FGVC. The PC-Net introduced
SGLoss to train a dual-input architecture for pairwise learning. The results in Table 8
directly indicate that the network incorporating SGLoss achieved superior performance.

Table 8. Results of SGLoss ablation tests.

Methods Accuracy /%

CELoss 87.4
CELoss + SGLoss 89.2

5.5. Visualization

To further assess the efficacy of the proposed PC-Net, images from the CUB-200-2011
dataset were visualized using Grad-CAM [30]. Grad-CAM is a weighted summation
method based on a feature map that shows the importance of each region for its classifica-
tion. The visualization results were compared with the baseline (ResNet50) as shown in
Figure 9. By observing the results, we can see that the baseline could only learn a single
region of the image, such as the beak. In contrast, the PC-Net could learn a richer set of
distinguishing features. The Laysan albatross in (A,B) had two unposed states. The model
captured the subject in both cases. Indigo buntings in (C,D) usually survive at the edge
of scrubby forests. The baseline could not accurately capture image features against the
complex background in the figure, but the PC-Net still performed well. The blue-headed
vireo in (F) suffers from significant resin occlusion. The baseline’s attention was focused
on the occlusion, while the PC-Net focused on the bird itself. (G) demonstrates that the
PC-Net not only focused on salient features, but also encouraged the network to spread
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its attention to different regions and learn the subsalient parts. This resulted in a more
comprehensive feature learning of the model and more accurate prediction results.

Figure 9. Visualization of baseline and PC-Net activation maps on CUB-200-2011. (A,B) are cases of
the same species with different postures. (C–F) are cases where the background is complex and the
target is occluded. (G) is the case where there is no interference. In these cases, the PC-Net showed a
strong adaptation.

6. Conclusions

In this paper, we introduced the PC-Net that can recognize bird categories at a more
specialized level. The network comprises a cross-layer fusion module, a deep semantic
localization module, and a semantic guidance loss. The cross-layer fusion module enables
each layer to diversify its feature representation, and the fused features can ultimately
express richer semantic information. The deep semantic localization module encourages
the capture of features in high-frequency response regions while mitigating the influence
of background noise and interfering factors. The semantic guidance loss considers the
relationships between different pictures and supervises the alignment of features within
the deep semantic localization module, thus forcing the network to learn other meaningful
regions. Notably, the proposed method does not require bounding boxes or widget annota-
tions, and only image-level labeling is needed. The proposed method showed significant
improvement on the fine-grained bird dataset and achieved competitive results on two
other common datasets, which included cars and airplanes. Various experiments were
designed aiming to justify the feasibility of the proposed module. Currently, there is still a
problem with respect to the small amount of data and the large number of species in bird
studies, which leads to unbalanced datasets. Future directions of work will try to add the
prior method to the model so that the model learns prior knowledge as if it were a human
expert, as well as to improve the interpretability of the model.
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Abbreviations

CUB-200-2011 Caltech-UCSD Birds-200-2011 dataset
PC-Net Progressive Cross-Union Network
CV Computer Vision
CNN Convolutional Neural Network
Part R-CNN Region-Based Convolutional Neural Network
MA-CNN Multi-Attention Convolutional Neural Network
TASN Trilinear Attention Sampling Network
RA-CNN Recurrent Attention Convolutional Neural Network
B-CNN Bilinear Convolutional Network
SBP-CNN Semantic Bilinear Pooling CNN
API-Net Attentive Pairwise Interaction Network
DTD Describable Textures Dataset
CLFM Cross-Layer Fusion Module
DSLM Deep Semantic Localization Module
SGloss Semantic Guidance Loss
CELoss Cross-Entropy Loss
FGVC-Aircraft Fine-Grained Visual Classification of Aircraft
SGD Stochastic Gradient Descent
Croxx-X Cross-X Learning
FGVC Fine-Grained Visual Classification
PC-DenseNet Pairwise Confusion based on DenseNet
PCA-Net Progressive Co-Attention Network
TP True Positive
FN False Negative
FP False Positive
TN True Negative
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